
GENERATING BRACELETS IN CONSTANT AMORTIZED TIME∗

JOE SAWADA†

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 259–268

Abstract. A bracelet is the lexicographically smallest element in an equivalence class of strings
under string rotation and reversal. We present a fast, simple, recursive algorithm for generating (i.e.,
listing) k-ary bracelets. Using simple bounding techniques, we prove that the algorithm is optimal
in the sense that the running time is proportional to the number of bracelets produced. This is an
improvement by a factor of n (where n is the length of the bracelets being generated) over the fastest,
previously known algorithm to generate bracelets.

Key words. bracelet, necklace, CAT algorithm, generate, forbidden substring

AMS subject classifications. 05-04, 68R05, 68R15

PII. S0097539700377037

1. Introduction. The rapid growth in the fields of combinatorial chemistry and
computational biology is resulting in an increased demand for efficient algorithms
which produce exhaustive lists of combinatorial objects [1]. Dan Gusfield (see [9, p.
xv]) claims that “significant contributions to computational biology might be made
by extending or adapting [string] algorithms from computer science, even when the
original algorithm has no clear utility in biology.” In particular, correspondences
between DNA sequences and restricted classes of circular strings are described in [3].

Within the mathematical sciences, researchers are constantly trying to find pat-
terns hidden in the structure of combinatorial objects. The growing trend of using
computers and algorithms to produce lists of such objects is allowing researchers to
obtain more information about the objects themselves. Often, this will lead to a more
thorough understanding of an object which may lead to new and interesting discov-
eries. In some cases, algorithms which produce exhaustive lists can be used to prove
the existence of a related object [12].

An important consideration for any algorithm is its running time. For generation
algorithms, the ultimate performance goal is an algorithm with computation propor-
tional to the number of objects generated (where the computation reflects the total
amount of change to the data structures, and not the time required to print out the
object). Such algorithms are said to be CAT, for constant amortized time.

Strings with equivalence under rotation is one of the most fundamental types
of combinatorial objects. Such objects, more commonly known as necklaces, arise
naturally in many areas including knot theory, color printing, DNA sequencing, and
the theory of free Lie algebras. Algorithms for generating necklaces and Lyndon
words (aperiodic necklaces) were first developed by Fredricksen and Kessler [6] and
Fredricksen and Maiorana [7]. These algorithms were proven to be CAT by Ruskey,
Savage, and Wang [11].

Many applications, however, do not require all necklaces, but instead only those
satisfying a particular restriction. A recursive necklace generation algorithm outlined
in [2] has led to several algorithms which efficiently generate restricted classes of

∗Received by the editors August 24, 2000; accepted for publication (in revised form) January 23,
2001; published electronically July 25, 2001. This research was supported by NSERC and partial
support of Czech grant GAČR 201/99/0242 and ITI under project LN-00A 056.

http://www.siam.org/journals/sicomp/31-1/37703.html
†Department of Computer Science, University of Sydney, Sydney, Australia (sawada@cs.usyd.

edu.au).

259

260 JOE SAWADA

necklaces including binary unlabeled necklaces [2], fixed density necklaces [12], and
necklaces with forbidden substrings [13].

Another restricted class of necklaces are bracelets. More specifically, bracelets are
necklaces with equivalence under string reversal. Lists of bracelets are shown to have
application in the calibration of color printers by Emmel [5]. However, the problem
of efficiently generating these lists has remained open for some time. Previously,
the fastest known algorithm to generate bracelets was a modification of Savage and
Wang’s necklace algorithm [11] by Lisonek [10]. This algorithm has running time
O(n ·Bk(n)) (where Bk(n) denotes the number of k-ary bracelets of length n), which
is the same as the second algorithm outlined in the beginning of section 3.

