
A simple shift rule for k-ary de Bruijn sequences

Joe Sawada∗ Aaron Williams† Dennis Wong‡

September 6, 2016

Abstract

A k-ary de Bruijn sequence of order n is a cyclic sequence of length kn in which each k-ary
string of length n appears exactly once as a substring. A shift rule for a de Bruijn sequence of order
n is a function that maps each length n substring to the next length n substring in the sequence. We
present the first known shift rule for k-ary de Bruijn sequences that runs in O(1)-amortized time per
symbol using O(n) space. Our rule generalizes the authors’ recent shift rule for the binary case (A
surprisingly simple de Bruijn sequence construction, Discrete Mathematics 339, pages 127-131).

1 A new de Bruijn sequence construction

A k-ary de Bruijn sequence is a cyclic sequence of length kn in which each k-ary string of length n ap-
pears exactly once as a substring. As an example, the cyclic sequence 111222333232212312113213313
is a 3-ary de Bruijn sequence for n = 3; the 27 unique length 3 substrings when considered cyclicly are:

111, 112, 122, 222, 223, 233, 333, 332, 323,
232, 322, 221, 212, 123, 231, 312, 121, 211,
113, 132, 321, 213, 133, 331, 313, 131, 311.

As illustrated in this example, a k-ary de Bruijn sequence of order n induces a very specific type of cyclic
order of k-ary strings of length n: the length n− 1 suffix of a given string is the same as the length n− 1
prefix of the next string in the ordering.

The number of unique k-ary de Bruijn sequences for a given n and k is equal to k!k
n−1

/kn [3]; however,
only a few efficient constructions are known. In particular, there are

. a Lyndon word concatenation algorithm by Fredricksen and Maiorana [11] that generates the lexi-
cographically smallest de Bruijn sequence (also known as the Ford sequence),

. a block concatenation algorithm by Ralston [16],

. a lexicographic composition concatenation algorithm by Fredricksen and Kessler [10], and

. two different pure cycle concatenation algorithms by Fredricksen [8], and Etzion and Lempel [5].
∗School of Computer Science, University of Guelph, Canada. Research supported by NSERC. email:

jsawada@uoguelph.ca
†Division of Science, Mathematics, and Computing, Bard College at Simon‘s Rock, USA. email: haron@uvic.ca
‡School of Computer Science and Information Systems, Northwest Missouri State University, USA. email:

cwong@uoguelph.ca

1

Each algorithm requires only O(n) space and generates their de Bruijn sequences in O(n) time per
symbol, except the pure cycle concatenation algorithm by Etzion and Lempel which requires O(n2)
space. The Lyndon word concatenation algorithm by Fredricksen and Maiorana achievesO(1)-amortized
time per symbol. There also exist interesting greedy constructions including the “prefer-higher” approach
by Martin [15] (and also Ford [6]), and a preference function approach by Alhakim [1]; however, they
require Ω(kn) space. The linear feedback shift register approach for binary de Bruijn sequences (see
Golomb [12]) can also be generalized to larger alphabet sizes. However, this approach uses primitive
polynomials over various finite fields, and there is no known efficient algorithm to find these polynomials
in general (see Lidl and Niederreiter [14] and Rees [17]).

A shift rule for a de Bruijn sequence of order n is a function that maps each length n substring to the next
length n substring in the sequence. A necklace is the lexicographically smallest string in an equivalence
class of strings under rotation. In [20], the authors proved that the following shift rule f can be applied
to produce a de Bruijn sequence for binary strings, where b denotes the complement of the bit b:

f(b1b2 · · · bn) =

{
b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace;
b2b3 · · · bnb1 otherwise.

In this paper, we generalize this result to construct a novel k-ary de Bruijn sequence. We claim that the
following shift rule fk can be applied to produce a k-ary de Bruijn sequence:

fk(a1a2 · · · an) =

1n if a1a2 · · · an = k1n−1;
a2a3 · · · anb if a1 = k and a1a2 · · · an 6= k1n−1;
a2a3 · · · an(a1 + 1) if a1 6= k and a2a3 · · · an(a1 + 1) is a necklace;
a2a3 · · · ana1 otherwise,

where b is the largest positive integer such that a2a3 · · · anb is not a necklace. As an example, successive
applications of fk for n = 3 and k = 3 starting with the string 111 produce the example listing shown
earlier in this section. This leads to the following theorem, where T(n, k) denotes the set of k-ary strings
with length n.

