# Finding the Largest Fixed-Density Necklace and Lyndon word 

Joe Sawada Patrick Hartman

April 18, 2017


#### Abstract

We present an $O(n)$ time algorithm for finding the lexicographically largest fixed-density necklace of length $n$. Then we determine whether or not a given string can be extended to a fixed-density necklace of length $n$ in $O\left(n^{2}\right)$ time. Finally, we give an $O\left(n^{3}\right)$ algorithm that finds the largest fixed-density necklace of length $n$ that is less than or equal to a given string. The efficiency of the latter algorithm is a key component to allow fixed-density necklaces to be ranked efficiently. The results are extended to find the largest fixed-density Lyndon word of length $n$ (that is less than or equal to a given string) in $O\left(n^{3}\right)$ time.


## 1 Introduction

A necklace is the lexicographically smallest string in an equivalence class of strings under rotation. A Lyndon word is a primitive (aperiodic) necklace. The density of a binary string is the number of 1 s it contains. Let $\mathbf{N}(n, d)$ denote the set of all binary necklaces with length $n$ and density $d$. In this paper we present efficient algorithms for the following three problems:

1. finding the largest necklace in $\mathbf{N}(n, d)$,
2. determining if an arbitrary string is a prefix of some necklace in $\mathbf{N}(n, d)$, and
3. finding the largest necklace in $\mathbf{N}(n, d)$ that is less than or equal to a given binary string of length $n$.

The first problem can be answered in $O(n)$ time, which is applied to answer the second problem in $O\left(n^{2}\right)$ time, which in turn is applied to answer the third problem in $O\left(n^{3}\right)$ time. The third problem can also be solved for fixed-density Lyndon words in $O\left(n^{3}\right)$ time, which can immediately be used to find the largest fixed-density Lyndon word of a given length. Solving the third problem efficiently for both necklaces and Lyndon words is a key step in the first efficient algorithms to rank and unrank fixed-density necklaces and Lyndon words [2]. When there is no density constraint, the third problem is known to be solvable in $O\left(n^{2}\right)-$ time; one such implementation is outlined in [10]. This problem was encountered in the first efficient algorithms to rank and unrank necklaces and Lyndon words discovered independently by Kopparty, Kumar, and Saks [5] and Kociumaka, Radoszewski and Rytter [4].

To illustrate these problems, consider the lexicographic listing of $\mathbf{N}(8,3)$ :

$$
00000111,00001011,00001101,00010011,00010101,00011001,00100101 .
$$

The largest necklace in this set is 00100101 . The string 0010 is a prefix of a necklace in this set, however, 010 is not. Given an arbitrary string $\alpha=00011000$, the largest necklace in this set that is less than or equal to $\alpha$ is 00010101 .

Fixed-density necklaces were first studied by Savage and Wang when they provided the first Gray code listing in [11]. Since then, an algorithm to efficiently list fixed-density necklaces was given by Ruskey and Sawada [8] and another efficient algorithm to list them in cool-lex Gray code order was given by Sawada and

Williams [9]. The latter algorithm leads to an efficient algorithm to construct a fixed-density de Bruijn sequence by Ruskey, Sawada, and Williams [7]. When equivalence is further considered under string reversal, an algorithm for listing fixed-density bracelets is given by Karim, Alamgir and Husnine [3].

The remainder of this paper is presented as follows. In Section 2, we present some preliminary results on necklaces and related objects. In Section 3, we present an $O(n)$-time algorithm to find the largest necklace in $\mathbf{N}(n, d)$. In Section 4, we present an $O\left(n^{2}\right)$-time algorithm to determine whether or not a given string is a prefix of a necklace in $\mathbf{N}(n, d)$. In Section 5, we present an $O\left(n^{3}\right)$-time algorithm to finding the largest necklace in $\mathbf{N}(n, d)$ that is less than or equal to a given string. These results on necklaces are extended to Lyndon words in Section 6.

## 2 Preliminaries

Let $\alpha$ be a binary string and let $\operatorname{lyn}(\alpha)$ denote the length of the longest prefix of $\alpha$ that is a Lyndon word. A prenecklace is a prefix of some necklace. The following theorem by Cattell et al. [1] has been called The Fundamental Theorem of Necklaces:

Theorem 2.1 Let $\alpha=a_{1} a_{2} \cdots a_{n-1}$ be a prenecklace over the alphabet $\Sigma=\{0,1, \ldots, k-1\}$ and let $p=\operatorname{lyn}(\alpha)$. Given $b \in \Sigma$, the string $\alpha b$ is a prenecklace if and only if $a_{n-p} \leq b$. Furthermore,

$$
\operatorname{lyn}(\alpha b)=\left\{\begin{array}{ll}
p & \text { if } b=a_{n-p} \\
n & \text { if } b>a_{n-p}
\end{array} \text { (i.e., } \alpha b\right. \text { is a Lyndon word). }
$$

Corollary 2.2 If $\alpha b$ is a prenecklace then $\alpha(b+1)$ is a Lyndon word.
Corollary 2.3 If $\alpha=a_{1} a_{2} \cdots a_{n}$ is a necklace then $\alpha a_{1}$ is a prenecklace and $\alpha b$ is a Lyndon word for all $b>a_{1}$.

