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Abstract

We present a simple framework for constructing de Bruijn sequences, and more generally, universal
cycles, via successor rules. The framework is based on the often used method of joining disjoint cycles.
It generalizes four previously known de Bruijn sequence constructions and is applied to derive three new
and simple de Bruijn sequence constructions. Four of the constructions apply the pure cycling register and
three apply the complemented cycling register. The correctness of each new construction is easily proved
using the new framework. Each of the three new de Bruijn sequence constructions can be generated in
O(n)-time per bit using O(n)-space.

1 Introduction

Let B(n) denote the set of binary strings of length n. A de Bruijn sequence is a binary string of length 2n

that when considered cyclicly, contains every string in B(n) as a substring. More generally, given a subset S
of B(n), a universal cycle for S is a binary string of length |S| that when considered cyclicly contains every
string in S as a substring. In this paper, we present a framework for constructing de Bruijn sequences, and
more generally, universal cycles, by applying the often used approach of joining disjoint cycles. We apply our
framework to generalize:

• the construction of the lexicographically least de Bruijn sequence given by Fredricksen [10] that we
call the Granddaddy, a description first used by Knuth [20],

• the construction by Dragon et al. [4] which was named the Grandmama in [5], and

• two instances from the construction by Jansen et al. [19] that we label J1 and J2.

One of the instances in the generic construction in [19] is equivalent to the binary construction given by
Sawada et al. [26]1. Each of these constructions applies a successor rule that can be used to generate each bit
in the sequence from the previous n bits. In addition to these four sequences, we apply the framework to find
three new successor rules based de Bruijn constructions. Examples of these seven sequences for n = 6 are
given in Table 1. The first four constructions are based on the pure cycling register (PCR) and necklaces. The
final three are based on the complemented cycling register (CCR) and co-necklaces. Previously, Huang [18]
and Etzion [7] presented constructions using the CCR, but their resulting successor rules are significantly
more complex than the ones presented in this paper.

In addition to these successor rule based constructions, there are several other known constructions. There
are three well-known greedy approaches: the prefer-smallest (or equivalently, prefer-largest) [22, 9], the
prefer-same [6, 11], and the prefer-opposite [1]. Each of these approaches is generalized in [2], but they all

1The fact that the binary version of the construction in [26] is equivalent to a special case of the construction in [19] was not
previously observed.
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Table 1: Eight de Bruijn sequences for n = 6, each based on a different successor rule.

Method de Bruijn sequence for n = 6 starting with 000000
PCR1 (Granddaddy) 0000001000011000101000111001001011001101001111010101110110111111
PCR2 (Grandmama) 0000001001000101010011010000110010110110001110101110011110111111
PCR3 (J1) 0000001111110111100111000110110100110000101110101100101010001001
PCR4 0000001111110110100100110111010101100101000101111001110001100001
CCR1 0000001111110001101110011001010110101001000100111011000010111101
CCR2 0000001111110001001110110011000010111101001010110101000110111001
CCR3 (J2) 0000001001110110001010110101001011110100001100110111001000111111

have the drawback of requiring an exponential amount of memory2. Interestingly, not only is the Granddaddy
equivalent to the prefer-smallest greedy construction, but it is also equivalent to a very efficient necklace
concatenation approach [13, 14, 23]. Another necklace concatenation construction is based on cool-lex order
in [24]. A construction based on lexicographic compositions [12] is equivalent to the prefer-same construction
up to n = 6. For n > 7, the two sequences are conjectured to share a long prefix. The sequences for these
other constructions for n = 6 is shown in Table 2. There are also known classes of de Bruijn sequences [8, 21],
but they lack the simplicity of the constructions discussed in this paper.

Table 2: Three more de Bruijn sequences for n = 6 based on different constructions.