The problem of efficiently generating bracelets is answered in this paper with the
development of a bracelet generation algorithm that runs in constant amortized time.
We begin with some background and definitions of the relevant objects in section 2.
In section 3, we outline our bracelet generation algorithm. In section 4, we discuss
strings with no 0i substring (forbidden substrings). These strings are then used when
we analyze our bracelet generation algorithm in section 5.

2. Background. We define a necklace to be the lexicographically smallest ele-
ment of an equivalence class of k-ary strings under rotation. The set of all necklaces of
length n is denoted Nk(n). The cardinality of Nk(n) is denoted Nk(n). An aperiodic
necklace is called a Lyndon word. The set of all k-ary Lyndon words of length n is
denoted Lk(n) and has cardinality Lk(n). A word α is called a prenecklace if it is
the prefix of some necklace. The set of all k-ary prenecklaces of length n is denoted
Pk(n). The cardinality of Pk(n) is denoted Pk(n).

A bracelet is the lexicographically smallest element of an equivalence class of k-ary
strings under string rotation and reversal (or a necklace that is also lexicographically
minimal among the circular rotations of its reversal). The set of all k-ary bracelets is
denoted Bk(n) and has cardinality Bk(n). In each equivalence class associated with a
given bracelet, there exists at most two necklaces: the bracelet itself and the necklace
corresponding to the reversal of the bracelet. (In some cases, the two may be the
same.) For example, the equivalence class that contains the bracelet 00112012 also
contains the necklace 00210211.

Necklaces, Lyndon words, and prenecklaces can all be generated using the re-
cursive necklace generation algorithm GenNecklaces(t, p) shown in Figure 2.1. It is
important to have a solid understanding of this algorithm because it will be the basis
for the bracelet generation algorithm developed in the following section. The basic
idea behind the algorithm is to generate all length n prenecklaces, and then perform
an appropriate test in the function PrintIt(p) to obtain the desired object. If necklaces
are required, then the prenecklace is printed only if p divides n; if Lyndon words are
required, then the prenecklace is printed if n = p. If α = a1 · · · at−1 is a prenecklace
with its longest Lyndon prefix having length p, then a length t prenecklace can be
obtained by appending any value greater than or equal to at−p to α. The initial call
is GenNecklaces(1,1) and a0 is initialized to 0.

The following theorem provides enumeration formulas for necklaces, Lyndon words,
prenecklaces, and bracelets.

Theorem 2.1. The following formulas are valid for all n ≥ 1, k ≥ 1:

Lk(n) =
1

n

∑

d|n

µ(d)kn/d,(2.1)

GENERATING BRACELETS 261

procedure GenNecklaces (t, p : integer);
local j : integer;
begin

if t > n then PrintIt(p)
else begin

at := at−p;
GenNecklaces(t + 1, p);
for j ∈ {at−p + 1, . . . , k − 2, k − 1} do begin

at := j;
GenNecklaces(t + 1, t);

end; end; end;

Fig. 2.1. The recursive necklace algorithm.

Nk(n) =
1

n

∑

d|n

φ(d)kn/d,(2.2)

Pk(n) =

n
∑

i=1

Lk(i),(2.3)

Bk(n) =

1
2 (Nk(n) + k+1

2 kn/2), n even,

1
2 (Nk(n) + k(n+1)/2), n odd.

(2.4)

Proof. The equations for Lk(n), Nk(n), and Bk(n) are proved by Gilbert and
Riordan in [8]. The equation for Pk(n) is proved in [2].

In the analysis of our bracelet algorithm it will be useful to look at another way
to count prenecklaces. Let P 0

k (n) count all k-ary prenecklaces of length n that begin
with 0. Notice that the number of k-ary prenecklaces of length n beginning with 1 is
equal to P 0

k−1(n). Similarly the number of k-ary prenecklaces of length n beginning
with 2 is P 0

k−2(n). This observation leads to the following equation:

Pk(n) =

k
∑

j=1

P 0
j (n).(2.5)

3. Generating bracelets. In this section we outline a fast algorithm to generate
bracelets. Since when k = 1, the only bracelet is 0n, we assume k ≥ 2. One algorithm
for generating bracelets is to generate all k-ary necklaces of length n and then test
each necklace against all rotations of its reversal. If no reversed rotation is less than
the generated necklace, then the necklace is a bracelet. Since there are n rotations
and each test takes O(n) time, this näıve approach will give us an overall running
time of O(n2 ·Bk(n)) to generate all k-ary bracelets of length n.

