
Constructing de Bruijn Sequences with Co-Lexicographic Order: The k-ary
Grandmama Sequence

Patrick Baxter Dragon Oscar I. Hernandez Joe Sawada Aaron Williams Dennis Wong

April 3, 2017

Abstract

A k-ary de Bruijn sequence of order n is a circular k-ary string of length kn which contains every
k-ary string of length n exactly once as a substring. It is well-known that a k-ary de Bruijn sequence of
order n can be constructed by concatenating the aperiodic prefixes of the k-ary necklaces of length n in
lexicographic order. In this article we prove that an alternate de Bruijn sequence is created by replacing
lexicographic order with co-lexicographic order. We also provide a simple successor rule for generating
each successive symbol in O(n)-time.

1 Introduction

Let Σk = {0, 1, 2, . . . , k−1} be an alphabet of k symbols for a positive integer k. Let Σn
k be the set of k-ary

strings of length n > 0. A de Bruijn sequence of order n is a circular k-ary string D = d1d2 · · · dkn which
contains each element of Σn

k as substring exactly once. For example, D = 001021122 is a de Bruijn se-
quence for k = 3 and n = 2 since its substrings of length n are successively 00, 01, 10, 02, 21, 11, 12, 22, 20

(where the last substring “wraps around”) and this list contains each string in Σn
k exactly once.

De Bruijn sequences are often used in education of discrete mathematics and theoretical computer sci-
ence, including Concrete Mathematics textbook by Graham, Knuth, and Patashnik [10]) and The Art of
Computer Programming by Knuth [12]. Historically, they have been referred to by many different names
and have had many interesting applications. For example, Stein offered an interesting survey in the ‘Memory
Wheels’ chapter in Mathematics: The Man-Made Universe [23].

The most well-known and well-studied de Bruijn sequence for all values of k and n is the lexicograph-
ically least de Bruijn sequence. By lexicographically least we mean the first in lexicographic order when
the de Bruijn sequence is viewed linearly as a k-ary string of length kn starting from 0n. For example,
the lexicographically least de Bruijn sequence for k = 3 and n = 2 is 001021122, which was seen earlier.
Natural subsequences of the lexicographically least sequence have been shown to be de Bruijn sequences for
interesting subsets of strings (see Moreno [15], Au [1], and Sawada, Williams, and Wong [19, 20]). Cooper
and Heitsch determined its ‘discrepancy’ for k = 2 [3] which is important for pseudorandom bit generation.

The lexicographically-least de Bruijn sequence was first constructed (up to equivalence) by Martin in
1934 [13] for all n and k using a greedy algorithm. Knuth refers to Martin’s construction as the “Granddaddy
of all de Bruijn sequence constructions” [12]. We follow this playful nomenclature by using Granddaddy to
refer to the de Bruijn sequence itself. The term Ford sequence is also used to describe the lexicographically-
least de Bruijn sequence due to Ford’s independent work [6]. Alternatively, the sequence can be constructed

1

directly and efficiently using the FKM construction1, which is named after the work of Friedricksen, Kessler,
and Maiorana [9, 8]. Informally, the FKM construction concatenates the aperiodic prefixes of necklaces in
lexicographic order. An example of the construction appears in Figure 1. The existence of this elegant
construction is made more interesting by the fact that the decision problem associated with finding lexico-
graphically least Eulerian circuit is NP-hard by Matamala and Moreno [14].

The main result of this article is that the FKM construction provides a de Bruijn sequence when co-
lexicographic order is used instead of lexicographic order, and we refer to the resulting sequence as the
Grandmama de Bruijn sequence. This result is quite surprising due to its close relationship with the promi-
nent Granddaddy de Bruijn sequence, and a comment immediately following Definition 4 helps explain why
it was not previously discovered. The result also suggests that a larger family of de Bruijn sequences can be
generated using generalizations of the FKM construction. Prior to this article the only other member of this
family was the ‘cool-daddy’ de Bruijn sequence for fixed-weight binary strings [18].

This article also provides a successor rule that generates the Grandmama sequence one symbol at a time.
More specifically, the successor rule maps each k-ary string of length n to the symbol that follows it in the
sequence, and it runs in O(n)-time. This represents only the second successor rule that works for all k and
n with the first being published recently [22]. Two other successor rules have been published for k = 2,
including the Granddaddy successor by Fredricksen [7] and another by Huang [11].

A preliminary version of this article was presented at the 12th Latin American Theoretical Informatics
Symposium (LATIN 2016) conference in Ensenada, México [4]. The preliminary version focused solely on
the correctness of the necklace concatenation construction for k = 2. This article generalizes those reulsts
to k-ary strings and also contributes directly to the binary result with a successor rule for that case.

