
Theoretical Computer Science 301 (2003) 477–489
www.elsevier.com/locate/tcs

Note

A fast algorithm to generate necklaces
with &xed content

Joe Sawada1

Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto,
Ont. Canada M5S 1A4

Received 2 December 2001; received in revised form 22 September 2002; accepted 9 January 2003
Communicated by A. Del Lungo

Abstract

We develop a fast algorithm for listing all necklaces with &xed content. By &xed content, we
mean the number of occurrences of each alphabet symbol is &xed. Initially, we construct a simple
but ine4cient algorithm by making some basic modi&cations to a recursive necklace generation
algorithm. We then improve it by using two classic combinatorial optimization techniques. An
analysis using straight forward bounding techniques is used to prove that the algorithm runs in
constant amortized time.
c© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Necklace; Lyndon word; Fixed content; CAT algorithm; Exhaustive generation; Combinatorial
optimization

1. Introduction

The development of algorithms to list all non-isomorphic occurrences of some com-
binatorial object is a fundamental pursuit within the realm of theoretical computer
science. Such algorithms &nd application in many diverse areas including: hardware
and software testing, combinatorial chemistry, coding theory, and computational biol-
ogy. In addition, such lists are often studied with the hope of gaining a more thorough
understanding of a particular object.

When developing such algorithms, the ultimate performance goal is for the amount
of computation to be proportional to the number of objects generated. Such algorithms
are said to be CAT for constant amortized time. When analyzing such algorithms, the

1 Research supported by NSERC.
E-mail address: jsawada@cs.toronto.edu (J. Sawada).

0304-3975/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00049-5

mailto:jsawada@cs.toronto.edu

478 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

correct measure of computation is the total amount of data structure change and not
the time required to print the objects. This is because typical applications only process
the part of the object that has undergone some change.

The object of focus in this paper is the necklace (for a thorough background and
history on necklaces, consult [2]). A necklace is the lexicographically smallest element
in an equivalence class of strings under rotation. An important restricted class of binary
necklaces is the one where the number of zeroes is &xed. Such necklaces are said to
have 4xed density. The generation of &xed density necklaces was &rst investigated
in [3]. Subsequently, a Gray code was developed in [7], and a CAT algorithm was
developed in [5].

A more general scenario (posed as an open problem in [5]) is to consider k-
ary necklaces where the number of occurrences of every alphabet symbol is &xed.
Such necklaces are said to have 4xed content. Chord diagrams are shown to be a
restricted class of such necklaces in [6]. Necklaces with &xed content can also be
used as a basis for obtaining all necklaces where the sum of the alphabet symbols is
&xed. Until now, no e4cient algorithm was known for generating necklaces with &xed
content.

The primary result in this paper is the development of an elegant and e4cient al-
gorithm for generating k-ary necklaces with &xed content. We start by presenting a
simple but ine4cient generation algorithm based on a recursive necklace generation
algorithm. Then, by applying only basic combinatorial optimization techniques, we
modify the simple algorithm. An analysis which also uses basic combinatorial tech-
niques proves that the resulting algorithm achieves the ultimate performance goal of
running in constant amortized time. In the &nal section, we remark that these results
also hold for the generation of Lyndon words with &xed content.

2. Background

Recall that a necklace is the lexicographically smallest element of an equivalence
class of k-ary strings under rotation, where the alphabet (w.l.o.g.) is {0; 1; 2; : : : ; k−1}.
An aperiodic necklace is called a Lyndon word. A prenecklace is a pre&x of a necklace.
The following table illustrates these objects for n= 4 and k = 2. Note that 0110 is a
prenecklace since it is a pre&x of the necklace 011011.

Prenecklace Necklace Lyndon word

0000 0000
0001 0001 0001
0010
0011 0011 0011
0101 0101
0110
0111 0111 0111
1111 1111

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 479

Table 1
Notation of the necklace related objects

Object with &xed content Set Cardinality

Necklaces Nk(n0; n1; : : : ; nk−1) Nk(n0; n1; : : : ; nk−1)
Lyndon words Lk(n0; n1; : : : ; nk−1) Lk(n0; n1; : : : ; nk−1)
Prenecklaces Pk(n0; n1; : : : ; nk−1) Pk(n0; n1; : : : ; nk−1)
Strings Sk(n0; n1; : : : ; nk−1) Sk(n0; n1; : : : ; nk−1)

The following theorem from [2], uses the function lyn, which when applied to a
string � returns the length of its longest pre&x that is a Lyndon word. For example,
lyn(0110012) = 3, lyn(0001) = 4, and lyn(2100221) = 1. In this theorem, the set of all
k-ary prenecklaces of length n is denoted by Pk(n).