A more sophisticated approach will use a necklace finding algorithm, which de-
termines the necklace of a length n string in O(n) time. Such an algorithm is easily
derived from Duval’s algorithm for factoring a string into Lyndon words [4] or from
Theorem 2.1 in [2]. Using this technique, we need only compare the generated neck-
lace with the necklace of its reversal. This approach yields a much better running
time of O(n ·Bk(n)) to generate bracelets; however, it is still far from being CAT.

In the quest to find a faster algorithm to generate bracelets, we return to the
original idea of comparing a generated necklace to every rotation of it reversal. We

262 JOE SAWADA

start by making a simple observation.

Observation 1. If a necklace α is of the form aiai+1 · · · an for some character

a 6= ai+1, then we need only test the reversed rotations that also begin with ai.

Taking this observation into account, we are making a large improvement on the
number of reversed rotations we must check. For example, for the necklace 0010023003
we need only check the three reversed rotations that begin with 00: 0030032001,
0010030032, and 0032001003. To test each reversal we could wait until the entire
necklace has been generated, but this will take O(n) time per reversal and we will
see no improvement over the näıve algorithms. Instead, if a character is generated
in position j that satisfies the condition stated in Observation 1, we immediately
compare the prenecklace a1 · · · aj with its reversal aj · · · a1. This comparison will
yield one of three outcomes. If a1 · · · aj > aj · · · a1, then we terminate the generation
from this node since appending characters to the end of these strings will not affect
their relative ordering. If a1 · · · aj < aj · · · a1, then no additional testing is required
for this reversal. However, if a1 · · · aj = aj · · · a1, then more testing must be done on
the tail of the strings which has yet to be generated.

Following the above approach, we still need to perform additional testing for
the reversals starting at position j where a1 · · · aj = aj · · · a1. The number of such
reversals could be as many as n/2. The following theorem addresses this issue.

Theorem 3.1. If a1 · · · an is a necklace where a1 · · · aq = aq · · · a1 and there exists

an r in {q+1, . . . , n} such that a1 · · · ar = ar · · · a1 and ar+1 · · · an ≤ an · · · ar+1, then

aq+1 · · · an ≤ an · · · aq+1.

Proof. Let Pq = a1 · · · aq, Pr = a1 · · · ar, x = aq+1 · · · ar, and y = ar+1 · · · an.
Let x̂ and ŷ denote the reversals of x and y, respectively. Since Pr and Pq are
palindromes Pr = Pqx = x̂Pq. Thus, α = Pqxy = x̂Pqy. But since α is a necklace,
α = x̂Pqy ≤ Pqyx̂. Thus, since y ≤ ŷ, xy ≤ yx̂ ≤ ŷx̂ as required.

This theorem implies that we need only perform extra testing on the reversal
starting at the largest position r such that a1 · · · ar = ar · · · a1. This extra testing
is the comparison of ar+1 · · · an to an · · · ar+1. If ar+1 · · · an > an · · · ar+1, then the
generated string is not a bracelet. This test can be performed in constant time per
character for each character generated after position (n− r)/2 + r.

Finally, we note that if a1 = an, then the only strings that are bracelets (or
necklaces) must be of the form an for some character a.

The following is a summary of the modifications required to transform GenNeck-

laces(t, p) into an algorithm which generates bracelets. Notice that each modification
requires only a constant amount of computation per character generated except the
addition of the function CheckRev(t, i).

• Add the parameter u to maintain the value of i from Observation 1: the number
of consecutive equivalent characters at the start of the prenecklace (i.e., the
prenecklace starts with au).