The following is well-known property of Lyndon words by Reutenauer [6].
Lemma 2.4 If $\alpha$ and $\beta$ are Lyndon words such that $\alpha<\beta$ then $\alpha \beta$ is a Lyndon word.
Corollary 2.5 If $\alpha$ is a Lyndon word and $\beta$ is a necklace such that $\alpha \leq \beta$ then $\alpha \beta^{t}$ is a necklace for $t \geq 1$.
Proof. If $\alpha=\beta$ then clearly $\alpha \beta^{t}$ is a (periodic) necklace. If $\beta$ is a Lyndon word, then the result follows from repeated application of Lemma 2.4. Otherwise $\beta=\delta^{i}$ for some Lyndon word $\delta$ and $i>1$. Note that $\alpha \leq \delta$ because otherwise $\alpha>\beta$. If $\alpha<\delta$, then repeated application of Lemma 2.4 implies that $\alpha \delta^{j}$ is a Lyndon word for all $j \geq 0$. If $\alpha=\delta$, then clearly $\alpha \delta^{j}$ is a (periodic) necklace for all $j \geq 1$. In both cases, $\alpha \beta^{t}$ will be a necklace for all $t \geq 1$.

Lemma 2.6 $A$-ary string $\alpha=a_{1} a_{2} \cdots a_{n}$ over alphabet $\{0,1, \ldots, k-1\}$ is a necklace if and only if $0^{t-a_{1}} 10^{t-a_{2}} 1 \cdots 0^{t-a_{n}} 1$ is a necklace for all $t \geq k-1$.

Proof. $(\Rightarrow)$ Assume $\alpha$ is a necklace. Let $\beta=0^{t-a_{1}} 10^{t-a_{2}} 1 \cdots 0^{t-a_{n}} 1$ for some $t \geq k-1$. If $\beta$ is not a necklace then there exists some $2 \leq i \leq n$ such that $0^{t-a_{i}} 10^{t-a_{i+1}} 1 \cdots 0^{t-a_{n}} 10^{t-a_{1}} 1 \cdots 0^{t-a_{i-1}} 1<\beta$. But this implies $a_{i} a_{i+1} \cdots a_{n} a_{1} \cdots a_{i-1}<\alpha$, contradicting the assumption that $\alpha$ is a necklace. Thus $\beta$ is a necklace. $(\Leftarrow)$ Assume $\beta=0^{t-a_{1}} 10^{t-a_{2}} 1 \cdots 0^{t-a_{n}} 1$ is a necklace for all $t \geq k-1$. If $\alpha$ is not a necklace then there exists some $2 \leq i \leq n$ such that $a_{i} a_{i+1} \cdots a_{n} a_{1} \cdots a_{i-1}<\alpha$. But this implies that $0^{t-a_{i}} 10^{t-a_{i+1}} 1 \cdots 0^{t-a_{n}} 10^{t-a_{1}} 1 \cdots 0^{t-a_{i-1}} 1<\beta$, contradicting the assumption that $\beta$ is a necklace. Thus $\alpha$ is a necklace.

Lemma 2.7 $A$-ary string $\alpha=a_{1} a_{2} \cdots a_{n}$ over alphabet $\{0,1, \ldots, k-1\}$ is a necklace if and only if $01^{t+a_{1}} 01^{t+a_{2}} \cdots 01^{t+a_{n}}$ is a necklace for all $t \geq 0$.

Proof. $(\Rightarrow)$ Assume $\alpha$ is a necklace. Let $\beta=01^{t+a_{1}} 01^{t+a_{2}} \cdots 01^{t+a_{n}}$ for some $t \geq 0$. If $\beta$ is not a necklace there exists some $2 \leq i \leq n$ such that $01^{t+a_{i}} 01^{t+a_{i+1}} \cdots 01^{t+a_{n}} 01^{t+a_{1}} \cdots 01^{t+a_{i-1}}<\beta$. But this implies $a_{i} a_{i+1} \cdots a_{n} a_{1} \cdots a_{i-1}<\alpha$, contradicting the assumption that $\alpha$ is a necklace. Thus $\beta$ is a necklace. $(\Leftrightarrow)$ Assume $\beta=01^{t+a_{1}} 01^{t+a_{2}} \cdots 01^{t+a_{n}}$ is a necklace for all $t \geq 0$. If $\alpha$ is not a necklace there exists some $2 \leq i \leq n$ such that $a_{i} a_{i+1} \cdots a_{n} a_{1} \cdots a_{i-1}<\alpha$. But this implies that $01^{t+a_{i}} 01^{t+a_{i+1}} \cdots 01^{t+a_{n}} 01^{t+a_{1}} \cdots 01^{t+a_{i-1}}<\beta$, contradicting the assumption that $\beta$ is a necklace. Thus $\alpha$ is a necklace.