Before completing this introductory section we point out that the Granddaddy and Grandmama se-
quences are equivalent for some small values of n and k. Formally, a de Bruijn sequence d1d2 · · · dkn is
equivalent to any de Bruijn sequence that can be obtained by applying a finite sequence of rotations, re-
versals, and symbol remappings. In [4] it was shown that the Granddaddy and Grandmama sequences are
equivalent for k = 2 and n ≤ 5 but are not equivalent for k = 2 and n > 5. Similarly, when k = 3 and n = 2

the Granddaddy de Bruijn sequence = 001021122 and the Grandmama de Bruijn sequence = 001102122

are equivalent by reversal and substituting 0 ↔ 2. However, the two constructions are not equivalent for
n ≥ 3 and k ≥ 3 with 000100201101202102211121222 and 000101110210020121120221222 being the
non-equivalent results for n = 3 and k = 3. In the article we further differentiate the two sequences by
clarifying the difference between the lexicographic and co-lexicographic orders of necklaces.

2 Background Concepts

This section defines lexicographic and co-lexicographic order and discusses the concept of lex and co-lex
successors. Necklaces, aperiodic prefixes, and Lyndon words are then formally introduced.

Throughout this article we use Greek letters for strings and substrings and Roman letters with optional
subscripts for individual symbols. For example, α = a1a2a3a4a5 = β · x · γ would denote a string of
length five with a prefix β and a suffix γ that is separated by an individual symbol x (where · denotes
concatenation).

1It had long been observed that the FKM construction produced the lexicographically-least de Bruijn sequence, although this
observation was not formally proven until recently with [1], Moreno and Perrin [16], and [19, 20] appearing around the same time.

2

0·0001·0002 ·0011 ·0012 ·0021 ·0022·01·0102·0111·0112·0121·0122·02·
021

1·0
21

2·
02

21
· 0

22
2·

1·
11

12
· 11

22
·12
·1222·2· 0·0001·01·0011 ·0111 ·1 ·0211 ·0021·0121·0221·0002·0102·02·0012·011

2·1
112

·02
12
·1

2·
00

22
· 01

22
· 11

22
·02

22
·1222·2·

Necklace Aperiodic
α Prefix

ap(α)

←
−

le
xi

co
gr

ap
hi

c
or

de
r

0000 0
0001 0001
0002 0002
0011 0011
0012 0012
0021 0021
0022 0022
0101 01
0102 0102
0111 0111
0112 0112
0121 0121
0122 0122
0202 02
0211 0211
0212 0212
0221 0221
0222 0222
1111 1
1112 1112
1122 1122
1212 12
1222 1222
2222 2

Necklace Aperiodic
α Prefix

ap(α)
←
−

co
-l

ex
ic

og
ra

ph
ic

or
de

r
0000 0
0001 0001
0101 01
0011 0011
0111 0111
1111 1
0211 0211
0021 0021
0121 0121
0221 0221
0002 0002
0102 0102
0202 02
0012 0012
0112 0112
1112 1112
0212 0212
1212 12
0022 0022
0122 0122
1122 1122
0222 0222
1222 1222
2222 2

Figure 1: Constructing the Granddaddy de Bruijn sequence (left) and the Grandmama de Bruijn sequence (right) for
n = 4 and k = 3.

3

2.1 Lexicographic and Co-lexicographic Order

Lexicographic and co-lexicographic order are total orders applied from left-to-right and right-to-left, respec-
tively. The two concepts are formally defined below.

Definition 1. The string α = a1a2 · · · an comes before β = b1b2 · · · bm in lexicographic order if one of the
following two conditions hold:
• α is a strict prefix of β (i.e. α = b1b2 · · · bn and m > n), or
• there exists an i such that a1a2 · · · ai−1 = b1b2 · · · bi−1 and ai < bi.

Definition 2. The string α = a1a2 · · · an comes before β = b1b2 · · · bm in co-lexicographic order if one of
the following two conditions hold:
• α is a strict suffix of β (i.e. α = bm−n+1bm−n+2 · · · bm and m > n), or
• there exists an i such that an−i+1an−i+2 · · · an = bm−i+1bm−i+2 · · · bm and an−i < bm−i.

For example, 001122 and 112211 are ordered oppositely with respect to lexicographic and co-lexicographic
order. Similarly, 012 and 0012 are also ordered oppositely by the two orders. For convenience, we use the
shorthand lex and co-lex for lexicographic and co-lexicographic, respectively. We also note that lex and
co-lex order of any S ⊆ Σn

k depends only on the second bullets of Definitions 1 and 22.

2.2 Lex and Co-lex Successors

If α ∈ S, then the lex successor of α with respect to S is the string that immediately follows α in the
lexicographic order of S; the lex successor is undefined if α is the last string in lex order in S. The co-lex
successor is defined analogously.

If S ⊆ Σn
k and β is the lex successor of α with respect to S, then Definition 1 implies that we can write

the two strings as follows:

α = a1a2 · · · ai−1 · x · ai+1ai+2 · · · an
β = a1a2 · · · ai−1 · y · bi+1bi+2 · · · bn

where x, y ∈ Σk with x < y. More specifically, α is the last string in lex order with prefix a1a2 · · · ai−1x,
and β is the first string in lex order with prefix a1a2 · · · ai−1y. We refer to a1a2 · · · ai−1 as the common
prefix of α and β, i as the increasing index and x as the increasing symbol of α and y as the increased
symbol of β, and bi+1bi+2 · · · bn as the minimum suffix of β.