• Add the parameter v to maintain the number of consecutive a’s at the end of
the prenecklace, where a = a1.

• Add the function CheckRev(t, i) to compare the prenecklace to its reversal (when
u = v). If the prenecklace is greater than its reversal, it returns −1; if the
prenecklace is less than its reversal, it returns 0; otherwise, the prenecklace
is the same as its reversal and 1 is returned.

• Add the parameter r to maintain the length of the longest prenecklace equal to
its reversal (i.e., the largest value r for which a1 · · · ar = ar · · · a1).

• Add a test to each character in a position greater than (n − r)/2 + r which

GENERATING BRACELETS 263

function CheckRev(t, i: integer) returns integer;
local j: integer;
begin

for j from i + 1 to (t + 1)/2 do begin

if aj < at−j+1 then return 0;
if aj > at−j+1 then return -1;

end;
return 1;

end;

procedure GenBracelets(t, p, r, u, v: integer; RS: boolean);
local rev, i: integer;
begin

if t− 1 > (n− r)/2 + r then begin

if at−1 > an−t+2+r then RS := FALSE;
else if at−1 < an−t+2+r then RS := TRUE;

end;
if t > n then begin

if RS = FALSE and n mod p = 0 then PrintIt();
end

else begin

at := at−p;
if at = a1 then v := v + 1;
else v := 0;
if u = t− 1 and at−1 = a1 then u := u + 1;
if t = n and u 6= n and an = a1 then begin end;

else if u = v then begin

rev := CheckRev(t, u);
if rev = 0 then GenBracelets(t + 1, p, r, u, v, RS);
if rev = 1 then GenBracelets(t + 1, p, t, u, v, FALSE);

end;
else GenBracelets(t + 1, p, r, u, v, RS);
if u = t then u := u− 1;
for j ∈ {at−p + 1, . . . , k − 1} do begin

at := j;
if t = 1 then GenBracelets(t + 1, t, r, 1, 1, RS)
else GenBracelets(t + 1, t, r, u, 0, RS);

end; end; end;

Fig. 3.1. Bracelet generation algorithm.

will determine whether or not ar · · · an is greater than its reversal. This
will involve the additional parameter RS to hold intermediate boolean values
indicating whether or not the reversal is smaller (RS).

• Reject the string if a1 = an and the string is not equal to an (i.e., t = n and
u 6= n).

The resulting algorithm GenBracelets(t, p, r, u, v, RS) is shown in Figure 3.1. The
initial call is GenBracelets(1,1,0,0,0,FALSE). To illustrate this algorithm we trace the
parameters as the string 0010023003 gets generated:

264 JOE SAWADA

α - 0 0 1 0 0 2 3 0 0 3

t 1 2 3 4 5 6 7 8 9 10 11
p 1 1 1 3 3 3 6 7 7 7 10
r 0 1 2 2 2 5 5 5 5 5 5
u 0 1 2 2 2 2 2 2 2 2 2
v 0 1 2 0 1 2 0 0 1 2 0
RS F F F F F F F F F F T

In the following section we give several counting results for strings with no 0i

substring. These results will then be applied when we analyze the algorithm, showing
that it runs in constant amortized time.

4. Forbidden substrings. We denote the set of all k-ary strings of length n
with no 0i substring by Ik(n, i). The cardinality of this set, denoted Ik(n, i), is given
by the following recurrence relation:

Ik(n, i) =

kn if 0 ≤ n < i,

(k − 1)

i
∑

j=1

Ik(n− j, i) if n ≥ i .

It is easy to verify the correctness of this formula. If n < i, then the set Ik(n, i)
will contain all k-ary strings. Otherwise, we categorize the strings in Ik(n, i) by the
number of consecutive 0’s found at the tail of each string. Since there are k−1 choices
for the character appearing before this string of 0’s, we arrive at the given recurrence
relation.