## 3 Finding the largest necklace with a given density

Let LargestNeck $(n, d)$ denote the lexicographically largest binary necklace in $\mathbf{N}(n, d)$.
Lemma 3.1 Let $0<d \leq n$ and $t=\left\lfloor\frac{n}{d}\right\rfloor$. Then

$$
\operatorname{LARGESTNECK}(n, d)=0^{t-b_{1}} 10^{t-b_{2}} 1 \cdots 0^{t-b_{d}} 1
$$

where $b_{1} b_{2} \cdots b_{d}=\operatorname{LARGESTNECK}(d, d-(n \bmod d))$.
Proof. Since $d>0, \alpha=\operatorname{LargestNeck}(n, d)$ can be written as $0^{c_{1}} 10^{c_{2}} 1 \cdots 0^{c_{d}} 1$ where each $c_{i} \geq 0$. Let $x=d-(n \bmod d)$. Observe that $\alpha \geq\left(0^{t} 1\right)^{d-x}\left(0^{t-1} 1\right)^{x} \in \mathbf{N}(n, d)$ (it is a simple calculation to verify the length). Thus, $c_{1} \leq t$, and moreover each $c_{i} \leq t$ since $\alpha$ is a necklace. Therefore $\alpha$ can be expressed as $0^{t-b_{1}} 10^{t-b_{2}} 1 \cdots 0^{t-b_{d}} 1$ for some string $\beta=b_{1} b_{2} \cdots b_{d}$ over the alphabet $\{0,1, \ldots, t\}$. By Lemma 2.6, $\beta$ is a necklace. Suppose there is some largest $1 \leq i \leq d$ such that $b_{i}>1$. Thus, each element of $b_{i+1} \cdots b_{d}$ must be in $\{0,1\}$. Since $\beta$ is a necklace, each of its rotations $b_{j} \cdots b_{d} b_{1} \cdots b_{j-1} \geq \beta$. Thus, we can deduce that if $j>i$ then $b_{j} \cdots b_{d} b_{1} \cdots b_{j-1}>b_{1} b_{2} \cdots b_{i-1}$. This implies that $b_{j} \cdots b_{d} b_{1} \cdots b_{i-1}>b_{1} b_{2} \cdots b_{i-1}$. Now consider $\gamma=b_{1} b_{2} \cdots b_{i-2}\left(b_{i-1}+1\right) b_{i+1} \cdots b_{d}$. Since $b_{1} b_{2} \cdots b_{i-1}$ is a prenecklace, $b_{1} b_{2} \cdots b_{i-2}\left(b_{i-1}+1\right)$ is a Lyndon word by Corollary 2.2. Thus any proper rotation of $\gamma$ starting before $b_{i+1}$ will be strictly greater than $\gamma$. Now consider a rotation of $\gamma$ starting from $b_{j}$ for $i+1 \leq j \leq d$. Observe that a rotation starting from $b_{j}$ has prefix $b_{j} \cdots b_{d} b_{1} \cdots b_{i-2}\left(b_{i-1}+1\right)$. We have already noted that $b_{j} \cdots b_{d} b_{1} \cdots b_{i-1}>b_{1} b_{2} \cdots b_{i-1}$, and therefore the complete rotation of $\gamma$ starting with $b_{j}$ must be greater than $\gamma$. Since every proper rotation of $\gamma$ is strictly greater than $\gamma, \gamma$ is a necklace. However, this means that $\gamma\left(b_{i}-1\right)$ is also a necklace by Corollary 2.3 and hence by Lemma 2.6, $0^{b_{1}} 10^{b_{2}} 1 \cdots 0^{b_{i}-2} 10^{b_{i-1}+1} 10^{b_{i+1}} 1 \cdots 0^{b_{d}} 10^{b_{i}-1} 1$ is also a necklace. But this contradicts $\alpha=\operatorname{LargestNeck}(n, d)$. Therefore there is no $b_{i}>1$ and hence $\beta$ is a binary string. Now, since the necklace $\beta$ is binary it must have density $x$. For any $b_{1}^{\prime} b_{2}^{\prime} \cdots b_{d}^{\prime} \in \mathbf{N}(d, x)$ we have $\alpha^{\prime}=0^{t-b_{1}^{\prime}} 10^{t-b_{2}^{\prime}} 1 \cdots 0^{t-b_{d}^{\prime}} 1 \in \mathbf{N}(n, d)$ by Lemma 2.6. Clearly, $\alpha^{\prime}$ will be largest when $b_{1}^{\prime} b_{2}^{\prime} \cdots b_{d}^{\prime}=$ $\operatorname{LargestNeck}(d, x)$. Thus, $\beta=\operatorname{LargestNeck}(d, x)$.