Theorem 1 (Fundamental theorem of necklaces). Let �= a1a2 · · · an−1∈Pk(n−1) and
p= lyn(�). The string �b∈Pk(n) if and only if an−p6b6k − 1. Furthermore,

lyn(�b) =

{
p if b = an−p;

n if an−p ¡ b6 k − 1:

Using this theorem, it is a easy to develop a recursive algorithm for generating
prenecklaces [2]. This method of object generation is related to the general ECO method
described in [1]. If � is a prenecklace with p= lyn(�), then � is a necklace if and only
if nmodp= 0 and � is a Lyndon word if and only if n=p. Hence, this theorem can
also be applied to generate both necklaces and Lyndon words.

The following corollary to this theorem is frequently used in the analysis of our
algorithm.

Corollary 1. If �= a1a2 · · · an is a Lyndon word, then �b is a prenecklace for all
a16b6k − 1.

We say that a string object has 4xed content if the number of occurrences of each
alphabet symbol is &xed. Table 1 shows the symbols used to represent each relevant
set of objects along with the symbols used to enumerate them. Each object is assumed
to be over an alphabet of size k and to have ni occurrences of the symbol i for
06i6k − 1. For example, the set of all k-ary necklaces with ni occurrences of each
symbol i is denoted Nk(n0; n1; : : : ; nk−1) and has cardinality Nk(n0; n1; : : : ; nk−1).

As an example, we show the sets of necklaces, aperiodic necklaces, and prenecklaces
where k = 2, n0 = 3, and n1 = 3.

N2(3; 3) = {000111; 001011; 001101; 010101};

L2(3; 3) = {000111; 001011; 001101};

P2(3; 3) = N2(3; 3) ∪ {001110; 010110}:

480 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

It is easy to enumerate the number of strings with &xed content and enumeration
formulae for necklaces and Lyndon words with &xed content are derived in [4]. In the
following formulae, it is assumed that each ni¿1 and k¿1.

S(n0; n1; : : : ; nk−1) =
n!

n0! · · · nk−1!
; (1)

N (n0; n1; : : : ; nk−1) =
1
n

∑
j | gcd(n0 ;n1 ;:::;nk−1)

�(j)
(n=j)!

(n0=j)! · · · (nk−1=j)!
; (2)

L(n0; n1; : : : ; nk−1) =
1
n

∑
j | gcd(n0 ;n1 ;:::;nk−1)

�(j)
(n=j)!

(n0=j)! · · · (nk−1=j)!
: (3)

The Euler totient function on a positive integer n, denoted �(n), is the number of
integers in the set {0; 1; : : : ; n− 1} that are relatively prime to n. The MKobius function
of a positive integer n, denoted �(n), is (−1)r if n is the product of r distinct primes
and 0 otherwise.

No enumeration formula is known for prenecklaces with &xed content.

3. Algorithm

In this section, we develop a fast algorithm for generating necklaces with &xed
content. First, we construct a simple algorithm by making some basic modi&cations to
the recursive necklace algorithm [2] derived from Theorem 1. We then improve this
algorithm using two classic combinatorial optimization techniques. The &nal algorithm
is proved to run in constant amortized time in the following section. In these algorithms
it is assumed that n= n0 + n1 + · · · + nk−1 where ni¿0 for 06i6k − 1.

3.1. A simple algorithm

In this subsection we develop a simple algorithm to generate the necklaces N(n0;
n1; : : : ; nk−1) by making two small modi&cations to the recursive necklace algorithm
obtained from Theorem 1 [2]. The basic idea behind the recursive necklace algorithm
is to repeatedly extend prenecklaces until they have length n. Those prenecklaces that
are not necklaces are rejected. The &rst modi&cation is to decrement the value ni when
a character i is added to the prenecklace being generated. Secondly, we do not attempt
to append the character i if ni = 0. Pseudocode for such an algorithm is shown in
Fig. 1. If the lines labeled (1), (2), (3) and (4) are removed from the pseudocode,
then we are left with the original necklace generation algorithm. Since we assume that
n0¿0, the &rst character in any necklace must be 0. Thus a1 is initialized to 0 and we
decrement n0 before making the initial call of SimpleFixedContent(2,1). To illustrate
the algorithm, we show the computation tree for N(2; 1; 3) in Fig. 2.