We obtain another recurrence relation by considering a string α = a1 · · · an−1 in
the set Ik(n− 1, i). If we append a character an to α, then the string a1 · · · an is in
Ik(n, i) as long as an−i+1 · · · an 6= 0i. The number of strings where an−i+1 · · · an = 0i

is exactly equal to Ik(n− i, i). Thus we arrive at a second recurrence relation:

Ik(n, i) =

{

kn if 0 ≤ n < i,
kIk(n− 1, i) − (k − 1)Ik(n− i− 1, i) if n ≥ i .

Lemma 4.1. If k, i ≥ 2, then

Ik(n, i) ≥

n−2
∑

j=1

Ik(j, i).

Proof. The base cases when n ≤ i are trivial. If n > i, then we induct on n:

Ik(n, i) ≥ Ik(n− 1, i) + Ik(n− 2, i)

≥

n−3
∑

j=1

Ik(j, i) + Ik(n− 2, i)

=

n−2
∑

j=1

Ik(j, i).

Lemma 4.2. If n > 2 and k, i ≥ 2, then

Ik(n, i)

n
≥

Ik(n− 1, i)

n− 1
.

GENERATING BRACELETS 265

Proof.

(n− 1)Ik(n, i) = k(n− 1)Ik(n− 1, i) − (k − 1)(n− 1)Ik(n− i− 1, i)

≥ nIk(n− 1, i) + (kn− n− k)Ik(n− 1, i) − (k − 1)(n− 1)Ik(n− 3, i)

≥ nIk(n− 1, i) + 2(kn− n− k)Ik(n− 3, i) − (kn− n− k + 1)Ik(n− 3, i)

= nIk(n− 1, i) + (kn− n− k − 1)Ik(n− 3, i)

≥ nIk(n− 1, i).

We now prove a theorem that will be used in the analysis of our bracelet generation
algorithm. The proof of the theorem uses the previous two lemmas.

Theorem 4.3. If n > 2 and k, i ≥ 2, then

n
∑

j=1

1

j
Ik(j, i) ≤

8

n
Ik(n, i).

Proof.

n
∑

j=1

1

j
Ik(j, i) ≤ 2

n
∑

j=dn/2e

1

j
Ik(j, i)

≤
2

n
Ik(n, i) +

2

n− 1
Ik(n− 1, i) + 2

n−2
∑

j=dn/2e

1

j
Ik(j, i)

≤
4

n
Ik(n, i) +

4

n

n−2
∑

j=dn/2e

Ik(j, i)

≤
8

n
Ik(n, i).

5. Analysis of the algorithm. In this section we show that the algorithm
GenBracelets for generating bracelets is CAT. We analyze the algorithm by looking at
the computation tree and determining the amount of computation done at each node.
To get a bound on the size of the bracelet computation tree, we observe the following
bounds obtained from (2.1) and (2.2) along with Lemma 4.4 from [12]:

Lk(n) ≤
kn

n
≤ Nk(n) ≤ 2

kn

n
.

Now using (2.4) we get the following bounds on the number of bracelets:

kn

2n
≤ Bk(n) ≤ 2

kn

n
.(5.1)

Since the necklace algorithm GenNecklaces is CAT [2], the size of its computation
tree is less than ckn/n for some constant c. This bound is also true for GenBracelets

since its computation tree is smaller than that of GenNecklaces. However, unlike the
necklace computation tree, the bracelet computation tree has some nodes that require
more than a constant amount of computation. From our algorithm, these nodes
are the ones that make a call to CheckRev. Thus, to prove the bracelet generation
algorithm GenBracelets is CAT, we must show that the computation performed by all
calls to CheckRev is bounded by some constant times the total number of bracelets
generated. The task of analyzing this extra computation is divided into the following
four subsections.