Lemma 3.2 Let $0 \leq d<n$ and $t=\left\lfloor\frac{n}{n-d}\right\rfloor$. Then

$$
\operatorname{LARGESTNECK}(n, d)=01^{t-1+b_{1}} 01^{t-1+b_{2}} \cdots 01^{t-1+b_{n-d}},
$$

where $b_{1} b_{2} \cdots b_{n-d}=\operatorname{LARGESTNECK}(n-d, n \bmod (n-d))$.
Proof. Since $d<n, \alpha=\operatorname{LARGESTNECK}(n, d)$ can be written as $01^{c_{1}} 01^{c_{2}} \cdots 01^{c_{n-d}}$ where each $c_{i} \geq 0$. Let $x=n \bmod (n-d)$. Observe that $\alpha \geq\left(01^{t-1}\right)^{n-d-x}\left(01^{t}\right)^{x} \in \mathbf{N}(n, d)$. Thus, $c_{1} \geq t-1$, and moreover
each $c_{i} \geq t-1$ since $\alpha$ is a necklace. Therefore $\alpha$ can be expressed as $01^{t-1+b_{1}} 01^{t-1+b_{2}} \cdots 01^{t-1+b_{n-d}}$ for some string $\beta=b_{1} b_{2} \cdots b_{n-d}$ over the alphabet $\{0,1, \ldots, d\}$. By Lemma 2.7, $\beta$ is a necklace. Suppose there is some largest $1 \leq i \leq n-d$ such that $b_{i}>1$. Thus, each element of $b_{i+1} \cdots b_{n-d}$ must be in $\{0,1\}$. Since $\beta$ is a necklace, each of its rotations $b_{j} \cdots b_{n-d} b_{1} \cdots b_{j-1} \geq \beta$. Thus, we can deduce that if $j>i$ then $b_{j} \cdots b_{n-d} b_{1} \cdots b_{j-1}>b_{1} b_{2} \cdots b_{i-1}$. This implies that $b_{j} \cdots b_{n-d} b_{1} \cdots b_{i-1}>b_{1} b_{2} \cdots b_{i-1}$. Now consider $\gamma=b_{1} b_{2} \cdots b_{i-2}\left(b_{i-1}+1\right) b_{i+1} \cdots b_{n-d}$. Since $b_{1} b_{2} \cdots b_{i-1}$ is a prenecklace, $b_{1} b_{2} \cdots b_{i-2}\left(b_{i-1}+1\right)$ is a Lyndon word by Corollary 2.2. Thus any proper rotation of $\gamma$ starting before $b_{i+1}$ will be strictly greater than $\gamma$. Now consider a rotation of $\gamma$ starting from $b_{j}$ for $i+1 \leq j \leq n-d$. Observe that a rotation starting from $b_{j}$ has prefix $b_{j} \cdots b_{n-d} b_{1} \cdots b_{i-2}\left(b_{i-1}+1\right)$. We have already noted that $b_{j} \cdots b_{n-d} b_{1} \cdots b_{i-1}>b_{1} b_{2} \cdots b_{i-1}$, and therefore the complete rotation of $\gamma$ starting with $b_{j}$ must be greater than $\gamma$. Since every proper rotation of $\gamma$ is strictly greater than $\gamma, \gamma$ is a necklace. However, this means that $\gamma\left(b_{i}-1\right)$ is also a necklace by Corollary 2.3 and hence by Lemma 2.7, $01^{b_{1}} 01^{b_{2}} \cdots 01^{b_{i}-2} 01^{b_{i-1}+1} 01^{b_{i+1}} \cdots 01^{b_{n-d}} 01^{b_{i}-1}$ is also a necklace. But this contradicts $\alpha=\operatorname{LargestNeck}(n, d)$. Therefore there is no $b_{i}>1$ and hence $\beta$ is a binary string. Now, since the necklace $\beta$ is binary it must have density $x$. For any $b_{1}^{\prime} b_{2}^{\prime} \cdots b_{n-d}^{\prime} \in \mathbf{N}(n-d, x)$ we have $\alpha^{\prime}=01^{t-1+b_{1}^{\prime}} 01^{t-1+b_{2}^{\prime}} \ldots 01^{t-1+b_{n-d}^{\prime}} \in \mathbf{N}(n, d)$ by Lemma 2.7. Clearly, $\alpha^{\prime}$ will be largest when $b_{1}^{\prime} b_{2}^{\prime} \cdots b_{n-d}^{\prime}=\operatorname{LARGEStNeck}(n-d, x)$. Thus, $\beta=\operatorname{LARGEStNECK}(n-d, x)$.

By combining the previous two lemmas, the following equation can be used to recursively compute LargestNeck $(n, d)$ letting $t=\left\lfloor\frac{n}{d}\right\rfloor$ and $s=\left\lfloor\frac{n}{n-d}\right\rfloor$ :

$$
\operatorname{LARGESTNECK}(n, d)= \begin{cases}0^{n} & \text { if } d=0 \\ 0^{t-b_{1}} 10^{t-b_{2}} 1 \cdots 0^{t-b_{d}} 1 & \text { if } 0<d \leq \frac{n}{2} \\ 01^{s-1+c_{1}} 01^{s-1+c_{2}} \cdots 01^{s-1+c_{n-d}} & \text { if } \frac{n}{2}<d<n \\ 1^{n} & \text { if } d=n\end{cases}
$$

where $b_{1} b_{2} \cdots b_{d}=\operatorname{LargestNeck}(d, d-(n \bmod d))$ and $c_{1} c_{2} \cdots c_{n-d}=\operatorname{LaRGEstNeck}(n-d, n \bmod$ $(n-d))$. Note that the strings returned in each recursive application have length less than or equal to $\frac{n}{2}$. Given these strings, obtaining the largest necklace can easily be constructed in $O(n)$ time. Thus we arrive at the following theorem.