Similarly, if S ⊆ Σn
k and β is the co-lex successor of α with respect to S, then by Definition 2 we can

write the two strings as follows:

α = a1a2 · · · ai−1 · x · ai+1ai+2 · · · an
β = b1b2 · · · bi−1 · y · ai+1ai+2 · · · an

where x, y ∈ Σk with x < y. More specifically, α is the last string in co-lex order with suffix xai+1ai+2 · · · an,
and β is the first string in co-lex order with suffix yai+1ai+2 · · · an, and i is chosen to be as small as pos-
sible. We refer to ai+1ai+2 · · · an as the common suffix of α and β, i as the increasing index and x as the
increasing symbol of α and y as the increased symbol of β, and b1b2 · · · bi−1 as the minimum prefix of β.

The terms presented in this subsection will be used again in Section 3.1.
2The remark after Definition 4 does require the full generality of Definitions 1 and 2.

4

2.3 Necklaces

We define an equivalence relation on the set of k-ary strings of length n as follows: two strings
are equivalent if one is a rotation of the other. The equivalence classes with respect to this rela-
tion are called necklace classes. For example, the necklace class containing the string 20102010 is
{20102010, 01020102, 10201020, 02010201}. The preferred representatives for necklace classes are the
lexicographicaly least strings in each necklace class, and are called necklace representatives. For con-
venience, we will simply call them necklaces. For example, the necklace for the class given above is
01020102. Let Nk(n) be the set of k-ary necklaces of length n. Two different orders of N3(4) can
be seen in Figure 1. To simplify discussion in later sections, let N′k(n) = Nk(n) − {(k−1)n} and
N′′k(n) = Nk(n)−{0n, (k−1)n}. Now we prove three lemmas about the prefixes and suffixes of necklaces
in Nk(n).

Lemma 1. There is a necklace in Nk(n) with suffix γ ∈ Σm
k if and only if 0n−mγ ∈ Nk(n).

Proof. If 0n−mγ ∈ Nk(n) then Nk(n) contains a necklace with suffix γ. For the other direction suppose
that γ is the suffix of a necklace in Nk(n) and αγ ∈ Nk(n). If α 6= 0n−m, then γ must not include a
substring 0n−m and it must not end in 0. Therefore, 0n−mγ ∈ Nk(n) since its prefix of length 0n−m is
strictly smaller in lex order than its other (circular) substrings of length n−m.

Lemma 2. Suppose xγ and zγ are both suffixes of necklaces in Nk(n) for γ ∈ Σm
k and x, z ∈ Σk with

x < z. Then yγ is also the suffix of some necklace in Nk(n) for all x ≤ y ≤ z.

Proof. By Lemma 1 it is sufficient to consider prefixes of 0s. With this in mind we prove a slightly stronger
result: If 0n−m−1zγ ∈ Nk(n) for z > 0, then 0n−m−1yγ ∈ Nk(n) where y = z−1. This is true since
0n−m−1y must be strictly smaller in lex order than any (circular) substring of length n −m in 0n−m−1yγ.

Lemma 3. If 0ixγ ∈ Nk(n) where x > 0, then 0i(x−1)γ ∈ Nk(n).

Proof. If 0ixγ ∈ Nk(n) where x > 0, then by Lemma 1 we have 0i+1γ ∈ Nk(n). Thus by Lemma 2 we
have 0i(x−1)γ ∈ Nk(n).

2.4 Periodic, Aperiodic Prefixes, and Lyndon Words

A string α is periodic if α = βr for a positive integer r > 1, where exponentiation denotes repetition.
Otherwise, the string is aperiodic. For example, 20102010 = (2010)2, and so it is periodic. In contrast, the
string 2010201 is aperiodic.

Given a string α, its aperiodic prefix, denoted ap(α), is its shortest prefix β such that α = βr for some
positive integer r. We define the period of α to be the length of its aperiodic prefix, denoted |ap(α)|. For
example, if α = 20102010 then ap(α) = 2010 and so α has period four. Note, if α is aperiodic, then
ap(α) = α, and so it has a period of |ap(α)| = |α|.

A Lyndon word is an aperiodic necklace. We will discuss Lyndon words again in Section 4.1.

5

α ∈ N′
3(4) 0000 0001 0101 0011 0111 1111 0211 0021 0121 0221 0002 0102 0202 0012 0112 1112 0212 1212 0022 0122 1122 0222 1222

common suffix 01 1 11 111 111 1 21 21 02 02 2 12 112 12 212 2 22 122 22 222 222
increasing symbol 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1
increased symbol 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1 2 1 2
minimum prefix 000 0 00 0 0 00 0 0 000 0 0 00 0 0 00 0 0
β = succ(α) 0001 0101 0011 0111 1111 0211 0021 0121 0221 0002 0102 0202 0012 0112 1112 0212 1212 0022 0122 1122 0222 1222 2222

Figure 2: Illustrating co-lex successors for N3(4). Each column shows a necklace α ∈ N′
3(4) being converted into

its co-lex successor β = succ(α). The common suffix of α and β, the increasing symbol in α, the increased symbol
in β, and the minimum prefix in β are all shown. Definition 3 and Theorem 1 assert that the increasing and increased
symbol always differs by 1 and the minimum prefix is always 0s.