266 JOE SAWADA

5.1. Identifying the prenecklaces. From the algorithm, each node that makes
a call to CheckRev is a prenecklace of the form ai or aiγai where the nonempty
string γ begins and ends with a character lexicographically greater than a. Note
that the length of such prenecklaces is at most n − 1. Each call to CheckRev results
in computation proportional to (t − 2i)/2, where t is the length of the prenecklace.
Since any prenecklace of the form ai requires only constant computation in CheckRev

(because t = i), we can restrict our attention to prenecklaces of the form aiγai. To
simplify this task we consider only the prenecklaces beginning with 0, later using (2.5)
to account for the remaining prenecklaces. We also ignore the fact that many of these
prenecklaces are never generated by the algorithm (i.e., the prenecklace 002100300 is
never generated since the prenecklace 002100 is terminal).

The next series of observations are crucial to the success of the analysis. Notice
that the number of prenecklaces of the form 0iγ0i is less than or equal to the number
of prenecklaces of the form 0iγ. We now group these prenecklaces together according
to length. Such strings will have length of at least 2, but not greater than n−2. Define
the set of all k-ary prenecklaces of length n beginning with 0, ending with a nonzero
character, and with no 0i substring to be P′

k(n, i). Equivalently, the set P′
k(n, i)

contains all prenecklaces with length n of the form 0jγ for 1 ≤ j < i. The cardinality
of this set is denoted as P ′

k(n, i). If we let Ek(n) denote the extra computation
that results from all calls made to CheckRev by prenecklaces beginning with 0 (while
generating Bk(n)), then we obtain the following bound:

Ek(n) ≤

n−2
∑

i=2

n− i

2
P ′
k(n− i, i).(5.2)

5.2. Bounding the restricted prenecklaces. In this subsection we find an
upper bound for P ′

k(n, i) first using restricted Lyndon words, and then in terms of
strings with forbidden substrings. Because every prenecklace is obtained as a prefix
of a β∗ where β is some Lyndon word, we arrive at the formula given in (2.3):

Pk(n) =

n
∑

j=1

Lk(j).

If we let Lk(j, i) denote the number of Lyndon words of length j with no 0i substring,
then we obtain the following upper bound for P ′

k(n, i):

P ′
k(n, i) ≤

n
∑

j=1

Lk(j, i).(5.3)

Recall that the number of k-ary strings of length n with no 0i substring is denoted
by Ik(n, i). Using these strings we obtain an upper bound for Lk(n, i).

Lemma 5.1. If n ≥ 1 and i ≥ 1, then

Lk(n, i) ≤
1

n
Ik(n, i).

Proof. Each string counted by Lk(n, i) is a representative of an equivalence class
of strings each with n elements. If we add up the elements from each equivalence class
we get nLk(n, i) unique strings each of length n with no 0i substring. The expression
Ik(n, i) counts the total number of strings with length n and no 0i substring. Therefore
Lk(n, i) ≤

1
nIk(n, i).

GENERATING BRACELETS 267

Using the previous lemma and Theorem 4.3 (n > 2) we can simplify the upper
bound in (5.3). Note that the latter bound is also satisfied when n = 2.

P ′
k(n, i) ≤

n
∑

j=1

1

j
Ik(j, i)

≤
8

n
Ik(n, i).

5.3. Converting back to prenecklaces. Using the bound discovered in the
previous subsection, we can now substitute back into (5.2) and simplify:

Ek(n) ≤

n−2
∑

i=2

n− i

2
P ′
k(n− i, i)

≤ 4

n−2
∑

i=2

Ik(n− i, i).

We now use a clever trick to bound this sum in terms of prenecklaces. Observe
that we can insert 0i1 at the front of each string in Ik(n− i, i) to obtain a new a set of
strings of length n+1. Notice that each new string is a unique prenecklace regardless
of the parameter i. Thus the number of strings in the union of the sets Ik(n − i, i)
for i = 2, . . . , n− 1 is less than Pk(n+ 1). We can divide this total by k− 1, since we
could have arbitrarily chosen any of k − 1 characters to insert after 0i. Thus

Ek(n) ≤
4

k − 1
Pk(n + 1)

≤
4k

k − 1
Pk(n)

≤ 8

n
∑

j=1

Lk(j)

≤ 8

n
∑

j=1

kj

j

≤ 24
kn

n
.(5.4)

The simplification found in (5.4) is valid for k ≥ 2 and can easily be proved by
induction.