Although this algorithm is very simple, experimental results indicate that the algo-
rithm is not CAT. There are two reasons why this algorithm is not e4cient. First, each
iteration of the for loop does not necessarily generate a recursive call. In the worst

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 481

procedure SimpleFixedContent (t, p : integer);
local j : integer;
begin

if t¿n then begin
if nmod p= 0 then Print();

end;
else begin

for j∈{at−p; : : : ; k − 2; k − 1} do begin
(1) if nj �= 0 then begin

at := j;
(2) nj := nj − 1;

if j= at−p then SimpleFixedContent(t + 1, p);
else SimpleFixedContent(t + 1, t);

(3) nj := nj + 1;
(4) end;

end;
end; end;

Fig. 1. A simple algorithm to generate N(n0; n1; : : : ; nk−1).

2

1

0

2

2

1 0

1 0

2 2 0

2 0

1 0

2

2

1

1 2 0

2 0

2 0

1

1

2

2

2

1

1

0

2

0 0 2 0 2 2 2 0 2 2 2 2 2 2

22

2

2

2

220

*** * ***** *

Fig. 2. The computation tree for N(2; 1; 3) using SimpleFixedContent(t; p). Each node represents a preneck-
lace that is obtained by tracing a path from the root to the node. The nodes with a * below them represent
the necklaces in N(2; 1; 3). If we ignore the vertices inside the rectangles, which are the 0 and 2 chains,
then we obtain the computation tree for N(2; 1; 3) using FastFixedContent(t; p; s).

case it is possible to do a linear amount of work, O(k), to generate only a constant
number of recursive calls. Second, many prenecklaces end with a chain, or strings
of consecutive characters that have the same value. For example, given the content
n0 = 2; n1 = 1; n2 = 3, the necklace 010222 contains a chain of length 3. This problem
gives rise to many nodes in the computation tree with only one child. We attack these
problems separately in the next two subsections.

482 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

procedure ListFixedContent (t, p : integer);
local j: integer;
begin

if t¿n then begin
if nmod p= 0 then Print();

end;
else begin

j := head;
while j¿at−p do begin

at := j;
nj := nj − 1;
if nj = 0 then Remove(j);

if j= at−p then ListFixedContent(t + 1; p);
else ListFixedContent(t + 1; t);

if nj = 0 then Add(j);
nj := nj + 1;
j :=Next(j);

end; end; end;

Fig. 3. An algorithm to generate N(n0; n1; : : : ; nk−1) using an ordered list.

3.2. Modi4ed algorithm using an ordered list

To keep track of which characters are available to be appended to the current pre-
necklace, we introduce a global ordered list. Initially this list is composed of the values
0 through k − 1. As before, each time a value j gets appended to a prenecklace by
the assignment at := j, the value nj is decremented. If the updated value for nj is 0,
then the value gets removed from the list. After each recursive call, the list must be
restored to its initial state. Thus, if the updated value is nj = 0, we must add it back
to the list.

If we order this list from smallest to largest, we can replace the for loop with a
while loop which traverses the list starting with the smallest available value j such that
j¿at−p. This will have the advantage of skipping over all the values i where ni = 0.
However, we still have the problem of &nding the smallest available value j such that
j¿at−p. Such a search will take time O(k) in the worst case. Thus, we are still faced
with the possibility of performing a linear amount of work to make a constant number
of recursive calls.

To solve this problem, we order the list from largest to smallest and generate the
strings in reverse lexicographic order. The while loop now traverses the list from the
largest value, which is the head of the list, until a value less than at−p is reached.
This approach will yield a constant amount of work per recursive call.

Pseudocode which applies this ordered list to generate the necklaces N(n0; n1; : : : ;
nk−1) is shown in Fig. 3. Again, we initialize a1 to 0 and decrement n0, but now we
must also remove 0 from the list if the updated value of n0 = 0. The initial call is
ListFixedContent(2,1).