3 Necklaces in Co-Lexicographic Order

In this section we consider the co-lex order of k-ary necklaces of length n. We begin by defining the co-lex
successor and comparing it to the lex successor. We also prove a property of periodic strings in co-lex order.

3.1 Co-Lex Successor

Recall that N′k(n) = Nk(n)− {(k − 1)n}. We define a function succ : N′k(n)→ Nk(n) below, and will
then prove that it maps necklaces in N′k(n) to their co-lex successor in Nk(n).

Definition 3. If α = a1a2 · · · an ∈ N′k(n), then succ(α) = 0i−1(ai + 1)ai+1ai+2 · · · an where i is the
minimum value with 0i−1(ai + 1)ai+1ai+2 · · · an ∈ Nk(n).

Successive applications of the function succ for necklaces in N3(4) are illustrated in Figure 2. The
terminology used in the proof was introduced in Section 2.2.

Theorem 1. If α ∈ N′k(n), then succ(α) is the co-lex successor of α with respect to Nk(n).

Proof. Let α = a1a2 · · · an be a necklace in N′k(n) and let β = b1b2 · · · bn = succ(α). Let i be the
increasing index and bi+1bi+2 · · · bn = ai+1ai+2 · · · an be the common suffix of α and β. Also let x = ai
be the increasing symbol of α and y = bi be the increased symbol of β. By Lemma 2 the increased symbol
of β is y = x + 1. By Lemma 1 the minimum prefix of β is 0i−1. Thus β = 0i−1ybi+1bi+2 · · · bn. By
Definition 3 the value i is the smallest possible value such that 0i−1ybi+1bi+2 · · · bn ∈ Nk(n). Therefore,
β = succ(α).

Theorem 1 implies that the co-lex successor of α ∈ Nk(n) is fully determined by its increasing index.
More specifically, the successor is obtained by incrementing the increasing symbol and filling the successor’s
prefix with 0s. On the other hand, it is interesting to note that the lex successor of α ∈ Nk(n) presents a
completely different challenge. In that case the increasing index is always the index of the rightmost symbol
that is less than k, however, the minimum suffix depends on the prefix and is non-trivial to compute. For a
better understanding of necklaces in lexicographic order refer to Ruskey, Savage, and Wang [17].

3.2 Periodic Strings

When proving our main result in Section 4 we will need to pay special attention to periodic necklaces. The
following lemma ensures that periodic necklaces share certain suffixes and prefixes with the necklace before
and after in co-lex order, respectively. To complement our succ(α) notation, we let pred(α) be the co-lex

6

predecessor of any α ∈ Nk(n) that is not equal to the first necklace in co-lex order 0n. In the statement of
the lemma also recall that N′′k(n) = Nk(n)− {0n, (k−1)n}.

Lemma 4. If β = b1b2 · · · bn ∈ N′′k(n) is periodic, then pred(β) and succ(β) are aperiodic. Furthermore,
pred(β) shares β’s suffix of length n− i− 1, and succ(β) shares β’s prefix of length i, where i is the index
such that b1b2 · · · bi = 0i and bi+1 > 0.

Proof. Let β = b1b2 · · · bn be a periodic necklace in N′′k(n). Let ap(β) = b1b2 · · · bj and u = n
j be the

number of times ap(β) is repeated in β. Note that ap(β) must include 0ibi+1 as a prefix where bi+1 > 0.
Let α = pred(β). By Theorem 1 and the prefix 0ibi+1 in β, it must be that the increasing index of α is

i+ 1. Therefore, the common suffix of α and β is bi+2bi+3 · · · bn which has length n− (i+ 1) = n− i− 1

as claimed. Furthermore, α is aperiodic due to its suffix ap(β)u−1 and prefix not equal to ap(β).
Let γ = succ(β) and t be the increment index of β. Since β contains more than one copy of 0ibi+1,

t ≥ i + 2. Therefore, by Theorem 1, the necklace γ that immediately follows β in co-lex order must have
0i+1 as a prefix. Therefore, β and γ share a prefix of length i. Also observe that by Theorem 1, the string
γ 6= 0n has 0t−1 as a prefix, while its suffix btbt+1 · · · bn does not contain the substring 0t−1 since t ≥ i+ 2

and β is a periodic necklace with the prefix 0ibi+1. Therefore γ is aperiodic.

The following simplification of Lemma 4 will be helpful in Section 4.

Corollary 1. If β ∈ N′′k(n) is periodic and α = pred(β) is its co-lex predecessor, then ap(α) · ap(β) has
β as a suffix.