Theorem 3.3 LargestNeck $(n, d)$ can be computed in $O(n)$ time for $0 \leq d \leq n$.
We conclude this section with two interesting properties of LargestNeck $(n, d)$.
Lemma 3.4 Let $0 \leq d \leq n$. If LargestNeck $(n, d)=a_{1} a_{2} \cdots a_{n}$ then $\operatorname{LargestNeck}(n, n-d)=$ $\bar{a}_{n} \cdots \bar{a}_{2} \bar{a}_{1}$.

Proof. The proof is by induction on $n$. For any $n \geq 1$, LargestNeck $(n, 0)=0^{n}$ and $\operatorname{LargestNeck}(n, n)=$ $1^{n}$. Thus the base case when $n=1$ clearly holds, along with the cases when $d=0$ and $d=n$. Consider $0<d<n$ and let Largestneck $(n, d)=a_{1} a_{2} \cdots a_{n}$. By Lemma 3.1, $\alpha=0^{t-b_{1}} 10^{t-b_{2}} 1 \cdots 0^{t-b_{d}} 1$ where $b_{1} b_{2} \cdots b_{d}=\operatorname{LARGEStNeck}(d, d-(n \bmod d))$ and $t=\left\lfloor\frac{n}{d}\right\rfloor$. By induction, LargestNeck $(d, n \bmod$ $d)=\bar{b}_{d} \cdots \bar{b}_{2} \bar{b}_{1}$. Now by applying Lemma 3.2,

$$
\begin{aligned}
\operatorname{LARGESTNECK}(n, n-d) & =01^{t-1+\bar{b}_{d}} \cdots 01^{t-1+\bar{b}_{2}} \cdots 01^{t-1+\bar{b}_{1}} \\
& =01^{t-b_{d}} \cdots 01^{t-b_{2}} \cdots 01^{t-b_{1}} \\
& =\bar{a}_{n} \cdots \bar{a}_{2} \bar{a}_{1} .
\end{aligned}
$$

Lemma 3.5 Let $0 \leq d \leq n$. LargestNeck $(n, d)=\delta^{j}$ where $j=g c d(n, d)$ and $\delta$ is some binary string of length $\frac{n}{j}$.

Proof. The proof is by induction on $n$. Since $g c d(n, 0)=g c d(n, n)=n$, $\operatorname{LargestNeck}(n, 0)=0^{n}$ and $\operatorname{LargestNeck}(n, n)=1^{n}$, the result clearly holds for all $d=0$ and $d=n$, and for $n=1$. Suppose $0<d<n$ and consider $\alpha=\operatorname{LARGEStNEcK}(n, d)$ for $n \geq 2$. By Lemma 3.1, $\alpha=0^{t-b_{1}} 10^{t-b_{2}} 1 \cdots 0^{t-b_{d}} 1$ where $t=\left\lfloor\frac{n}{d}\right\rfloor$ and $\beta=b_{1} b_{2} \cdots b_{d}=\operatorname{LARGESTNECK}(d, d-n \bmod d)$. By induction, $\beta=\gamma^{j}$ where $j=\operatorname{gcd}(d, d-n \bmod d)$. Thus, $\alpha=\delta^{j}$ for some $\delta$ of length $\frac{n}{j}$. Finally, by applying Euclid's algorithm we have $\operatorname{gcd}(n, d)=\operatorname{gcd}(d, n \bmod d)=g c d(d, d-n \bmod d)=j$.

This final lemma implies that $\operatorname{LargestNeck}(n, d)$ is a Lyndon word if and only if $\operatorname{gcd}(n, d)=1$.

## 4 Testing if a string is a prefix of some necklace in $\mathbf{N}(n, d)$

Let the boolean function $\operatorname{IsPrefix}(\alpha, n, d)$ return True if and only if $\alpha=a_{1} a_{2} \cdots a_{t}$ is a prefix of some necklace in $\mathbf{N}(n, d)$. In this section we present an $O\left(n^{2}\right)$ implementation for this function using results from the previous section. There are two trivial conditions for the function to return true: the density constraint must be attainable and $\alpha$ must be a prenecklace. Let $\operatorname{den}(\alpha)$ denote the density of $\alpha$. Then for the density to be attainable we must have $0 \leq d-\operatorname{den}(\alpha) \leq n-t$.

Let $\alpha=a_{1} a_{2} \cdots a_{t}$ be a prenecklace where $1 \leq t \leq n$. Let $\operatorname{ExTEND}(\alpha, n)=a_{1} a_{2} \cdots a_{n}$ be the lexicographically smallest prenecklace of length $n$ with prefix $\alpha$.