5.4. Accounting for all prenecklaces. Because the bound on Ek(n) is only
for prenecklaces beginning with 0, we use (2.5) to get an upper bound on the extra
computation performed by all prenecklaces. Note that E1(n) = 0.

ExtraWork ≤

k
∑

j=2

Ej(n)

≤
24

n

k
∑

j=2

jn

≤ 48
kn

n
.

268 JOE SAWADA

From (5.1), the total number of bracelets generated is bounded below by kn/2n.
Thus, the running time of the algorithm GenBracelets is proportional to the number
of bracelets generated, which proves the following theorem.

Theorem 5.2. The k-ary bracelet generation algorithm GenBracelets is CAT.

Experimentally, the constant is less than 8 where we compare the number of
calls to GenBracelets plus the number of iterations of the for loop in CheckRev to the
number of bracelets generated.

Acknowledgments. The author would like to thank Frank Ruskey for many
helpful discussions in all aspects of this paper, as well as the anonymous referee who
suggested a simpler proof for Theorem 3.1.

REFERENCES

[1] L. Batton, C. Bohun, A. Bona, K. Cheng, T. Doman, J. Drew, R. Edwards, S. Kutay, C.

Laflamme, D. McCrea, W. Myrvold, F. Ruskey, J. Sawada, P. van den Driessche,

J. Vander Kloet, and K. Wood, Classification of chemical compound pharmacophore

structures, in Proceedings of the Third PIMS Industrial Problem Solving Workshop, C.
Bose, ed., 1999, pp. 83–93.

[2] K. Cattell, F. Ruskey, J. Sawada, C.R. Miers, and M. Serra, Fast algorithms to generate

necklaces, unlabeled necklaces, and irreducible polynomials over GF(2), J. Algorithms, 37
(2000), pp. 267–282.

[3] W. Chen and J. Louck, Necklaces, MSS sequences, and DNA sequences, Adv. Appl. Math.,
18 (1997), pp. 18–32.

[4] J.-P. Duval, Factoring words over an ordered alphabet, J. Algorithms, 4 (1983), pp. 363–381.
[5] P. Emmel and R. Hersch, Exploring ink spreading, in Proceedings of the 8th IS & T/SID Color

Imaging Conference: Color Science and Engineering, Scottsdale, AZ, 2000, pp. 335–341.
[6] H. Fredricksen and I.J. Kessler, An algorithm for generating necklaces of beads in two

colors, Discrete Math., 61 (1986), pp. 181–188.
[7] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn se-

quences, Discrete Math., 23 (1978), pp. 207–210.
[8] E.N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5

(1961), pp. 657–665.
[9] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, Cam-

bridge, UK, 1997.
[10] P. Lisonek, Computer-Assisted Studies in Algebraic Combinatorics, dissertation, Johannes

Kepler University, Linz, Austria, 1994.
[11] F. Ruskey, C.D. Savage, and T. Wang, Generating necklaces, J. Algorithms, 13 (1992),

pp. 414–430.
[12] F. Ruskey and J. Sawada, An efficient algorithm for generating necklaces with fixed density,

SIAM J. Comput., 29 (1999), pp. 671–684.
[13] F. Ruskey and J. Sawada, Generating necklaces and strings with forbidden substrings, in

Computing and Combinatorics, Lecture Notes in Comput. Sci. 1858, D.-Z. Du, P. Eades,
V. Estivill-Castro, X. Lin, and A. Sharma, eds., Springer-Verlag, New York, 2000, pp. 330–
339.