Method de Bruijn sequence for n = 6 starting with 000000
Prefer-opposite 0000001010100101101011101000100110110010000110001110011110111111
Prefer-same / lex-comp 0000001111110000100011000101111011100111010011011001001010110101
Cool-lex 0000001100011110111111001110100110110101011001011100001010001001

Observe that of the ten de Bruijn sequences presented in Tables 1 and 2, no two are equivalent. We
consider two sequences to be equivalent if one sequence can be obtained from the other by some combination
of rotation, reversal, or symbol remapping (swapping 0s and 1s).

In the next section, we present background on necklaces and co-necklaces along with the pure and com-
plemented cycling registers. In Section 3, we present our universal cycle construction framework. Then in
Section 4, we present the seven successor rules with proofs that apply the framework. In Section 5 we pro-
vide a short discussion on the implementation of the successor rules, proving that each of the new de Bruijn
sequence constructions can be generated in O(n)-time per bit. We conclude with avenues for future research
in Section 6.

2 Necklaces, Co-necklaces, and Cycling Registers

A necklace is the lexicographically smallest string in an equivalence class of strings under rotation. Let
N(n) denote the set of all length n necklaces. Let Neck(α) denote the set containing α along with each
of its rotations. The necklace representative of Neck(α) is the unique necklace in Neck(α). For example,
Neck(01010) = {01010, 10100, 01001, 10010, 00101} and its necklace representative is 00101.

Let x ∈ {0, 1} and let x denote the bitwise complement of x. Given a string α = a1a2 · · · an let α
denote the complement of α defined to be a1a2 · · · an. We say α is a co-necklace if αα is a necklace.
Let coNeck(α) denote the set containing all length n substrings of the circular string αα. The co-necklace
representative of coNeck(α) is the unique co-necklace in coNeck(α). For example, coNeck(00111) =

2See [27] for a new XNOR greedy de Bruijn sequence construction.
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{00111, 01111, 11111, 11110, 11100, 11000, 10000, 00000, 00001, 00011}, and its co-necklace representa-
tive is 00000.

Let α = a1a2 · · · an. Closely related to necklaces and co-necklaces are the pure cycling register (PCR)
and the complemented cycling register (CCR) defined on all binary strings to be PCR(α) = a1 and CCR(α) =
a1 respectively. The PCR partitions B(n) into the equivalence classes {Neck(α) | α ∈ N(n)} via the
function F (α) = a2a3 · · · anPCR(α). Similarly, the CCR partitions B(n) into the equivalence classes
{coNeck(α) | α is a co-necklace of length n} [16] via the function F ′(α) = a2a3 · · · anCCR(α).

Example 1 (Left) A partition of B(4) using the PCR. The first string in each part is a necklace. (Right) A
partition of B(4) using the CCR. The first string in each part is a co-necklace.

0000 0001 0011 0101 0111 1111 0000 0010
0010 0110 1010 1110 0001 0101
0100 1100 1101 0011 1011
1000 1001 1011 0111 0110

1111 1101
1110 1010
1100 0100
1000 1001

3 A Framework to Derive Successor Rules that Construct Universal Cycles

Our framework for constructing universal cycles hinges on three definitions: a UC-successor, a UC-partition,
and a spanning sequence. For each definition and subsequent result, assume that S is a non-empty subset of
B(n).

Definition 3.1 A function f : B(n)→ {0, 1} is a UC-successor of S if there exists a universal cycle U for S
such that each string α ∈ S is followed by the bit f(α) in U .

In this definition the domain of f is defined to be B(n), not S, to simplify the proof of our
upcoming main theorem. As an example, f(a1a2a3a4) = a1 is a UC-successor for S =
{0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000} since U = 00001111 is a universal cycle for S. In the
special case where S = B(n) we say a UC-successor is a de Bruijn successor.

Now we formalize our approach for joining smaller universal cycles into larger universal cycles. We
join m smaller cycles together using m−1 binary strings of length n−1. Each such string will appear as a
substring in two distinct universal cycles. In particular, xβ will be in one cycle and xβ will be in another
cycle, where x ∈ {0, 1} and β ∈ B(n−1). This approach is somewhat similar to Hierholzer’s algorithm [17]
for constructing an Euler cycle in a related transition graph. The main advance of this framework is that when
applied effectively (as in the next section) it requires only O(n) space compared to the exponential space
required to store the graph.