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 483

The operation Remove(j) can be implemented to remove the value j from the
ordered list in constant time. The operation Add(j) adds the value j back to the
ordered list. This function can also be implemented in constant time since it is only
called (eNectively) right after a call to Remove(j). The variable head represents the
&rst and largest value in the list and the operation Next(j) will return the next value
less than j in the list, or −1 if there is no next element. A list with these operations
can be implemented using an array where each cell has next and previous pointers.

3.3. Chain removal

With the implementation of the global ordered list to maintain the available charac-
ters, every recursive call is the result of a constant amount of work. Now we focus on
the problem of removing chains. This problem can be attacked using a classic strategy
of initializing each character in the string a1 · · · an to the maximum value k − 1. Thus,
before attempting to assign a value to at , we &rst check to see if the only remain-
ing characters are k − 1. This will be the case if the number of remaining positions
n− t+1 equals the value nk−1 (Note: this value reOects the number of characters k−1
that remain to be placed in the prenecklace being generated—not the total number
of occurrences of the character). In this case we can stop the recursion because the
remaining positions at · · · an have already been pre-assigned the value k − 1.

Using such a strategy, we still need to perform a test which determines whether or not
the resulting length n prenecklace is a necklace. To perform this test in constant time
we need to know the number of consecutive values equal to k − 1 starting at position
at−p. If this data is stored in rt−p then by applying Theorem 1, the prenecklace will
be a necklace if nk−1¿rt−p or if nk−1 = rt−p and nmodp= 0.

Example. Consider the prenecklace 022210 where k = 3, t= 7, p= 5, rt−p = 3, and
nk−1 = n − t + 1. If n= 8 then the resulting prenecklace 02221022 is not a necklace
since nk−1 = 2. If n= 9 then the prenecklace 022210222 is also not a necklace since
nk−1 = 3 = rt−p but nmodp �= 0. However if n= 10, the prenecklace 0222102222 is a
necklace since nk−1 = 4¿rt−p.

To maintain the array of values r1 · · · rn we require the use of another parameter
s which stores the starting point of the current run of values k − 1. If the current
length of such a run is 0, then the parameter s is assigned the value t. For example,
consider the prenecklace 002333 where t= 7 (the position for the next character to
be placed in the string). If k − 1 = 3 then s= 4. If k − 1 = 4, then s= t= 7. Before
each recursive call the value t − s gets assigned to rs. Note that this value can be
changed as the length of the run of k − 1’s increases. Also observe that rj does not
get an assignment if aj−1 = k − 1. This information, however is not required since
when we want to consider rt−p, it must be the case that at−1 �= k − 1 and hence
at−p−1 �= k − 1.

Note that this strategy does not remove the chains for values other than k − 1.
However, by observing that no necklace (except 0n) ends with 0, we can also eliminate
chains ending with 0 by stopping the recursion if n0 = n − t + 1. To ensure that the

484 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

procedure FastFixedContent (t, p, s : integer);
local j, s′ : integer;
begin

if nk−1 = n− t + 1 then begin
if nk−1 = rt−p and nmod p= 0 then Print();
else if nk−1¿rt−p then Print();

end;
else if n0 �= n− t + 1 then begin

j := head;
s′ : = s;
while j¿at−p do begin

rs := t − s;
at := j;
nj := nj − 1;
if nj = 0 then Remove(j);
if j �= k − 1 then s′ := t + 1;

if j= at−p then FastFixedContent(t + 1; p; s′);
else FastFixedContent(t + 1; t; s′);

if nj = 0 then Add(j);
nj := nj + 1;
j :=Next(j);

end;
at := k − 1;

end; end;

Fig. 4. A fast algorithm to generate N(n0; n1; : : : ; nk−1).

worst chaining problem occurs with the value k − 1, the content should be ordered so
that the value k − 1 has the maximum number of occurrences.

Recall that for each of these algorithms the value n= n0 +n1 +· · ·+nk−1, where each
value ni for 06i6k−1 initially represents the number of occurrences of the character
i in the generated necklaces. Pseudocode that removes the chains of k − 1’s and 0’s
from the computation tree is shown in Fig. 4. The values ai for 26i6n are initialized
to k − 1 and the values ri for 16i6n are initialized to 0. Before we make the initial
call of FastFixedContent(2,1,2), we perform the same intializations as required by the
previous algorithm ListFixedContent(t; p): we set a1 to 0, decrement n0, and remove
0 from the list of available characters if the updated value of n0 = 0. Observe that in
the case nk−1 = n − t + 1 = 0, the prenecklace is a necklace if nmodp= 0 as before.
Note that this necklace still gets printed by this algorithm since at−p = 0 and thus
rt−p = 0 = nk−1.