Proof. Suppose β = ap(β)u is a necklace in N′′k(n) where u > 1; β is periodic. By Lemma 4, α is
aperiodic and has suffix ap(β)u−1. Hence, ap(α) · ap(β) = α · ap(β) has suffix ap(β)u−1 · ap(β) =

ap(β)u = β.

4 The Grandmama de Bruijn Sequence

In this section we define the Grandmama de Bruijn sequence, provide a successor rule for generating it, and
then prove that it is correct. We note that the de Bruijn sequence successor rule gives the next symbol in the
de Bruijn sequence, whereas the co-lex successor rule from Section 3 gives each successive necklace. We
conclude the section by discussing efficiency and implementations of the successor rule.

4.1 Definition of the Grandmama de Bruijn Sequence

The k-ary Grandmama de Bruijn of order n is constructed by listing the k-ary necklaces of length n in co-
lexicographic order and then by concatenating their aperiodic prefixes. We denote this sequence byMk(n)

and it is defined formally below. An example appears in Figure 1.

Definition 4. Mk(n) = ap(α1) · ap(α2) · · · ap(α|Nk(n)|), where α1, α2, · · ·α|Nk(n)| is the co-lex order of
Nk(n).

The Granddaddy de Bruijn sequence can be constructed by replacing co-lex order by lex order in Defini-
tion 4. However, it can also be constructed by concatenating the k-ary Lyndon words whose length divides n
in lex order [9, 8]. In fact, the Lyndon word concatenation and the necklace-prefix concatenation of Defini-
tion 4 produce identical sequences when lex order is used. For example, notice that the aperiodic prefixes on

7

the lefthand side of Figure 1 consist of the Lyndon words of length 1, 2, and 4 in lexicographic order. On the
other hand, the same is not true when co-lex order is used. For example, when k = 3 and n = 2 the co-lex
Lyndon word concatenation yields 0 ·1 ·01 ·2 ·02 ·12 = 010120212 while the necklace-prefix concatenation
yields 0 · 01 · 1 · 02 · 12 · 2 = 001102122. Notice that the former is not a de Bruijn sequence while the
latter is the Grandmama de Bruijn sequence. The difference between these two definitions was previously
discussed in [18], and this subtlety helps explain why the otherwise natural construction ofMk(n) was not
previously observed.

4.2 Successor Rule

We now define a function f which maps every k-ary string of length n to a single symbol of the alphabet. Let
zeroSuffix (α) denote the length of the longest suffix of α that has the form 0∗. Thus zeroSuffix (012000) =

3. The function f is based on an index ` that is derived from zeroSuffix (α) and two test strings τ and τ ′

described at the bottom of Definition 5. Later in this section we will prove that f is the successor rule for
the Grandmama sequence. In other words, f maps each substring of the Grandmama sequence to the next
symbol in the sequence.

Definition 5. The function f : Σn
k → Σk is defined as follows:

f(b1b2 · · · bn) =

b1 + 1 if b1b2 · · · bn = 0n or τ ′ ∈ Nk(n) (1a)

0 if τ ∈ Nk(n) and (1a) does not apply (1b)

b1 otherwise (1c)

where ` = n− zeroSuffix (b1b2 · · · bn) and τ = 0n−`b1b2 · · · b` and τ ′ = 0n−`(b1+1)b2 · · · b`.

Note that when b1 = k−1, τ ′ /∈ Σn
k and hence τ ′ /∈ Nk(n). To illustrate the definition consider b1b2 · · · b9 =

011200120 ∈ Σ9
3. In this case the index is ` = 8, τ = 001120012 and τ ′ = 011120012. Notice that

τ ′ /∈ N3(9) and τ ∈ N3(9). Hence, f(011200120) = 0 by (1b).
Figure 3 further illustrates f applied to each string in Σ3

3.

4.2.1 Binary Successor Rule

In the binary case the function f can be simplified to the following function g. In this definition x denotes
the bitwise complement of x.

Definition 6. The function g : Σn
2 → Σ2 is defined as follows:

g(b1b2 · · · bn) =

{
b1 if b1b2 · · · bn = 0n or τ ∈ N2(n)

b1 otherwise

where ` = n− zeroSuffix (b1b2 · · · bn) and τ = 0n−`1b2b3 · · · b`.

8

M3(3) 0 0 0 1 0 1 1 1 0 2 1 0 0 2 0 1 2 1 1 2 0 2 2 1 2 2 2
b1b2b3 ∈ Σ3

3 000 001 010 101 011 111 110 102 021 210 100 002 020 201 012 121 211 112 120 202 022 221 212 122 222 220 200
` 3 2 3 3 3 2 3 3 2 1 3 2 3 3 3 3 3 2 3 3 3 3 3 3 2 1
τ 001 001 101 011 111 011 102 021 021 001 002 002 201 012 121 211 112 012 202 022 221 212 122 222 022 002
τ ′ 101 011 201 111 211 021 202 121 031 002 102 012 301 112 221 311 212 022 302 122 321 312 222 322 032 003

equation (1) (a) (b) (a) (c) (a) (b) (a) (c) (b) (b) (a) (b) (a) (c) (a) (c) (c) (b) (a) (c) (a) (c) (c) (a) (b) (b) (b)
f(b1b2b3) 1 0 1 1 1 0 2 1 0 0 2 0 1 2 1 1 2 0 2 2 1 2 2 2 0 0 0

rotatedM3(3) 1 0 1 1 1 0 2 1 0 0 2 0 1 2 1 1 2 0 2 2 1 2 2 2 0 0 0

Figure 3: The cyclic order of Σ3
3 within the Grandmama de Bruijn sequenceM3(3) as generated by f . Each column

gives a string b1b2b3 ∈ Σ3
3 and the corresponding values of `, τ , and τ ′ from Definition 5. These values determine the

case of equation (1) and the result of f . A rotated version ofM3(3) helps verify f .