Theorem 1. The shift rule fk induces a cyclic ordering on T(n, k).

Observe that concatenating the first bit of each string in the exhaustive listing produces a k-ary de Bruijn
sequence. We denote this k-ary de Bruijn sequence by dBk(n). Furthermore, by analyzing the shift rule
fk in more detail, we are able to generate the de Bruijn sequence in O(1)-amortized time per symbol.

De Bruijn sequences have been studied under many different names including memory wheels and uni-
versal cycles. Specific results have also been rediscovered numerous times. For example, Flye Sainte-
Marie [19] counted the number of de Bruijn sequences before de Bruijn and van Aardenne-Ehrenfest [3],
and Ford [6] constructed the lexicographically least de Bruijn sequence after Martin [15]. Furthermore,
perhaps the best historical overview of the area is somewhat outdated (see Fredricksen [9]).

These factors make it difficult to make historical claims with complete certainty. However, to the best
of the authors’ knowledge, Theorem 1 represents the first shift rule for a k-ary de Bruijn sequence that
can be implemented in O(1)-amortized time per symbol. In fact, the authors are only aware of two other
de Bruijn sequence constructions that work for all orders n and is explicitly stated as a shift rule. These
results are due to Fredricksen [7] (also see [9]) and Huang [13], and only apply for the binary alphabet.
The authors are unaware of similar shift rules that generalize their results for larger alphabet sizes.

2

The rest of the paper is outlined as follows. In Section 2, we prove our main result Theorem 1 which
leads to a new k-ary de Bruijn sequence construction. In Section 3, we present an algorithm that produces
this new de Bruijn sequence in O(1)-amortized time per symbol.

The main results of this paper are also found in Wong’s PhD thesis [21].

2 Proof of Theorem 1

The proof for Theorem 1 is done in two steps. First we show that the function fk is a bijection. Then, we
show that every string can be obtained from 1n by repeatedly applying the function fk.

Consider a k-ary string α = a1a2 · · · an. A left rotation of α is a2a3 · · · ana1 and is denoted by LR(α).
Let LRr(α) denote the string that results from applying a left rotation r times to α. Thus LRr(α) =
ar+1ar+2 · · · ana1a2 · · · ar when 0 ≤ r < n. The set of strings rotationally equivalent to α is denoted
by Rots(α), and the set of all k-ary necklaces of length n is denoted by N(n, k). We also say a string β
is reachable from α if β can be obtained from α by repeatedly applying the function fk.

We prove that fk is bijective by showing that the following function f−1k is the inverse of fk:

f−1k (α) =

k1n−1 if α = 1n;
ka1a2 · · · an−1 if a1a2 · · · an−1(an + 1) ∈ N(n, k) and α is not a necklace;
(an − 1)a1a2 · · · an−1 if α is a necklace and α 6= 1n;
ana1a2 · · · an−1 otherwise.

Lemma 1. The function f−1k is the inverse function of fk.

Proof. Let α = a1a2 · · · an ∈ T(n, k). We prove that f−1k is the inverse function of fk by showing that
fk(f−1k (α)) = α. When α = 1n, clearly fk(f−1k (1n)) = 1n. We then consider the remaining three
cases.

Case 1: a1a2 · · · an−1(an+1) is a necklace in N(n, k) and α is not a necklace: By definition, f−1k (α) =
ka1a2 · · · an−1. Now observe that fk(f−1k (α)) = a1a2 · · · an−1b where b is the largest positive
integer such that a1a2 · · · an−1b is not a necklace. Since a1a2 · · · an−1(an + 1) is a necklace in
N(n, k) but α = a1a2 · · · an is not a necklace, b = an and fk(f−1k (α)) = α.

Case 2: α is a necklace and α 6= 1n: Since α is a necklace and α 6= 1n, an 6= 1. Observe that
f−1k (α) = (an − 1)a1a2 · · · an−1. Thus, fk(f−1k (α)) = a1a2 · · · an−1(an − 1 + 1)) = α.