Definition 3.2 A partition of S into subsets S1,S2, . . . ,Sm is called a UC partition with respect to f if f is a
UC-successor for each Si where i ∈ {1, 2, . . . ,m}.

Definition 3.3 Let S1,S2, . . . ,Sm be an ordered partition of S. A sequence β2, β3, . . . , βm of unique strings
in B(n− 1) is a spanning sequence of the partition if for each i ∈ {2, 3, . . . ,m} there is an x ∈ {0, 1} such
that xβi ∈ Si and xβi ∈ Sj for some j < i.

The following lemma, which follows from [25, Lemma 3], describes how to join two universal cycles together.
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Lemma 3.4 If S1,S2 is an ordered UC partition of S with respect to f and β is a spanning sequence (con-
sisting of one string) of the partition then the following function f ′ : B(n) → {0, 1} is a UC-successor for
S:

f ′(α) =

{
f(α) if α ∈ {0β, 1β};
f(α) otherwise.

Repeated application of Lemma 3.4 leads to our main result.

Theorem 3.5 If S1,S2, . . . ,Sm is an ordered UC partition of S with respect to f and β2, β3, . . . , βm is
a spanning sequence of the partition, then the following function g : B(n) → {0, 1} is a UC-successor
for S:

g(α) =

{
f(α) if α ∈ {0β2, 1β2, 0β3, 1β3, . . . , 0βm, 1βm};
f(α) otherwise.

Proof. If m = 1 then g = f is a UC-successor for S by definition. If m > 1, then observe that S1,S2 is a UC
partition of S1∪S2 with respect to f and β2 is a spanning sequence for this partition. By applying Lemma 3.4
the following function f ′ is a UC-successor for S1 ∪ S2:

f ′(α) =

{
f(α) if α ∈ {0β2, 1β2};
f(α) otherwise.

Observe that this function is also a UC-successor for each of S3,S4, . . . ,Sm. Thus, we can repeat this process
for each S1 ∪ S2 ∪ · · · ∪ Si−1 and Si with spanning sequence βi for i = 3, 4, . . . ,m. At the end of these
m− 1 applications of Lemma 3.4, the resulting function is equivalent to g, and moreover it is a UC-successor
for S1 ∪ S2 ∪ · · · ∪ Sm = S. 2

3.1 An Example
By applying Theorem 3.5, the following steps can be used to derive a universal cycle for a subset S of B(n).

1. Select a (simple) function f that can be used to partition S into subsets S1,S2, . . . ,Sm such that f is a successor
rule to construct a universal cycle for each Si.

2. Define an ordering of S1,S2, . . . ,Sm so that for each subset Si, where 2 ≤ i ≤ m, there exists a string xβi ∈ Si

such that xβi ∈ Sj for some j < i

3. Use the strings β2, β3, . . . , βm to adapt f to create a function g that constructs a universal cycle for S.

We apply these three steps to derive a de Bruijn successor in the following example.

Example 2

1. The function f = PCR is a UC-successor for B(n). It partitions B(n) into its necklace equivalence classes
{S1,S2, . . . ,Sm}.

2. Order the subsets S1,S2, . . . ,Sm in reverse lexicographic order based on their necklace representatives.
Thus S1 = {1n} and Sm = {0n}. For i > 1, if the necklace representative of Si is b1b2 · · · bn then let
βi = b2b3 · · · bn. Since i > 1, b1 = 0. Therefore, the necklace representative of 1b2b3 · · · bn will be
larger than 0b2 · · · bn, and thus it will appear in a subset Sj where j < i. This implies that the sequence
β2, β3, . . . , βm is a spanning sequence of S1,S2, . . . ,Sm. A visualization of this spanning sequence for
n = 6 is provided in Figure 1.
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Figure 1: A spanning tree visualization of the UC-partition of B(6) with respect to the PCR, where each
subset is represented by its necklace representative. The spanning sequence β2, β3, . . . , β14 illustrated is
from Example 2.