Lemma 4.1 Let $0 \leq d \leq n$ and let $1 \leq t \leq n$. Suppose $\alpha=a_{1} a_{2} \cdots a_{t}$ is a prenecklace and $a_{1} a_{2} \cdots a_{n}=$ $\operatorname{ExTEND}(\alpha, n)$. Then $\alpha$ is a prefix of some necklace in $\mathbf{N}(n, d)$ if and only if $a_{1} a_{2} \cdots a_{n} \in \mathbf{N}(n, d)$ or there exists $t<j \leq n$ such that $a_{j}=0$ and $d^{\prime}=d-\operatorname{den}\left(a_{1} a_{2} \cdots a_{j-1} 1\right) \geq 0$ and either:
(1) $j=n$ and $d^{\prime}=0$ or
(2) $j<n$ and there exists $\beta \in \mathbf{N}\left(n-j, d^{\prime}\right)$ such that $a_{1} a_{2} \cdots a_{j-1} 1 \leq \beta$.

Proof. $(\Rightarrow)$ Suppose $\alpha$ is a prefix of $b_{1} b_{2} \cdots b_{n} \in \mathbf{N}(n, d)$ and suppose $a_{1} a_{2} \cdots a_{n}$ is not in $\mathbf{N}(n, d)$. By applying Theorem 2.1, there must be some smallest $j>t$ such that $a_{1} a_{2} \cdots a_{j-1}=b_{1} b_{2} \cdots b_{j-1}$ with $a_{j}=0$ and $b_{j}=1$ which implies $a_{1} a_{2} \cdots a_{j-1} 1$ is a Lyndon word. Clearly $b_{j+1} b_{j+2} \cdots b_{n}$ has length $n-j$ and density $d^{\prime}=d-\operatorname{den}\left(a_{1} a_{2} \cdots a_{j-1} 1\right)$. If $j=n$ then $d^{\prime}=0$. Otherwise, $j<n$ and since $b_{1} b_{2} \cdots b_{n}$ is a necklace and $b_{1} b_{2} \cdots b_{j}$ is a Lyndon word, it must be that $b_{1} b_{2} \cdots b_{j} \leq b_{j+1} b_{j+2} \cdots b_{n}$. Thus, if $b_{j+1} b_{j+2} \cdots b_{n}(=\beta)$ is a necklace we are done. Otherwise let $b_{j+1} b_{j+2} \cdots b_{n}=\delta \gamma$ such that its rotation $\gamma \delta(=\beta)$ is a necklace. Again, since $b_{1} b_{2} \cdots b_{n}$ is a necklace and $b_{1} b_{2} \cdots b_{j}$ is a Lyndon word, $b_{1} b_{2} \cdots b_{j} \leq \gamma$. It follows that $a_{1} a_{2} \cdots a_{j-1} 1=b_{1} b_{2} \cdots b_{j} \leq \gamma \delta$.
$(\Leftarrow)$ If $a_{1} a_{2} \cdots a_{n} \in \mathbf{N}(n, d)$ then clearly $\alpha$ is a prefix of some necklace in $\mathbf{N}(n, d)$. Otherwise, suppose there exists $t<j \leq n$ such that $a_{j}=0$ and $d^{\prime}=d-\operatorname{den}\left(a_{1} a_{2} \cdots a_{j-1} 1\right) \geq 0$ and either (1) $j=n$ and $d^{\prime}=0$ or (2) $j<n$ and there exists $\beta \in \mathbf{N}\left(n-j, d^{\prime}\right)$ such that $a_{1} a_{2} \cdots a_{j-1} 1 \leq \beta$. For either case $a_{1} a_{2} \cdots a_{j-1} 1$ is a Lyndon word since $a_{1} a_{2} \cdots a_{j}$ is a prenecklace. Thus, if $j=n$ and $d^{\prime}=0$, then $a_{1} a_{2} \cdots a_{n-1} 1$ is a necklace with density $d$. Otherwise, $a_{1} a_{2} \cdots a_{j-1} 1 \beta$ is a binary string of length $n$ and density $d$. By Corollary $2.5 a_{1} a_{2} \cdots a_{j-1} 1 \beta$ is a necklace. Thus $\alpha$ is a prefix of some necklace in $\mathbf{N}(n, d)$.

Assuming the density constraints are attainable, and $\alpha=a_{1} a_{2} \cdots a_{t}$ is a prenecklace, we can directly apply Lemma 4.1 to determine $\operatorname{ISPrEfiX}(\alpha, n, d)$. To apply this lemma, note that it suffices only to compare $\beta=\operatorname{LargestNEck}\left(n-j, d-\operatorname{den}\left(a_{1} a_{2} \cdots a_{j-1} 1\right)\right)$ to $a_{1} a_{2} \cdots a_{j} 1$, for a given $j$. Repeated applications

```
Algorithm 1 Testing if \(\alpha=a_{1} a_{2} \cdots a_{t}\) is a prefix of a necklace in \(\mathbf{N}(n, d)\).
    function \(\operatorname{ISPrefix}(\alpha, n, d)\) returns boolean
        if \((d<\operatorname{den}(\alpha)\) or \(d-\operatorname{den}(\alpha)>n-t)\) then return False
        if \(\alpha\) is not a prenecklace then return False
        \(a_{1} a_{2} \cdots a_{n} \leftarrow \operatorname{ExTEND}(\alpha)\)
        if \(a_{1} a_{2} \cdots a_{n} \in \mathbf{N}(n, d)\) then return True
        for \(j \leftarrow t+1\) to \(n\) do
            \(d^{\prime}=d-\operatorname{den}\left(a_{1} a_{2} \cdots a_{j-1} 1\right)\)
            if \(a_{j}=0\) and \(d^{\prime} \geq 0\) then
                    if \(j=n\) and \(d^{\prime}=0\) then return True
                    if \(j<n\) and \(a_{1} a_{2} \cdots a_{j-1} 1 \leq \operatorname{LARGESTNECK}\left(n-j, d^{\prime}\right)\) then return True
        return False
```