To compare the computation tree generated by this algorithm for N(2; 1; 3) to the
computation tree generated by simple algorithm SimpleFixedContent(t; p), see Fig. 2.
In this &gure, the computation tree for FastFixedContent(t; p; s) is the one obtained
by removing the 0 and 2 chains that appear inside the rectangles of the computation
tree for SimpleFixedContent(t; p).

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 485

4. Analysis

In this section, we analyze the algorithm FastFixedContent(t; p; s) for generating the
set of necklaces N(n0; n1; : : : ; nk−1). It is assumed that the character with the maximum
number of occurrences is k − 1 implying that ni6nk−1 for all 06i¡k − 1.

The approach this algorithm takes is to recursively generate prenecklaces P(m0; m1;
: : : ; mk−1) where mi6ni for all 06i6k − 1. Because of the optimization that removes
k − 1 chains from the end of the prenecklaces, the algorithm does not generate pre-
necklaces in P(n0; : : : ; nk−2; mk−1) ending with the character k − 1 where mk−1¡nk−1.
Similarly, because of the optimization which removes 0 chains from the end of the
prenecklaces, the algorithm does not generate prenecklaces in P(m0; n1; : : : ; nk−1) end-
ing with the character 0 where m0¡n0. From this discussion, we let P(t) denote the
set of prenecklaces with length t generated by this algorithm.

Since the algorithm is recursive, we can view each generated prenecklace as a node
in a computation tree. If we let CompTree(n0; n1; : : : ; nk−1) denote the size of the
computation tree then:

CompTree(n0; n1; : : : ; nk−1) =
n∑
j=1

|P(j)|:

Due to the implementation of the ordered list, each prenecklace, or node, in the com-
putation tree is a result of a constant amount of work. Thus, to prove that the algorithm
runs in constant amortized time, we must show that CompTree(n0; n1; : : : ; nk−1) is less
than some constant times the total number of necklaces generated. Our goal in the
remainder of this section will be to prove that the following expression holds for some
constant c:

CompTree(n0; n1; : : : ; nk−1)6cN (n0; n1; : : : ; nk−1):

If �= a1a2 · · · at is a prenecklace, then the parent of � is a1 · · · at−1; we say that �
is a child of a1 · · · at−1. A prenecklace with no children is called a leaf.

Lemma 1. Every leaf in the computation tree has a unique parent.

Proof. Every prenecklace in P(n − 1) has at most one child and every prenecklace
in P(n) is a leaf. Otherwise, suppose that a prenecklace a1 · · · at in the computation
tree has at least two children a1 · · · atu and a1 · · · atw for some characters u¡w where
t¡n − 1. This means that a1 · · · atw must be a Lyndon word and thus has a child
a1 · · · atwu (Corollary 1). Therefore every node can have at most one child that is a
leaf.

Let P′(j) denote the subset of prenecklaces in P(j) that are not leaves; they have at
least one child. Also let P1(j) denote the subset of prenecklaces in P(j) with exactly
one child and let P2(j) denote the subset of prenecklaces in P(j) with two or more
children. If we let the cardinality of these sets be denoted by P′(j), P1(j), and P2(j),
respectively, then we have P′(t) =P1(t) + P2(t). Using this notation along with the

486 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

previous lemma we obtain the following bound by mapping each leaf to its unique
parent:

CompTree(n0; n1; : : : ; nk−1) 6 2
n−1∑
j=1

P′(j):

ENectively, we are now examining a subtree of the original computation tree. The
next step of this analysis will show that the number of nodes at each successive level
of this subtree grows exponentially. This will imply that total number of nodes in this
subtree is proportional to the number of nodes at its bottom level n−1. Finally, we will
show that this number is also proportional to the total number of necklaces generated
by the algorithm.

Lemma 2. The number of prenecklaces in P(n0; n1; : : : ; nk−1) that are not necklaces
and do not end with 0, is less than L(n0; n1; : : : ; nk−1).