Case 3: Otherwise: Since α is not a necklace and a1a2 · · · an−1(an + 1) is not a necklace in N(n, k),
f−1k (α) = ana1a2 · · · an−1 and fk(f−1k (α)) = a1a2 · · · an = α.

Therefore, fk(f−1k (α)) = α and f−1k is the inverse function of fk.

Corollary 1. The function fk is a bijection.

Lemma 2. Let α ∈ N(n, k) and β ∈ Rots(α). Then β is reachable from α.

Proof. Let α = a1a2 · · · an and q(α) = kn −
∑n

i=1 ai. If α = 1n, then the only necklace is 1n and
the only string in Rots(α) is 1n. For the remaining of the proof, q(α) < kn − n and we apply strong

3

induction on q(α) of α. In the base case, the only necklace is kn when q(α) = 0 and the only string in
Rots(α) is kn. When q(α) = 1, the only necklace is (k − 1)kn−1. By applying the function fk n + 1
times, we get all strings in Rots((k − 1)kn−1) and kn. Inductively, assume that for α ∈ N(n, k) with
q(α) ≤ j where 0 ≤ j < kn − n − 1, each string β ∈ Rots(α) is reachable from α. Now consider a
necklace α with q(α) = j + 1. We show by induction that LRr+1(α) is reachable from LRr(α) where
r = {0, 1, . . . , n− 2}.

In the base case, LR0(α) = α when r = 0 and it is reachable from α. Inductively,
assume LRt(α) is reachable from α, where 0 ≤ t < n − 1. Consider LRt+1(α) =
b1b2 · · · bn which obviously is not a necklace. If b1b2 · · · bn−1(bn + 1) is not a necklace in
N(n, k), then f−1k (b1b2 · · · bn) = bnb1b2 · · · bn−1 = LRt(α) since LRt+1(α) is not a neck-
lace. Otherwise if b1b2 · · · bn−1(bn + 1) is a necklace in N(n, k), then f−1k (b1b2 · · · bn) =
kb1b2 · · · bn−1. Observe that q(kb1b2 · · · bn−1) = j+1+bn−k ≤ j since k ≥ bn+1 because
b1b2 · · · bn−1(bn + 1) is a necklace in N(n, k). In addition, b1b2 · · · bn−1k is the necklace
representative of kb1b2 · · · bn−1 since b1b2 · · · bn−1(bn+1) is a necklace in N(n, k) and k ≥
bn+1. Therefore, kb1b2 · · · bn−1 is reachable from its necklace representative b1b2 · · · bn−1k
by the (external) inductive hypothesis. Now observe that q((k− 1)b1b2 · · · bn−1) = j + 2 +
bn−k, and f−1k (b1b2 · · · bn−1k) = (k−1)b1b2 · · · bn−1 since b1b2 · · · bn−1k 6= 1n is a neck-
lace. If q((k − 1)b1b2 · · · bn−1) = j + 1, then bn = k − 1 and thus (k − 1)b1b2 · · · bn−1 =
bnb1b2 · · · bn−1 = LRt(α). Otherwise, let q((k − 1)b1b2 · · · bn−1) = j + 2 + bn − k = h
for some h such that 0 ≤ h < j + 1, observe that b1b2 · · · bn−1(k − 1) is a necklace since
b1b2 · · · bn−1(bn + 1) is a necklace in N(n, k) and k − 1 ≥ bn + 1 because h < j + 1.
Thus, f−1k (b1b2 · · · bn−1(k− 1)) = (k− 2)b1b2 · · · bn−1. By repeatedly applying the (exter-
nal) inductive hypothesis, (k − 1)b1b2 · · · bn−1 and (k − 2)b1b2 · · · bn−1 are reachable from
b1b2 · · · bn−1(bn + 1), where f−1k (b1b2 · · · bn−1(bn + 1)) = bnb1b2 · · · bn−1 = LRt(α) since
b1b2 · · · bn−1(bn + 1) is a necklace in N(n, k).

Since LRr+1(α) is reachable from LRr(α), each β ∈ Rots(α) is reachable from α by transitivity.

Lemma 3. Each string β ∈ T(n, k) is reachable from 1n.