of Theorem 2.1 can be used to test if $\alpha$ is a prenecklace and to compute $\operatorname{ExTEND}(\alpha, n)$ in $O(n)$ time. Pseudocode for $\operatorname{IsPrefix}(\alpha, n, d)$ is given in Algorithm 1.

Since LargestNeck $(n, d)$ can be computed in $O(n)$ time, we obtain the following theorem.
Theorem 4.2 $\operatorname{IsPrefix}(\alpha, n, d)$ can be computed in $O\left(n^{2}\right)$ time for $0 \leq d \leq n$.

## 5 The largest necklace that is less than or equal to a given string

Let $\operatorname{LN}(\alpha, n, d)$ be a function that returns the largest necklace in $\mathbf{N}(n, d)$ that is less than or equal to a given binary string $\alpha=a_{1} a_{2} \cdots a_{n}$, or $\epsilon$ (the empty string) if no such necklace exists. In this section we present an $O\left(n^{3}\right)$ implementation of this function by applying the results from the previous section.

Let $\beta=\operatorname{LN}(\alpha, n, d)$. If $\alpha \in \mathbf{N}(n, d)$ then clearly $\beta=\alpha$. Otherwise, let $t>0$ be the largest index such that $a_{t}=1$ and $a_{1} a_{2} \cdots a_{t-1} 0$ is a prefix of some necklace in $\mathbf{N}(n, d)$. If no such index $t$ exists, then there is no necklace in $\mathbf{N}(n, d)$ that is less than $\alpha$ and thus $\beta=\epsilon$. If $t$ exists, then since it was chosen to be the largest index satisfying the conditions, $a_{1} a_{2} \cdots a_{t-1} 0$ will be the first $t$ characters of $\beta=b_{1} b_{2} \cdots b_{n}$. The next character $b_{t+1}$ will be the largest element so $b_{1} b_{2} \cdots b_{t+1}$ is a prefix of some necklace in $\mathbf{N}(n, d)$. This can be determined by calling $\operatorname{IsPrefix}\left(b_{1} b_{2} \cdots b_{t} 1, n, d\right)$; if it returns true, then $b_{t+1}=1$ and otherwise $b_{t+1}=0$. The remaining characters $b_{t+2}, b_{t+3}, \ldots, b_{n}$ can be computed in the same way. Pseudocode for $\operatorname{LN}\left(a_{1} a_{2} \cdots a_{n}, n, d\right)$ is given in Algorithm 2.

```
Algorithm 2 Computing the largest necklace less than or equal to a given string.
    function \(\operatorname{LN}(\alpha, n, d)\) returns necklace
        if \(\alpha \in \mathbf{N}(n, d)\) then return \(\alpha\)
        \(t \leftarrow n\)
        while \(t>0\) and not \(\left(a_{t}=1\right.\) and \(\left.\operatorname{IsPrefix}\left(a_{1} a_{2} \cdots a_{t-1} 0, n, d\right)\right)\) do \(t \leftarrow t-1\)
        if \(t=0\) then return \(\epsilon\)
        \(b_{1} b_{2} \cdots b_{t} \leftarrow a_{1} a_{2} \cdots a_{t-1} 0\)
        for \(j \leftarrow t+1\) to \(n\) do
            if IsPrefix \(\left(b_{1} b_{2} \cdots b_{j-1} 1, n, d\right)\) then \(b_{j} \leftarrow 1\)
            else \(b_{j} \leftarrow 0\)
        return \(b_{1} b_{2} \cdots b_{n}\)
```

Since IsPrefix $(\alpha, n, d)$ can be computed in $O\left(n^{2}\right)$ time, we obtain the following theorem.
Theorem 5.1 $\mathrm{LN}(\alpha, n, d)$ can be computed in $O\left(n^{3}\right)$ time for $0 \leq d \leq n$.

## 6 Lyndon words

In this final section, we extend the results for necklaces to Lyndon words.
Lemma 6.1 Let $\alpha, \beta$ be two consecutive necklaces in the lexicographic ordering of $\mathbf{N}(n, d)$. Then at least one of $\alpha$ and $\beta$ is a Lyndon word.