4.3 Verification of Successor Rule

Now we prove our main result.

Theorem 2. The Grandmama sequenceMk(n) is a de Bruijn sequence for all k ≥ 1 and n ≥ 0. Moreover,
its substring b1b2 · · · bn ∈ Σn

k is followed by the symbol f(b1b2 · · · bn).

Proof. SinceMk(n) is composed using the same strings as the Granddaddy de Bruijn sequence, |Mk(n)| =
kn. Thus, to prove this theorem it suffices to show that each string b1b2 · · · bn ∈ Σn

k appears as a substring of
Mk(n), and moreover, the bit following b1b2 · · · bn is f(b1b2 · · · bn). Given b1b2 · · · bn ∈ Σn

k , we consider
five cases based on Definition 5. Let ` = n− zeroSuffix (b1b2 · · · bn) and let

τ = 0n−` b1b2 · · · b` and τ ′ = 0n−` (b1+1) b2 · · · b`.

Case 1. b1b2 · · · bn = xn for some symbol x ∈ Σk.

We consider three different cases depending on x.
• x = 0. Since succ(0n) = 0n−11,

ap(0n) · ap(0n−11) = 0n1

is a substring inMk(n). The symbol following 0n is 1, which matches f(0n) = b1+1 = 1 by (1a).

• x ∈ {1, 2, . . . , k−2}. Since succ((x−1)xn−1) = xn and succ(xn) = 0(x+1)xn−2,

ap((x−1) xn−1) · ap(xn) · ap(0 (x+1) xn−2) = (x−1) xn 0 (x+1) xn−2

is a substring inMk(n). The symbol following xn is 0, which matches f(xn) = 0 by (1b) because
τ ′ = (x+1)xn−1 /∈ Nk(n) and τ = xn ∈ Nk(n).

• x = k−1. Since succ((k−2)(k−1)n−1) = (k−1)n and because the (k−1)n is the last necklace on
colex order and 0n is the first necklace in colex order,

ap((k−2) (k−1)n−1) · ap((k−1)n)) · ap(0n) = (k−2)(k−1)n0

is a substring inMk(n) when considering the wrap-around. The symbol following (k−1)n is 0, which
matches f((k−1)n) = 0 by (1b) because τ ′ = k(k−1)n−1 /∈ Nk(n) and τ = (k−1)n ∈ Nk(n).

Case 2. τ ′ ∈ Nk(n) and Case 1 does not apply.

9

Notice that τ ′ is the first necklace with suffix (b1+1)b2 · · · b` in co-lex order. Let β be the last necklace in
Nk(n) in co-lex order with suffix b1b2 · · · b` and let α = pred(β). This is well-defined because τ has this
suffix and τ ∈ Nk(n) due to Lemma 3 and τ ′ ∈ Nk(n). By Definition 3 and Theorem 1 it must be that
τ ′ = succ(β). In particular, τ ′ has prefix 0n−`(b1+1) and this prefix must also be in ap(τ ′). Therefore,
withinMk(n) the substring b1b2 · · · bn appears in

ap(α) · ap(β) · ap(τ ′) = . . . b1b2 · · · b` · 0n−`(b1+1) . . .

by using Corollary 1 on α and β. The symbol following b1b2 · · · bn is b1+1, which matches f(b1b2 · · · bn) =

b1+1 by (1a) because τ ′ ∈ Nk(n).

Case 3. τ ∈ Nk(n) and Cases 1–2 do not apply.

Let β be the last necklace in Nk(n) in co-lex order with suffix b1b2 · · · b`. Let α = pred(β) and γ = succ(β).
Since τ ′ /∈ Nk(n) Lemmas 1 and 2 ensure that there are no necklaces in Nk(n) with suffix yb2 · · · b` for any
y > b1. Therefore, β is also the last necklace with suffix b2b3 · · · b` in co-lex order. Therefore, β and γ have
a common suffix of length at most n− (`− 2) = n− `+ 2. Therefore, γ has prefix 0n−`+1 by Definition 3
and Theorem 1. Therefore, withinMk(n) the substring b1b2 · · · bn appears in

ap(α) · ap(β) · ap(γ) = . . . b1b2 · · · b` · 0n−`+1 . . .

by using Corollary 1 on α and β. The symbol following b1b2 · · · bn is 0, which matches f(b1b2 · · · bn) = 0

by (1b) because τ ′ /∈ Nk(n) and τ ∈ Nk(n).