Proof. Let β = b1b2 · · · bn and w(β) = (
∑n

i=1 bi)− n. Apply induction on w(β) of β. In the base case,
the only string with w(β) = 0 is 1n which is reachable from 1n. Inductively, assume any string β with
w(β) = t is reachable from 1n, where 0 ≤ t < kn−n. Now consider a string β with w(β) = t+ 1, and
assume β ∈ Rots(α) where α = a1a2 · · · an is a necklace. Note that an > 1 since α 6= 1n is a necklace.
By Lemma 2, β is reachable from α. Observe that the string α′ = f−1k (α) = (an − 1)a1a2 · · · an−1
since α 6= 1n is a necklace. Thus, w(α′) = t and by the inductive hypothesis, α′ is reachable from 1n.
Thus, β is reachable from 1n by transitivity.

Together, Corollary 1 and Lemma 3 prove Theorem 1.

3 Generating the de Bruijn sequence efficiently

In this section we present algorithms to generate our k-ary de Bruijn sequence dBk(n). First we show
that fk can be computed in O(n) time. This immediate leads to a O(n) time per symbol construction for
the sequence. Then by studying the properties of the sequence, a slightly more sophisticated approach
will generate the sequence in O(1)-amortized time per symbol.

4

A string is a prenecklace if it is a prefix of some necklace. A string α is said to be periodic if there
exists some shorter string β such that α = βt for some t > 1, where the exponent t denotes the number
of repeated concatenations. A string that is not periodic is aperiodic. A Lyndon word is an aperiodic
necklace.

It is well known that testing whether or not a string α = a1a2 · · · an is a prenecklace and finding the
length of the longest prefix of α that is a Lyndon word can be done in O(n) time. The algorithm can be
easily derived from a standard necklace membership tester [4]. The function ISPRENECKLACE shown
in Algorithm 1 determines whether or not the input string α is a prenecklace. If it is a prenecklace, it
returns the value p corresponding to the length of the longest prefix of α that is a Lyndon word; otherwise
it returns 0. Note that if n mod p = 0, then α is a necklace; otherwise if p = n, then α is a Lyndon word.

Algorithm 1 If α = a1a2 · · · an is a prenecklace, then this function returns the length of the longest
prefix of α that is a Lyndon word; otherwise it returns 0.

1: function ISPRENECKLACE(a1a2 · · · an)
2: p← 1
3: for j from 2 to n do
4: if aj < aj−p then return 0

5: if aj > aj−p then p← j

6: return p

Lemma 4. The function fk can be computed in O(n) time.

Proof. Let α = a1a2 · · · an ∈ T(n, k). If a1 6= k, then fk(α) can be computed easily in O(n) time
by Algorithm 1. Otherwise if a1 = k, then there are three subcases. If a2a3 · · · an = 1n−1, then
clearly fk(α) = 1n which can be computed in O(n) time. Then if a2a3 · · · an is not a prenecklace,
fk(α) = a2a3 · · · ank as appending any symbol after a2a3 · · · an will not create a necklace. Otherwise if
a2a3 · · · an is a prenecklace, then let p be the length of the longest prefix of a2a3 · · · an that is a Lyndon
word. If n mod p = 0, then a2a3 · · · anan−p is a necklace while a2a3 · · · an(an−p− 1) is not a necklace,
thus fk(α) = a2a3 · · · an(an−p−1). Otherwise if n mod p 6= 0, then a2a3 · · · an(an−p+1) is a necklace
in N(n, k) while a2a3 · · · anan−p is not a necklace. Thus fk(α) = a2a3 · · · anan−p. Since the value of
p and the membership tester for prenecklaces can be computed in O(n) time by Algorithm 1, fk can be
computed in O(n) time.

Since fk can be computed inO(n) time, our k-ary de Bruijn sequence dBk(n) can be generated inO(n)
time per symbol. To generate the sequence in O(1)-amortized time per symbol, we focus on the strings
α such that fk(α) 6= LR(α). By the definition of fk, the strings that have such property are of the form
α = a1a2 · · · an such that either a2a3 · · · ana1 is a necklace with a1 = k, or a2a3 · · · an(a1 + 1) is a
necklace in N(n, k) with a1 6= k.