3. Using the definition of PCR and β2, β3, . . . , βm, we derive the following de Bruijn successor for each
α = a1a2 · · · an.

g(α) =

{
a1 if 0a2a3 · · · an is a necklace;
a1 otherwise.

This de Bruijn successor is equivalent to the PCR4 successor stated in the next section.

4 De Bruijn Successors

The de Bruijn successors defined in this section are based on the PCR and the CCR. First, we present four
de Bruijn successors based on the PCR. Then we present three de Bruijn successors based on the CCR. The
proof of correctness for each de Bruijn successor applies Theorem 3.5.

4.1 The Pure Cycling Register and Necklaces

In this subsection, we present four de Bruijn successors based on the PCR and necklaces.

PCR1 (Granddaddy) successor g1

Let j be the smallest index of α = a1a2 · · · an such that aj = 0 and j > 1, or j = n+1 if no such index
exists. Let γ = ajaj+1 · · · an0a2 · · · aj−1 = ajaj+1 · · · an01j−2.
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g1(α) =

{
a1 if γ is a necklace;
a1 otherwise.

It has already been shown that g1 is a de Bruijn successor in [10]. We provide an alternate proof using our
framework.

Theorem 4.1 The function g1 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the PCR. Suppose that the subsets
are ordered in reverse lexicographic order with respect to their necklace representatives. Thus, S1 = {1n}
and the necklace representative γi for Si must contain a 0 for i ∈ {2, 3, . . . ,m}. Let γi = ajaj+1 · · · an01j−2
and let βi = a2a3 · · · an = 1j−2ajaj+1 · · · an. Since 0βi is a rotation of γi, it is in Si. Also, observe that the
necklace representative of Neck(1βi) is clearly larger than γi. Thus β2, β3, . . . , βm is a spanning sequence
for the partition. Furthermore, observe that g1(a1a2 · · · an) = a1 for any a1 since γi is a necklace. Thus, by
Theorem 3.5, g1 is a UC-successor of B(n). 2

PCR2 (Grandmama) successor g2

Let j be the largest index of α = a1a2 · · · an such that aj = 1, or j = 0 if no such index exists. Let
γ = aj+1aj+2 · · · an1a2 · · · aj = 0n−j1a2 · · · aj .

g2(α) =

{
a1 if γ is a necklace;
a1 otherwise.

It has already been shown that g2 is a de Bruijn successor in [4]. We provide an alternate proof using our
framework.

Theorem 4.2 The function g2 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the PCR. Suppose the subsets
are ordered in lexicographic order with respect to their necklace representatives. Thus, S1 = {0n} and the
necklace representative γi for Si must contain a 1 for i ∈ {2, 3, . . . ,m}. Let γi = 0n−j1a2 · · · aj and let
βi = a2a3 · · · an = a2 · · · aj0n−j . Since 1βi is a rotation of γi, it is in Si. Also, observe that the necklace
representative of Neck(0βi) is clearly smaller than γi. Thus β2, β3, . . . , βm is a spanning sequence for
the partition. Furthermore, observe that g2(a1a2 · · · an) = a1 for any a1 since γi is a necklace. Thus, by
Theorem 3.5, g2 is a UC-successor of B(n). 2

PCR3 (J1) successor g3

Let α = a1a2 · · · an and let γ = a2a3 · · · an1.

g3(α) =

{
a1 if γ is a necklace;
a1 otherwise.
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It has already been shown that g3 is a de Bruijn successor in both [19] and [26]. We provide an alternate,
simpler proof using our framework.

Theorem 4.3 The function g3 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the PCR. Suppose the subsets are or-
dered in lexicographic order with respect to their necklace representatives. Thus, S1 = {0n} and the necklace
representative γi for Si must end with 1 for i ∈ {2, 3, . . . ,m}. Let γi = a2a3 · · · an1 and let βi = a2a3 · · · an.
Since 1βi is a rotation of γi, it is in Si. Also, observe that the necklace representative of Neck(0βi) is clearly
smaller than γi. Thus β2, β3, . . . , βm is a spanning sequence for the partition. Furthermore, observe that
g3(a1a2 · · · an) = a1 for any a1 since γi is a necklace. Thus, by Theorem 3.5, g3 is a UC-successor of B(n).