Proof. In the proof of Lemma 4.1 in [5] a mapping is de&ned that takes a prenecklace
that is not a necklace and does not end with a 0 and maps it to a Lyndon word.
Since the mapping is both 1-1 and content preserving it is follows that number of
prenecklaces in P(n0; n1; : : : ; nk−1) that are not necklaces and do not end with 0, is less
than L(n0; n1; : : : ; nk−1).

Lemma 3. If i¡j and ni6nj − 2 then

L(n0; n1; : : : ; nk−1)¡N (n0; : : : ; ni−1; ni + 1; ni+1; : : : ; nj−1; nj − 1; nj+1; : : : ; nk−1):

Proof. Since ninj¡(ni + 1)(nj−1) we can use the enumeration formulas (1), (2), and
(3) to obtain:

L(n0; n1; : : : ; nk−1) 6
1
n
S(n0; n1; : : : ; nk−1)

6
1
n
S(n0; : : : ; ni−1; ni + 1; ni+1; : : : ; nj−1; nj − 1; nj+1; : : : ; nk−1)

6 N (n0; : : : ; ni−1; ni + 1; ni+1; : : : ; nj−1; nj − 1; nj+1; : : : ; nk−1):

The next lemma shows that the number of prenecklaces with exactly one child is
proportional to the number of prenecklaces with at least two children.

Lemma 4. For t6n− 2:

P1(t) 6 6P2(t):

Proof. We partition P1(t) into 3 categories: necklaces, non-necklaces ending with non-
zero, and non-necklaces ending with zero. We show that size of each subset is bounded
by 2P2(t).

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 487

In the &rst case we let N1(t) denote the number of necklaces in P1(t). It follows
from the content preserving map in the proof of Lemma 4.4 in [5], that the number
of such necklaces is less than 2 times the number that are Lyndon words. Since each
Lyndon word in P1(t) has exactly one child, the Lyndon words must be in the set
L(n0; : : : ; ni−1; mi; ni+1; : : : ; nk−1) where mi = ni − (n − t) for some 0¡i¡k − 1. This
gives the following bound:

N1(t) 6 2
k−2∑
i=1

L(n0; : : : ; ni−1; mi; ni+1; : : : ; nk−1):

Since it is assumed that nk−1¿ni for all 06i¡k − 1, we can use Lemma 3 to get

N1(t) 6 2
k−2∑
i=1

N (n0; : : : ; ni−1; mi + 1; ni+1; : : : ; nk−2; nk−1 − 1):

Each necklace � counted by this sum is unique and has two children, namely �i and
�(k − 1). Thus N1(t)62P2(t).

In the second case we consider non-necklaces in P1(t) that end with a non-zero
character. The number of these strings is bounded by the number of Lyndon words
with length t by Lemma 2. Those Lyndon words that have two or more characters
left to be placed, form a subset of P2(t) (Corollary 1). Otherwise, the number of
Lyndon words with only one character left to be placed (not equal to 0 or k − 1 by
the algorithm), is also bounded by P2(t) as shown in the &rst case.

In the &nal case we consider the non-necklaces in P1(t) that end with 0; they have
the form a1a2 · · · at−10. Again we must focus on how many diNerent characters remain
in the unused content. If there are two values left then we can injectively map the
prenecklaces to the Lyndon words 0a1 · · · at−1 which have two children by Corollary 1
and hence form a subset of P2(t). Otherwise, if there is only one value left (say i
which must be non-zero from the algorithm), we can injectively map each prenecklace
to the Lyndon words a1 · · · at−1i which also have two children—namely a1 · · · at−1i0
and a1 · · · at−1ii.

We have now shown that the number of elements in each of the 3 partitions of the
set P1(t) is bounded by 2P2(t) and thus P1(t)66P2(t).