In Table 1 we list the 3-ary strings of length 4 obtained by starting from 1111 and successively applying
the function fk for a total of 34 = 81 times. Each row ends with a string β such that fk(β) 6= LR(β).
Hence when fk is applied to this final string, it changes the final symbol after rotation. This means
that the first string α = a1a2 · · · an in each row is a necklace, or a1a2 · · · an−1(an + 1) is a necklace in
N(n, k). Observe there are 37 rows in this table, which is bounded by 2|N(4, 3)| = 2(24) = 48. We will
prove this observation for all n and k later in this section. In the third column of this table, the value gk(α)

5

i α, fk(α), fk(fk(α)), . . . gk(α) symbols
1 1111 1 1
2 1112 1 1
3 1122 1 1
4 1222 1 1
5 2222 1 2
6 2223 1 2
7 2233 1 2
8 2333 1 2
9 3333 1 3

10 3332, 3323, 3233 3 333
11 2332, 3322, 3223 3 233
12 2232 1 2
13 2323, 3232 2 23
14 2322, 3222 2 23
15 2221, 2212, 2122 3 222
16 1223, 2231, 2312, 3122 4 1223
17 1221, 2211, 2112 3 122
18 1123 1 1
19 1232, 2321, 3212, 2123 4 1232
20 1233, 2331, 3312, 3123 4 1233
21 1231, 2311, 3112 3 123
22 1121 1 1
23 1212, 2121 2 12
24 1213, 2131 2 12
25 1313, 3131 2 13
26 1312, 3121 2 13
27 1211, 2111 2 12
28 1113 1 1
29 1132 1 1
30 1322, 3221, 2213, 2132 4 1322
31 1323, 3231, 2313, 3132 4 1323
32 1321, 3211, 2113 3 132
33 1133 1 1
34 1332, 3321, 3213, 2133 4 1332
35 1333, 3331, 3313, 3133 4 1333
36 1331, 3311, 3113 3 133
37 1131, 1311, 3111 3 113

Table 1: The cyclic order of T(4, 3) starting from 1111 induced by the function fk. The rows break down the
order based on when fk applies an operation which is not a left rotation of the previous string in the listing. The
value gk(α) corresponds to the number of strings in each row, and the column symbols is the concatenation of the
first symbol of the strings in each row. The underlined strings are of the form α = a1a2 · · · an such that α is not
a necklace but a1a2 · · · an−1(an + 1) is a necklace in N(n, k). Concatenating the strings in the column symbols
gives dB3(4).

6

corresponds to the number of strings in each row. Let f jk(α) denote successively applying the function
fk on α = a1a2 · · · an for j times. More formally, gk(α) is a function that computes the smallest value
j such that f jk(α) 6= LRj(α).

Still focusing on Table 1, note that the concatenation of the first symbol of each string in each row is
highlighted in the final column. By concatenating all the strings together in this final column we obtain
dB3(4). Also observe that the strings in each row of Table 1 are obtained by repeatedly applying a left
rotation starting from the initial string α. Therefore, if we show that gk can be computed in O(n) time,
we can output the string in the final column in constant time per symbol.

Pseudocode of the implementation of FASTSHIFT is given in Algorithm 2. A complete C implementation
of FASTSHIFT is given in the Appendix.

Algorithm 2 Optimized shift-based algorithm to generate dBk(n) in O(1)-amortized time per symbol.
1: procedure FASTSHIFT
2: a1a2 · · · an ← 1n

3: do
4: j ← gk(a1a2 · · · an)
5: Print(a1a2 · · · aj)
6: a1a2 · · · an ← fk(ajaj+1 · · · ana1a2 · · · aj−1)
7: while a1a2 · · · an 6= 1n

3.1 Analysis
The function gk can be computed by modifying Booth’s algorithm [2]. Given a string α = a1a2 · · · an,
Booth’s algorithm computes the smallest value t such that atat+1 · · · ana1a2 · · · at−1 is the necklace rep-
resentative of α with t > 1. The algorithm scans the string α ·α = a1a2 · · · ana1a2 · · · an = b1b2 · · · b2n
and maintains the variables j and t such that btbt+1 · · · bj is a prenecklace. The algorithm also maintains a
variable p which is the length of the longest prefix of btbt+1 · · · bj that is a Lyndon word. If pb j−tp c = n,
then btbt+1 · · · bj is a necklace and t is the smallest value such that atat+1 · · · ana1a2 · · · at−1 is the
necklace representative of α with t > 1. Booth’s algorithm runs in O(n) time.