Case 4. b1b2 · · · bn is periodic and Cases 1–3 do not apply.

Let β be the necklace representative of b1b2 · · · bn. Since b1b2 · · · bn is periodic so is β. Our strategy is to
find all of the rotations of β inMk(n) and then identify b1b2 · · · bn.

Let β = a1a2 · · · an and i be the index such that a1a2 · · · ai = 0i and ai+1 > 0; we know this index
exists since b1b2 · · · bn = 0n was covered in Case 1. Let j be the length of ap(β) and observe that i < j.

Let α = pred(β) and γ = succ(β). By Lemma 4, both α and γ are aperiodic. Furthermore, ap(α) has
the same suffix of length n− i− 1 as β, and ap(γ) has the same prefix of length i as β. Therefore,Mk(n)

contains ap(α) · ap(β) · ap(γ) which itself must contain

ai+2ai+3 · · · an · a1a2 · · · aj · a1a2 · · · ai.

The identified subsequence has length (n− i− 1) + j + i = n+ j − 1 and thus j (non-circular) substrings
of length n. Furthermore, these substrings are precisely the j distinct rotations of β. Hence, b1b2 · · · bn is
one of these substrings.

To complete the proof we must verify the successor rule. The last of the j substrings of length n given
above is ai+1ai+2 · · · ana1a2 · · · ai. Also recall that a1a2 · · · ai = 0i. Therefore, b1b2 · · · bn is not this
substring since otherwise τ = a1a2 · · · an = β ∈ Nk(n) and this was covered by previous cases. Since
b1b2 · · · bn is not the last of the j substrings it must be followed by b1. This matches f(b1b2 · · · bn) = b1 by
(1c) because τ /∈ Nk(n) and τ ′ /∈ Nk(n) due to the previous cases.

Case 5. b1b2 · · · bn is aperiodic and Cases 1–4 do not apply.

Let the necklace representative of b1b2 · · · bn be γ ∈ Nk(n). Recall that b1b2 · · · bn = b1b2 · · · b`0n−` where
b` > 0. Therefore, γ = bmbm+1 · · · b`0n−`b1b2 · · · bm−1 for some choice of m. In particular, m ≥ 2

10

due to the fact that 0n is the only necklace whose last symbol is 0 and β 6= 0n. Thus, γ must have prefix
bmbm+1 · · · b`0n−`b1.

Let β = pred(γ) and α = pred(β). Note that α is well-defined since γ is not the first or second
necklaces in co-lex order, namely 0n or 0n−11, due to previous cases. In particular, γ 6= 0n−11 since
otherwise b1b2 · · · bn would be a rotation of 0n−11 and hence τ = 0n−11 ∈ Nk(n).

By Theorem 1 and b` > 0 it must be that β has suffix 0n−`b1b2 · · · bm−1. More specifically, β has suffix
b1b2 · · · bm−1. By Corollary 1, ap(α) · ap(β) has suffix β and more specifically b1b2 · · · bm−1. Also, γ is
aperiodic due to the fact that b1b2 · · · bn is aperiodic. Therefore,Mk(n) contains ap(α) ·ap(β) ·ap(γ) which
itself contains

b1b2 · · · bm−1 · bmbm+1 · · · b` 0n−` b1.

Hence, b1b2 · · · bn appears is a substring in Mk(n). Furthermore, the symbol following b1b2 · · · bn is b1.
This matches f(b1b2 · · · bn) = b1 by (1c) because τ /∈ Nk(n) and τ ′ ∈ Nk(n) due to the previous cases.

4.4 Efficiency and Implementation

When analyzing the efficiency of the k-ary successor function f , the main challenge is testing if τ is a
necklace in (1a) and testing if τ ′ is a necklace in (1b). These tests can be implemented in O(n)-time [2, 5].

Theorem 3. The function f can be computed in O(n)-time.

This theorem immediately implies that the Grandmama de Bruijn sequence can be generated in O(n)-
time per bit starting from any arbitrary string in Σn

k . This is a nice advantage over the necklace concatenation
approach which could be adapted to start from an arbitrary necklace. In the binary case, there is an efficient
algorithm to list binary necklaces in co-lex order which allows M2(n) to be generated in O(1)-time per
bit [21]. An implementation in C that generates Mk(n) using the successor rule is provided in the Ap-
pendix. It is also available at the following git repository: https://src-code.simons-rock.edu/

git/awilliams/GrandmamaDeBruijn.

5 Acknowledgement

The research of Joe Sawada is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant RGPIN 400673-2012.

References

[1] Y. H. Au. Generalized de Bruijn words for primitive words and powers. Discrete Mathematics,
338(12):2320–2331, 2015.

[2] K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10(4/5):240–242,
1980.

[3] J. Cooper and C. Heitsch. The discrepancy of the lex-least de Bruijn sequence. Discrete Mathematics,
310(6-7):1152–1159, 2010.

