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Abstract
The greedy Prefer-same de Bruijn sequence construction was first presented by Eldert et al. [AIEE Transactions
77 (1958)]. As a greedy algorithm, it has one major downside: it requires an exponential amount of space to
store the length 2n de Bruijn sequence. Though de Bruijn sequences have been heavily studied over the last 60
years, finding an efficient construction for the Prefer-same de Bruijn sequence has remained a tantalizing open
problem. In this paper, we unveil the underlying structure of the Prefer-same de Bruijn sequence and solve the
open problem by presenting an efficient algorithm to construct it using O(n) time per bit and only O(n) space.
Following a similar approach, we also present an efficient algorithm to construct the Prefer-opposite de Bruijn
sequence.

1 Introduction

Greedy algorithms often provide some of the nicest algorithms to exhaustively generate combinatorial
objects, especially in terms of the simplicity of their descriptions. An excellent discussion of such
algorithms is given by Williams [32] with examples given for a wide range of combinatorial objects
including permutations, set partitions, binary trees, and de Bruijn sequences. A downside to greedy
constructions is that they generally require exponential space to keep track of which objects have
already been visited. Fortunately, most greedy constructions can also be constructed efficiently by
either an iterative successor-rule approach, or by applying a recursive technique. Such efficient
constructions often provide extra underlying insight into both the combinatorial objects and the actual
listing of the object being generated.

A de Bruijn sequence of order n is a sequence of bits that when considered cyclicly contains
every length n binary string as a substring exactly once; each such sequence has length 2n. They have
been studied as far back as 1894 with the work by Flye Sainte-Marie [13], receiving more significant
attention starting in 1946 with the work of de Bruijn [7]. Since then, many different de Bruijn
sequence constructions have been presented in the literature (see surveys in [15] and [20]). Generally,
they fall into one of the following categories: (i) greedy approaches (ii) iterative successor-rule based
approaches which includes linear (and non-linear) feedback shift registers (iii) string concatenation
approaches (iv) recursive approaches. Underlying all of these algorithms is the fact that every de
Bruijn sequence is in 1-1 correspondence with an Euler cycle in a related de Bruijn graph.

Perhaps the most well-known de Bruijn sequence is the one that is the lexicographically largest.
It has the following greedy Prefer-1 construction [27].

Prefer-1 construction

1. Seed with 0n−1

2. Repeat until no new bit is added: Append 1 if it does not create a duplicate length n substring; otherwise
append 0 if it does not create a duplicate length n substring

3. Remove the seed
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For example, applying this construction for n = 4 we obtain the string: 000 1111011001010000.
Like all greedy de Bruijn sequence constructions, this algorithm has a major downside: it requires an
exponential amount of space to remember which substrings have already been visited. Fortunately, the
resulting sequence can also be constructed efficiently by applying an O(n) time per bit successor-rule
which requires O(n) space [14]. By applying a necklace concatenation approach, it can even be
generated in amortized O(1) time per bit and O(n) space [17].

Two other interesting greedy constructions take into account the last bit generated. They are known
as the Prefer-same and Prefer-opposite constructions and their resulting sequences are, respectively,
the lexicographically largest and smallest with respect to a run-length encoding1 [3]. The Prefer-same
construction was first presented by Eldert et al. [10] in 1958 and was revisited with a proof of
correctness by Fredricksen [15] in 1982. Recently, the description of the algorithm was simplified [3]
as follows:

Prefer-same construction

1. Seed with length n−1 string · · · 01010
2. Append 1

3. Repeat until no new bit is added: Append the same bit as the last if it does not create a duplicate length n
substring; otherwise append the opposite bit as the last if it does not create a duplicate length n substring

4. Remove the seed

For n = 4, the sequence generated by this Prefer-same construction is 010 1111000011010010. It has
run-length encoding 44211211 which is the lexicographically largest amongst all de Bruijn sequences
for n = 4.

The Prefer-opposite construction is not greedy in the strictest sense since there is a special
case when the current suffix is 1n−1. Details about this special case are provided in the next
section. The construction presented below produces a shift of the sequence produced by the original
presentation in [1]. Here, the initial seed of 0n−1 is rotated to the end so the resulting sequence is the
lexicographically smallest with respect to a run-length encoding.

Prefer-opposite construction

1. Seed with 0n−1

2. Append 0

3. Repeat until no new bit is added:
If current suffix is 1n−1 then: append 1 if it is the first time 1n−1 has been seen; otherwise append 0
Otherwise: append the opposite bit as the last if it does not create a duplicate length n substring;
otherwise append the same bit as the last

4. Remove the seed

For n = 4, the sequence generated by this Prefer-opposite construction is 000 0101001101111000.
The run-length encoding of this sequence is given by 111122143.

To simplify our discussion, let:

Sn = the de Bruijn sequence of order n generated by the Prefer-same construction, and
On = the de Bruijn sequence of order n generated by the Prefer-opposite construction.

1 The run-length encoding of a string is discussed formally in Section 3.
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Unlike the Prefer-1 sequence, and despite the vast research on de Bruijn sequences, Sn and On have
no known efficient construction. For Sn, finding an efficient construction has remained an elusive
open problem for over 60 years. The closest attempt came in 1977 when Fredricksen and Kessler
devised a construction based on lexicographic compositions [16] that we discuss further in Section 8.

The main results of this paper are to solve these open problems by providing successor-rule based
constructions for Sn and On. They generate the respective sequences in O(n) time per bit using only
O(n) space. The discovery of these efficient constructions hinged on the following idea:

Most interesting de Bruijn sequence are the result of joining together smaller cycles induced
by simple feedback shift registers.