2

PCR4 successor g4

Let α = a1a2 · · · an and let γ = 0a2a3 · · · an.

g4(α) =

{
a1 if γ is a necklace;
a1 otherwise.

A proof of the following theorem was provided in Example 2.

Theorem 4.4 The function g4 is a de Bruijn successor.

4.2 The Complemented Cycling Register and Co-necklaces

In this subsection, we present three de Bruijn successors based on the CCR and co-necklaces.

CCR1 successor g5

Let α = a1a2 · · · an. Let j be the smallest index of a2a3 · · · an such that aj = 0, or j = n+1 if no such
index exists. Let γ = ajaj+1 · · · an1a2a3 · · · aj−1 = ajaj+1 · · · an10j−2.

g5(α) =

{
a1 if γ is a co-necklace;
a1 otherwise.

Theorem 4.5 The function g5 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the CCR. Suppose the subsets
are ordered in lexicographic order with respect to their co-necklace representatives. Thus, the co-necklace
representative of S1 is 0n and the co-necklace representative γi for Si must contain a 1 for i ∈ {2, 3, . . . ,m}.
Let γi = ajaj+1 · · · an10j−2 and let βi = a2a3 · · · an = 1j−2ajaj+1 · · · an. Since 0βi is in coNeck(γi), it
is in Si. Observe that ajaj+1 · · · an0j−1 is in coNeck(1βi). Since ajaj+1 · · · an0j−1 is less than γi it must
be that 1βi appears in some Sj where j < i. Thus β2, β3, . . . , βm is a spanning sequence for the partition.
Furthermore, observe that g5(a1a2 · · · an) = a1 for any a1 since γi is a co-necklace. Thus, by Theorem 3.5,
g5 is a UC-successor of B(n). 2
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CCR2 successor g6

Let α = a1a2 · · · an. Let j be the largest index of α such that aj = 1, or j = n if no such index exits.
Let γ = aj+1aj+2 · · · an1a2a3 · · · aj = 0n−j1a2a3 · · · aj .

g6(α) =

{
a1 if γ is a co-necklace;
a1 otherwise.

Theorem 4.6 The function g6 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the CCR. Suppose the subsets
are ordered in lexicographic order with respect to their co-necklace representatives. Thus, the co-necklace
representative of S1 is 0n and the co-necklace representative γi for Si must contain a 1 for i ∈ {2, 3, . . . ,m}.
Let γi = 0n−j1a2a3 · · · aj and let βi = a2a3 · · · an = a2a3 · · · aj0n−j . Since 1βi is in coNeck(γi), it is in
Si. Observe that 0n−j+1a2a3 · · · aj , which is in coNeck(0βi), is clearly less than γi. Thus, 1βi appears in
some Sj where j < i. Thus β2, β3, . . . , βm is a spanning sequence for the partition. Furthermore, observe
that g6(a1a2 · · · an) = a1 for any a1 since γi is a co-necklace. Thus, by Theorem 3.5, g6 is a UC-successor
of B(n). 2

CCR3 (J2) successor g7

Let α = a1a2 · · · an and let γ = a2a3 · · · an0.

g7(α) =

{
a1 if γ is a co-necklace and γ 6= 0n;
a1 otherwise.

Although stated differently, it has been previously shown that g7 is a de Bruijn successor in [19]. We provide
an alternate proof using our framework.

Theorem 4.7 The function g7 is a de Bruijn successor.