To compute gk, we modify Booth’s algorithm to maintain the variables t and j such that btbt+1 · · · bj
or btbt+1 · · · bj−1(bj + 1) is a prenecklace in T(n, k) with t > 1. Thus if pb j−tp c = n, then t is the
smallest value such that atat+1 · · · ana1a2 · · · at−1 or atat+1 · · · ana1a2 · · · at−2(at−1 + 1) is a necklace
in N(n, k) with t > 1. Thus, gk(α) = t−1. As an example, when n = 8, k = 3 and α = 12121213, then
b1b2 · · · b2n = 1212121312121213. Now observe that when t = 5, b5b6 · · · b12(b13 + 1) = 12131213 is
a prenecklace with b13 + 1 ≤ 3, and pb j−tp c = n with p = 4. Thus, g(12121213) = t− 1 = 4. Clearly
this modified Booth’s algorithm also runs in O(n) time.

Lemma 5. The function gk can be computed in O(n) time.

Pseudocode of the implementation of gk is given in Algorithm 3. A C implementation of gk can also be
found in the C implementation of FASTSHIFT in the Appendix.

To analyze the runtime of FASTSHIFT, we need to consider how often the algorithm applies the function
fk. Recall that N(n, k) denotes the set of k-ary necklaces of length n; we use N(n, k) to denote the size
of this set. It is well known [12, 18] that

N(n, k) =
1

n

∑
d|n

φ(d) kn/d = Θ(
kn

n
),

7

Algorithm 3 Pseudocode of the function gk.
1: function gk(a1a2 · · · an)
2: b1b2 · · · b2n ← a1a2 · · · ana1a2 · · · an
3: t← 2; j ← 2; p← 1
4: do
5: t← t+ pb j−t

p c
6: j ← t+ 1
7: p← 1
8: while j ≤ 2n and bj−p ≤ bj do
9: if bj−p ≤ bj then p← j − t+ 1

10: j ← j + 1
11: if j − t+ 1 = n and aj < k and (aj + 1 > aj−p or (aj + 1 = aj−p and n mod p = 0)) then
12: return t− 1

13: while pb j−t
p c < n

14: return t− 1

where φ is Euler’s totient function.

Lemma 6. The number of times FASTSHIFT applies the function fk is bounded by 2N(n, k).

Proof. The number of times FASTSHIFT applies the function fk is equal to the number of strings of the
form α = a1a2 · · · an such that α or a1a2 · · · an−1(an + 1) is a necklace in N(n, k). We partition the set
of strings of this form into two subsets. The first subset contains strings that are necklaces which clearly
has the cardinality N(n, k). The second subset contains strings of the form β = b1b2 · · · bn such that
β is not a necklace while b1b2 · · · bn−1(bn + 1) is a necklace in N(n, k). The cardinality of the second
subset is clearly also bounded by N(n, k). Hence, the number of times FASTSHIFT applies the function
fk is bounded by 2N(n, k).

Theorem 2. The algorithm FASTSHIFT generates dBk(n) in O(1)-amortized time per symbol.

Proof. By Lemma 4 and Lemma 5, the functions fk and gk can be computed in O(n) time. Thus, it is
easy to see that each iteration of the do/while loop in Algorithm 2 requires O(n) time. By Lemma 6, the
number of times the function fk is applied is bounded by 2N(n, k), thus there are O(N(n, k)) iterations
of the do/while loop. Thus, the overall running time will be proportional to O(nN(n, k)) = O(kn).

4 Acknowledgement

The first author’s research is supported by NSERC grant 400673.

8

References
[1] A. Alhakim. Spans of preference functions for de Bruijn sequences. Discrete Appl. Math., 160(7-8):992–998,

2012.

[2] K. S. Booth. Lexicographically least circular substrings. Inf. Proc. Letters, 10(4/5):240–242, 1980.

[3] N. G. de Bruijn and T. Aardenne-Ehrenfest. Circuits and trees in oriented linear graphs. Simon Stevin (Bull.
Belgian Math. Soc.), 28:203–217, 1951.