[4] P. Dragon, O. Hernandez, and A. Williams. The grandmama de Bruijn sequence. In E. C. E. Kranakis,
G. Navarro, editor, LATIN 2016: Theoretical Informatics, pages 347–361. Springer, 2016.

11

https://src-code.simons-rock.edu/git/awilliams/GrandmamaDeBruijn
https://src-code.simons-rock.edu/git/awilliams/GrandmamaDeBruijn

[5] J. P. Duval. Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4):363–381, 1983.

[6] L. R. Ford. A cyclic arrangement of m-tuples. Report No. P-1071, RAND Corp., 1957.

[7] H. Fredricksen. Generation of the Ford sequence of length 2n, n large. Journal of Combinatorial
Theory (A), 12:153–154, 1972.

[8] H. Fredricksen and I. J. Kessler. An algorithm for generating necklaces of beads in two colors. Discrete
Mathematics, 61:181–188, 1986.

[9] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete
Math., 23:207–210, 1978.

[10] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley Professional, 2nd edition, 1994.

[11] Y. Huang. A new algorithm for the generation of binary de Bruijn sequences. Journal of Algorithms,
11:44–51, 1990.

[12] D. E. Knuth. The Art of Computer Programming, Volume 4A, Combinatorial Algorithms. Addison-
Wesley Professional, 2011.

[13] M. H. Martin. A problem in arrangements. Bulletin of the American Mathematical Society, 40:859–
864, 1934.

[14] M. Matamala and E. Moreno. Minimum Eulerian circuits and minimum de Bruijn sequences. Discrete
Mathematics, 309(17):5298–5304, 2009.

[15] E. Moreno. On the theorem of Fredricksen and Maiorana about de Bruijn sequences. Advances in
Applied Mathematics, 33(2):413–415, 2004.

[16] E. Moreno and D. Perrin. Corrigendum to “On the theorem of Fredricksen and Maiorana about de
Bruijn sequences”. Advances in Applied Mathematics, 62(1):184–187, 2015.

[17] F. Ruskey, C. Savage, and T. Wang. Generating necklaces. Journal of Algorithms, 13:414–413, 1992.

[18] F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM
Journal on Discrete Mathematics, 26(2):605–617, 2012.

[19] J. Sawada, A. Williams, and D. Wong. The lexicographically smallest universal cycle for binary strings
with minimum specified weight. Journal of Discrete Algorithms, 28(0):31 – 40, 2014. StringMasters
2012 & 2013 Special Issue.

[20] J. Sawada, A. Williams, and D. Wong. Generalizing the classic greedy and necklace constructions of
de Bruijn sequences and universal cycles. Electronic Journal of Combinatorics, 23(1):#P1.24, 2016.

[21] J. Sawada, A. Williams, and D. Wong. Necklaces and Lyndon words in colexicographic and reflected
Gray code order. (submitted), 2017.

[22] J. Sawada, A. Williams, and D. Wong. A simple shift rule for k-ary de Bruijn sequences. Discrete
Mathematics, 340(3):524–531, 2017.

12

[23] S. K. Stein. Mathematics: The Man-Made Universe. W. H. Freeman and Company, 3rd edition, 1994.

Appendix - C code to construct the Grandmama de Bruijn sequence

#include<stdio.h>
#define MAX_N 100

int Zeros(int a[], int n) {
for (int i=1; i<=n; i++) if (a[i] != 0) return 0;
return 1;

}
//--
int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {
if (b[i-p] > b[i]) return 0;
if (b[i-p] < b[i]) p = i;

}
if (n % p != 0) return 0;
return p;

}
//--
int Grandmama_successor(int a[], int n, int k) {

int i,j=1,t,b[MAX_N];

while (j<n && a[n-j+1] == 0) b[j++] = 0;
t = 1;
for (i=j; i<=n; i++) b[i] = a[t++];

b[j]++;
if (Zeros(a,n) || (b[j] < k && IsNecklace(b,n))) return a[1]+1;
b[j]--;
if (IsNecklace(b,n)) return 0;
return a[1];

}
//--
int main() {

int i,n,k,new_bit,a[MAX_N];

printf("Enter n: "); scanf("%d", &n);
printf("Enter k: "); scanf("%d", &k);

for (i=1; i<=n; i++) a[i] = 0;
do {

printf("%d", a[1]);
new_bit = Grandmama_successor(a,n,k);
for (i=1; i<=n; i++) a[i] = a[i+1];
a[n] = new_bit;

} while (!Zeros(a,n));
printf("\n\n");

}

13

	Introduction
	Background Concepts
	Lexicographic and Co-lexicographic Order
	Lex and Co-lex Successors
	Necklaces
	Periodic, Aperiodic Prefixes, and Lyndon Words

	Necklaces in Co-Lexicographic Order
	Co-Lex Successor
	Periodic Strings

	The Grandmama de Bruijn Sequence
	Definition of the Grandmama de Bruijn Sequence
	Successor Rule
	Binary Successor Rule

	Verification of Successor Rule
	Efficiency and Implementation

	Acknowledgement