Proof. Consider the UC-partition S1,S2, . . . ,Sm of B(n) with respect to the CCR. Suppose the subsets
are ordered in lexicographic order with respect to their co-necklace representatives. Thus, the co-necklace
representative of S1 is 0n. Note also that every co-necklace representative γi for Si must end with 0 for all
i ∈ {2, 3, . . . ,m}. Let γi = a2a3 · · · an0 6= 0n and let βi = a2a3 · · · an. Since 1βi is in coNeck(γi), it is
in Si. Also, since γi 6= 0n, we have 0βi is smaller than γi. Thus 0βi appears in some Sj where j < i. Thus
β2, β3, . . . , βm is a spanning sequence for the partition. Furthermore, observe that g7(a1a2 · · · an) = a1 for
any a1 since γi 6= 0n is a co-necklace. Thus, by Theorem 3.5, g7 is a UC-successor of B(n). 2

Note the similarities between g1 and g5, g2 and g6, and g3 and g7. It is interesting that a function similar
to g4 did not yield a de Bruijn successor based on the CCR. The reason is as follows. For necklaces, the first
bit of a necklace α 6= 1n is 0. When you flip this bit, the resulting string belongs to a necklace class whose
necklace representative is always lexicographically larger than α. The same is not true for co-necklaces.
For example, flipping the first bit of the co-necklace 01010 yields the string 11010 and the representative
of coNeck(11010) is 00010 which is smaller than 01010. On the other hand, flipping the first bit of the
co-necklace 00010 yields the string 10010 and the representative of coNeck(10010) is 00100 which is larger
than 00010.
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5 Efficient Implementation

Given a UC-successor f for S, the following algorithm CONSTRUCTUC(f, σ) will construct a UC for S
starting with some arbitrary string σ ∈ S.

Algorithm 1 Constructing a UC for S starting with σ ∈ S given a UC-successor f .

1: procedure CONSTRUCTUC(f, σ)
2: α← σ
3: repeat . α re-indexed to a1a2 · · · an
4: PRINT(a1)
5: α← a2 · · · anf(α)
6: until α = σ

Each de Bruijn successor presented in this paper test whether or not a string is a necklace or a co-necklace.
Testing whether or not a string is a necklace can be done in O(n) time [3]. This immediately implies that
we can also test if a string is a co-necklace in O(n)-time by the definition of a co-necklace. Such a necklace
testing function ISNECKLACE is shown in Algorithm 2.

Algorithm 2 A membership function that tests whether or not a string is a necklace.

1: function ISNECKLACE(a1a2 · · · an)
2: p← 1
3: for j from 2 to n do
4: if aj < aj−p then return FALSE

5: if aj > aj−p then p← j

6: if n mod p 6= 0 then return FALSE

7: return TRUE

Theorem 5.1 The de Bruijn successors g1, g2, g3, g4, g5, g6 and g7 can be used to construct de Bruijn
sequences in O(n)-time per bit using O(n)-space.

A complete C implementation for these successors is given in the Appendix.

6 Summary and Future Work

In this paper, we presented a framework to construct universal cycles for binary languages via successor rules.
Unlike greedy and necklace concatenation approaches, a successor rule based construction can start from
any arbitrary string of length n. This framework was used to identify and prove three new and simple de
Bruijn sequence constructions based on the PCR and the CCR. For each new de Bruijn sequence construction
D = d1d2 · · · d2n the following open problems are of interest to many researchers:

1. (Ranking) Given a length n string α, efficiently determine the index j such that the length n string in D
beginning from index j is α.

2. (Unranking) Given an index j, efficiently determine the length n string in D that begins at index j.

In future work, we generalize our results to other feedback shift registers including the pure summing
register and the complemented summing register. We also generalize this framework to languages over an
alphabet of arbitrary size, although the formulation is slightly more complex [15].
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Appendix - C code

#include<stdio.h>
#define MAX 100

// =====================
// Test if a[1..n] = 0ˆn
// =====================
int Zeros(int a[], int n) {

for (int i=1; i<=n; i++) if (a[i] == 1) return 0;
return 1;

}
// =============================
// Test if b[1..n] is a necklace
// =============================
int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {
if (b[i-p] > b[i]) return 0;
if (b[i-p] < b[i]) p = i;

}
if (n % p != 0) return 0;
return 1;