[4] J. P. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4(4):363–381, 1983.

[5] T. Etzion and A. Lempel. Algorithms for the generation of full-length shift-register sequences. IEEE Trans.
Inform. Theory, 30(3):480–484, 1984.

[6] L. R. Ford. A cyclic arrangement of m-tuples. Report No. P-1071, RAND Corp., 1957.

[7] H. Fredricksen. Generation of the Ford sequence of length 2n, n large. J. Comb. Theory (A), 12:153–154,
1972.

[8] H. Fredricksen. A class of nonlinear de Bruijn cycles. J. Comb. Theory (A), 19(2):192–199, 1975.

[9] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM Rev., 24:195–221,
1982.

[10] H. Fredricksen and I. Kessler. Lexicographic compositions and de Bruijn sequences. J. Comb. Theory (A),
22(1):17–30, 1977.

[11] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete
Math., 23:207–210, 1978.

[12] S. W. Golomb. Shift register sequences. Aegean Park Press, 1982.

[13] Y. Huang. A new algorithm for the generation of binary de Bruijn sequences. J. Algorithms, 11(1):44–51,
1990.

[14] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia Math. Appl.. Cambridge University
Press, 1997.

[15] M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., (40):859–864, 1934.

[16] A. Ralston. A new memoryless algorithm for de Bruijn sequences. J. Algorithms, 2(1):50–62, 1981.

[17] D. Rees. Notes on a paper by I. J. Good. J. London Math. Soc., 21:169–172, 1946.

[18] J. Riordan. An Introduction to Combinatorial Analysis. Princeton University Press, 1980.

[19] C. F. Sainte-Marie. Solution to question nr. 48. Intermédiaire des Mathématiciens, 1:107–110, 1894.

[20] J. Sawada, A. Williams, and D. Wong. A surprisingly simple de Bruijn sequence construction. Discrete
Math., 339:127–131, 2016.

[21] D. Wong. Novel universal cycle constructions for a variety of combinatorial objects. PhD thesis, University
of Guelph, Canada, 2015.

9

Appendix: C code to generate dBk(n) in O(1)-amortized time per symbol
#include<stdio.h>
int n,k,a[50];
//--
int g_k(){

int i,j=2,t=2,p=1;
for (i=1; i<=n; i++) a[n+i] = a[i];
do {

t = t + p*((j-t)/p);
j = t + 1;
p = 1;
while (j <= 2*n && a[j-p] <= a[j]) {

if (a[j-p] < a[j]) p = j-t+1;
j++;
if (j-t+1 == n && a[j] < k && (a[j]+1 > a[j-p] || (a[j]+1 == a[j-p] && n%p == 0)))

return t - 1;
}

} while (p*((j-t)/p) < n);
return t - 1;

}
//--
void f_k() {

int i,j,p=1;
for (i=0; i<n; i++) a[i] = a[i+1];
if (a[0] == k) {

for (i=2; i<=n-1 && p; i++) {
if (a[i-p] > a[i]) {

a[n] = k;
p = 0;

}
if (a[i-p] < a[i]) p = i;

}
if(a[n-p] == 1 && p == 1) a[n] = 1;
else if (p && n%p) a[n] = a[n-p];
else a[n] = a[n-p] - 1;

}
else a[n] = a[0] + 1;

}
//--
int Ones() {

int i,j=0;
for (i=1; i<=n; i++) if (a[i] == 1) j++;
return j;

}
//--
// Generate a k-ary DB sequence in O(1) time per symbol
//--
void DB() {

int i,j,b[50];
for (i=1; i<=n; i++) a[i] = 1;
do {

j = g_k();
for (i=1; i<=j; i++) printf("%d", a[i]);
for (i=1; i<=n; i++) b[i] = a[i];
for (i=1; i<=n-j+1; i++) a[i] = b[i+j-1];
for (i=1; i<j; i++) a[n-j+1+i] = b[i];
f_k();

} while (Ones() < n);
}
//--
int main() {

printf("Enter n: "); scanf("%d", &n);
printf("Enter k: "); scanf("%d", &k);
DB(); printf("\n");

}

10