Proof. Suppose $\alpha<\beta$. If $\alpha$ is a Lyndon word we are done. Otherwise, $\alpha=\gamma^{i}$ for some Lyndon word $\gamma=a_{1} a_{2} \cdots a_{\frac{n}{i}}$ with density $\frac{d}{i}$ where $i \geq 2$. Let $\delta=\operatorname{LargestNeck}\left(\frac{n}{i}, \frac{d}{i}\right)$. Suppose $\gamma=\delta$. By Lemma 3.5, LargestNeck $(n, d)=\sigma^{j}$ where $j=g c d(n, d)$ and $\sigma$ has length $\frac{n}{j}$. Since $i$ divides both $n$ and $d, i$ also divides $j$. By the definitions of $\delta$ and $\sigma, \delta=\sigma^{\frac{j}{i}}$, and thus $\alpha=\operatorname{LargestNeck}(n, d)$. But this contradicts that $\alpha<\beta$. Thus, $\gamma \neq \delta$. Repeated application of Lemma 2.4 implies that $\gamma^{i-1} \delta$ is a Lyndon word that is greater than $\alpha$. Thus the necklace $\beta$ must have prefix $\gamma^{i-1}$ and hence clearly is a Lyndon word.

The following two-step algorithm will return the largest Lyndon word with length $n$ and density $d>0$ that is less than or equal to $\alpha$, or $\epsilon$ if no such Lyndon word exists. Let $\beta=\operatorname{LN}(\alpha, n, d)$. If $\beta$ is a Lyndon word or $\epsilon$, then return $\beta$. Otherwise $\beta=b_{1} b_{2} \cdots b_{n}$ is a necklace where $b_{n}=1$ since $d>0$. Thus, $b_{1} b_{2} \cdots b_{n-1} 0$ is the largest string less than $\beta$ and hence $\gamma=\operatorname{LN}\left(b_{1} b_{2} \cdots b_{n-1} 0, n, d\right)$ will give the second largest necklace that is less than or equal to $\alpha$ or $\epsilon$ if no such necklace exists. Thus the algorithm returns $\gamma$ as either $\gamma=\epsilon$ (no such Lyndon word exists), or by Lemma 6.1, $\gamma$ is a Lyndon word.

Since testing whether or not a string is a Lyndon word can easily be tested in $O(n)$ time by applying Theorem 2.1, the running time of this algorithm will be $O\left(n^{3}\right)$.

Lemma 6.2 The largest Lyndon word of length $n$ and density $d$ that is less than or equal to $\alpha=a_{1} a_{2} \cdots a_{n}$ can be computed in $O\left(n^{3}\right)$ time for $0<d<n$.

Setting $\alpha=1^{n}$, the previous lemma immediately implies the following result.
Corollary 6.3 The largest Lyndon word of length $n$ and density $d$ can be computed in $O\left(n^{3}\right)$ time for $0<$ $d<n$.

Finally, the following conjecture has been verified to be true for all $n<600$ by applying the algorithm just described.

Conjecture 6.4 Let $\alpha=a_{1} a_{2} \cdots a_{n}=\operatorname{LARGESTNECK}(n, d)$ where $p=\operatorname{lyn}(\alpha)$ for $0<d<n$. If $p=n$, then the largest Lyndon word of length $n$ and density $d$ is $\alpha$; otherwise it is $a_{1} a_{2} \cdots a_{p-1} 01 a_{2} \cdots a_{p}\left(a_{1} a_{2} \cdots a_{p}\right)^{\frac{n}{p}-2}$.

A proof of this conjecture implies that the largest Lyndon word of length $n$ and density $d$ can be computed in $O(n)$ time for $0<d<n$.

## 7 Acknowledgement

The research of Joe Sawada is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN 400673-2012.

## References

[1] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Miers. Fast algorithms to generate necklaces, unlabeled necklaces, and irreducible polynomials over $\mathrm{GF}(2), 2000$.
[2] P. Hartman and J. Sawada. Ranking fixed-density necklaces and Lyndon words. manuscript, 2016.
[3] S. Karim, Z. Alamgir, and S. M. Husnine. Generating fixed density bracelets of arbitrary base. International Journal of Computer Mathematics, 91(3):434-446, 2014.
[4] T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient ranking of Lyndon words and decoding lexicographically minimal de Bruijn sequence. SIAM Journal on Discrete Mathematics, 30(4):2027-2046, 2016.
[5] S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polynomials over finite fields. Theory of Computing, 12(7):1-27, 2016.
[6] C. Reutenauer. Free Lie algebras. London Mathematical Society monographs. Clarendon Press New York, Oxford, 1993.
[7] F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM Journal on Discrete Mathematics, 26(2):605-617, 2012.
[8] J. Sawada and F. Ruskey. An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput, 29:671-684, 1999.
[9] J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in constant amortized time. Theoretical Computer Science, 502:46-54, 2013. Generation of Combinatorial Structures.
[10] J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences. Journal of Discrete Algorithms (in press, available online), 2017.
[11] T. M. Wang and C. D. Savage. A Gray code for necklaces of fixed density. SIAM J. Discrete Math, 9:654-673, 1997.