}
// ===========================================
// Necklace Successor Rules
// ===========================================
int Granddaddy(int a[], int n) {

int i,j,b[MAX];

j = 2;
while (j<=n && a[j] == 1) j++;
for (i=j; i<=n; i++) b[i-j+1] = a[i];
b[n-j+2] = 0;
for (i=2; i<j; i++) b[n-j+i+1] = a[i];

if (IsNecklace(b,n)) return 1-a[1];
return a[1];

}
// -------------------------------
int Grandmama(int a[], int n) {

int i,j,k,b[MAX];

j = 1;
while (j<n && a[n-j+1] == 0) b[j++] = 0;
b[j] = 1;
k = 2;
for (i=j+1; i<=n; i++) b[i] = a[k++];

if (IsNecklace(b,n)) return 1-a[1];
return a[1];

}
// -------------------------------
int PCR3(int a[], int n) {

int i,b[MAX];

for (i=1; i<n; i++) b[i] = a[i+1];
b[n] = 1;

if (IsNecklace(b,n)) return 1-a[1];
return a[1];

}
// -------------------------------
int PCR4(int a[], int n) {

int i,b[MAX];
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b[1] = 0;
for (i=2; i<=n; i++) b[i] = a[i];

if (IsNecklace(b,n)) return 1-a[1];
return a[1];

}
// ===========================================
// Co-necklace Successor Rules
// ===========================================
int CCR1(int a[], int n) {

int i,j,b[MAX],c=1;

for (i=2; i<=n; i++) if (a[i] == 0) break;
for (j=i; j<=n; j++) b[c++] = a[j];
b[c++] = 1;
for (j=2; j<i; j++) b[c++] = 1-a[j];
for (i=1; i<=n; i++) b[n+i] = 1-b[i];

if (IsNecklace(b,2*n)) return a[1];
return 1-a[1];

}
// -------------------------------
int CCR2(int a[], int n) {

int i,j,b[MAX],c=1;

i = n;
while(a[i] == 0 && i >=1) i--;
if(i == 0) i = n;
for (j=i+1; j<=n; j++) b[c++] = 0;
b[c++] = 1;
for (j=2; j<=i; j++) b[c++] = 1-a[j];
for (j=1; j<=n; j++) b[n+j] = 1-b[j];

if (IsNecklace(b,2*n)) return a[1];
return 1-a[1];

}
// -------------------------------
int CCR3(int a[], int n) {

int i,b[MAX];

for (i=1; i<n; i++) b[i] = a[i+1];
b[n] = 0;
for (i=1; i<=n; i++) b[n+i] = 1-b[i];

if (IsNecklace(b,2*n) && !Zeros(b,n)) return a[1];
return 1-a[1];

}
// =====================================================================
// Generate de Bruijn sequences by iteratively applying a successor rule
// =====================================================================
void DB(int seq, int n) {

int i, new_bit, a[MAX];

for (i=1; i<=n; i++) a[i] = 0; // First n bits
do {

printf("%d", a[1]);
switch(seq) {

case 1: new_bit = Granddaddy(a,n); break;
case 2: new_bit = Grandmama(a,n); break;
case 3: new_bit = PCR3(a,n); break;
case 4: new_bit = PCR4(a,n); break;
case 5: new_bit = CCR1(a,n); break;
case 6: new_bit = CCR2(a,n); break;
case 7: new_bit = CCR3(a,n); break;
default: break;

}
for (i=1; i<=n; i++) a[i] = a[i+1];
a[n] = new_bit;
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} while (!Zeros(a,n));
}
// ===========================================
int main() {

int i, n;

printf("Enter n: "); scanf("%d", &n);
for (i=1; i<=7; i++) {

switch(i) {
case 1: printf("Granddaddy (lex minimal):\n"); break;
case 2: printf("Grandmama:\n"); break;
case 3: printf("PCR3:\n"); break;
case 4: printf("PCR4:\n"); break;
case 5: printf("CCR1:\n"); break;
case 6: printf("CCR2:\n"); break;
case 7: printf("CCR3:\n"); break;
default: break;

}
DB(i,n);
printf("\n\n");

}
}
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