Lemma 5. For 16t6n− 2:

8P′(t)67P′(t + 1):

Proof. Observe that P1(t) + 2P2(t)6P(t + 1) since each node in P1(t) has one child
and each node in P2(t) has at least two children. Thus, using the previous lemma:

8P′(t) = 8P1(t) + 8P2(t)

6 7P1(t) + 14P2(t)

6 7P′(t + 1):

488 J. Sawada / Theoretical Computer Science 301 (2003) 477–489

Corollary 2. For 16t6n:

t−2∑
j=1

P′(j) 6 7P′(t − 1):

Proof. We use the previous lemma and induction. The inequality trivially holds for
t= 1; 2; 3. Inductively, we assume that it is true for t¡n, and consider t + 1:

t+1−2∑
j=1

P′(j) = P′(t − 1) +
t−2∑
j=1

P′(j)

6 P′(t − 1) + 7P′(t − 1)

6 8P′(t − 1)

6 7P′(t):

We can now simplify the expression for the bound on the computation tree:

CompTree(n0; n1; : : : ; nk−1)6 2
n−1∑
j=1

P′(j)

6 2P′(n− 1) + 2
n−2∑
j=1

P′(j)

6 2P′(n− 1) + 14P′(n− 1)

= 16P′(n− 1):

We require one &nal lemma to complete this analysis.

Lemma 6. P′(n− 1)62N (n0; n1; : : : ; nk−1).

Proof. Every prenecklace �∈P(n0; n1; : : : ; nk−1) has a parent in P′(n−1) unless it ends
with a 0 or k−1. Thus, since every node in P′(n−1) has exactly one child, P′(n−1)
is bounded above by the number of prenecklaces in P(n0; n1; : : : ; nk−1) that do not end
with 0 or k−1. Using Lemma 2 the number of such prenecklaces that are not necklaces
is less than or equal to L(n0; n1; : : : ; nk−1). Thus, P′(n− 1)62N (n0; n1; : : : ; nk−1).

This &nal lemma proves our goal:

CompTree(n0; n1; : : : ; nk−1) 6 cN (n0; n1; : : : ; nk−1):

Theorem 2. If ni6nk−1 for all 06i¡k−1, then the algorithm FastFixedContent(t; p;
s) for generating the necklaces N(n0; n1; : : : ; nk−1) runs in constant amortized time.

J. Sawada / Theoretical Computer Science 301 (2003) 477–489 489

5. Concluding remarks

In this paper, we have described a CAT algorithm to generate necklaces with &xed
content. By repeatedly applying this algorithm, we can also generate necklaces where
the sum of the alphabet symbols is &xed.

The algorithm can also be modi&ed to generate Lyndon words with &xed con-
tent (and hence Lyndon words where the sum of the alphabet symbols is &xed)
by simply replacing the comparison (nmodp) = 0 with the comparison n=p. Since
Lk(n0; n1; : : : ; nk−1)¿ 1

2Nk(n0; n1; : : : ; nk−1), a result that follows from the content pre-
serving map in the proof of Lemma 4.4 in [5], the modi&ed algorithm will also run in
constant amortized time.

The algorithm has been implemented in C and can be downloaded from the “Combi-
natorial Object Server” at http://www.theory.cs.uvic.ca/∼cos. The C program can also
be obtained from the author upon request.

Acknowledgements

The author would like to thank Frank Ruskey for many useful discussions about
necklaces.

References

[1] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, ECO: a methodology for the enumeration of
combinatorial objects, J. DiNerence Equations Appl. 5 (1999) 435–490.

[2] K. Cattell, F. Ruskey, J. Sawada, M. Serra, C.R. Miers, Fast algorithms to generate necklaces, unlabeled
necklaces, and irreducible polynomials over GF(2), J. Algorithms 37 (2) (2000) 267–282.

[3] H. Fredricksen, I.J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math.
61 (1986) 181–188.

[4] E.N. Gilbert, J. Riordan, Symmetry types of periodic sequences, Illinois J. Math. 5 (1961) 657–665.
[5] F. Ruskey, J. Sawada, An e4cient algorithm for generating necklaces of &xed density, SIAM J. Comput.

29 (1999) 671–684.
[6] J. Sawada, A fast algorithm for generating non-isomorphic chord diagrams, SIAM J. Discrete Math. 15

(4) (2002) 546–561.
[7] T.M.Y. Wang, C.D. Savage, A Gray code for necklaces of &xed density, SIAM J. Discrete Math.

9 (1996) 654–673.

http://www.theory.cs.uvic.ca/~cos

	A fast algorithm to generate necklaceswith fixed content
	Introduction
	Background
	Algorithm
	A simple algorithm
	Modified algorithm using an ordered list
	Chain removal

	Analysis
	Concluding remarks
	Acknowledgements
	References