The initial challenge was to find such a simple underlying feedback function. After careful study, the
following function was revealed:

f(w1w2 · · ·wn) = w1 ⊕ w2 ⊕ wn,

where ⊕ denotes addition modulo 2. We demonstrate this feedback function has nice run-length
properties when used to partition the set of all binary strings of length n in Section 4.3. The next
challenge was to find appropriate representatives for each cycle induced by f in order to apply the
framework from [20] to join the cycles together.

Outline of paper. Before introducing our main results, we first provide an insight into greedy
constructions for de Bruijn sequences that we feel has not been properly emphasized in the recent
literature. In particular, we demonstrate how all such constructions, which are generalized by the
notion of preference or look-up tables [2, 33], are in fact just special cases of a standard Euler cycle
algorithm on the de Bruijn graph. This discussion is found in Section 2 which also outlines a second
Euler cycle algorithm underlying the cycle joining approach applied in our main result. In Section 3,
we present background on run-length encodings. In Section 4, we discuss feedback functions and
de Bruijn successors and introduce the function f(w1w2 · · ·wn) = w1 ⊕ w2 ⊕ wn critical to our
main results. In Section 5, we present two generic de Bruijn successors based on the framework
from [20]. In Section 6 we present our first main result: an efficient successor-rule to generate
Sn. In Section 7 we present our second main result: an efficient successor-rule to generate On. In
Section 8 we discuss the lexicographic composition algorithm from [16] and a related open problem.
In Section 9 we discuss implementation details and analyze the efficiency of our algorithms. In
Section 10 and Section 11 we detail the technical aspects required to prove our main results. We
conclude by presenting directions for future research in Section 12. Implementation of our algorithms,
written in C, presented in this paper can be found in the appendices and are available for download
at http://debruijnsequence.org.

Applications. One of the first instances of de Bruijn sequences is found in works of Sanskrit
prosody by the ancient mathematician Pingala dating back to the 2nd century BCE. Since then,
de Bruijn sequences and their related theory have a rich history of application. One of their more
prominent applications, due to their random-like properties [22], is in the generation of pseudo-
random bit sequences which are used in stream ciphers [26]. In particular, linear feedback shift
register constructions (that omit the string of all 0s) allow for efficient hardware embeddings which
have been classically applied to represent different maps in video games including Pitfall [4]. Another
application uses de Bruijn sequences to crack cipher locks in an efficient manner [15]. More recently,
the related de Bruijn graph has been applied to genome assembly [6, 28]. Given the vast literature on
de Bruijn sequences and their various methods of construction, the more interesting new results may
relate to sequences with specific properties. This makes the de Bruijn sequences Sn andOn of special
interest since they are, respectively, the lexicographically largest and smallest sequences with respect

http://debruijnsequence.org
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to a run-length encoding [3]. Moreover, recently it was noted they have a relatively small discrepancy,
which is the maximum absolute difference between the number of 0s and 1s in any substring, when
compared to the sequences generated by the Prefer-1 construction [19].

2 Euler cycle algorithms and the de Bruijn graph

The de Bruijn graph of order n is the directed graph G(n) = (V,E) where V is the set of all
binary strings of length n and there is a directed edge from u = u1u2 · · ·un to v = v1v2 · · · vn if
u2 · · ·un = v1 · · · vn−1. Each edge e is labeled by vn. Outputting the edge labels in a Hamilton
cycle of G(n) produces a de Bruijn sequence. Figure 1(a) illustrates a Hamilton cycle in the de Bruijn
graph G(3). Starting from 000, its corresponding de Bruijn sequence is 10111000.

Figure 1 (a) A Hamilton cycle in G(3) starting from 000 corresponding to the de Bruijn sequence
10111000 of order 3. (b) An Euler cycle in G(3) starting from 000 corresponding to the de Bruijn sequence
0111101011001000 of order 4.

Each de Bruijn graph is connected and the in-degree and the out-degree of each vertex is two; the
graph G(n) is Eulerian. G(n) is the line graph of G(n−1) which means an Euler cycle in G(n−1)
corresponds to a Hamilton cycle in G(n). Thus, the sequence of edge labels visited in an Euler cycle
is a de Bruijn sequence. Figure 1(b) illustrates an Euler cycle in G(3). The corresponding de Bruijn
sequence of order four when starting from the vertex 000 is 0111101011001000.

Finding an Euler cycle in an Eulerian graph is linear-time solvable with respect to the size of
the graph. However, since the graph must be stored, applying such an algorithm to find a de Bruijn
sequence requires O(2n) space. One of the most well-known Euler cycle algorithms for directed
graphs is the following due to Fleury [12] with details in [15]. The basic idea is to not burn bridges;
in other words, do not visit (and use up) an edge if it leaves the remaining graph disconnected.

Fleury’s Euler cycle algorithm (do not burn bridges)

1. Pick a root vertex and compute a spanning in-tree T

2. Make each edge of T (the bridges) the last edge on the adjacency list of the corresponding vertex

3. Starting from the root, traverse edges in a depth-first manner by visiting the first unused edge in the
current vertex’s adjacency list
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Finding a spanning in-tree T can be done by reversing the direction of the edges in the Eulerian
graph and computing a spanning out-tree with a standard depth first search on the resulting graph.
The corresponding edges in the original graph will be a spanning in-tree. Using this approach, all de
Bruijn sequences can be generated by considering all possible spanning in-trees (see BEST Theorem
in [15]).

Although not well documented, this algorithm is the basis for all greedy de Bruijn sequence
constructions along with their generalizations using preference tables [2] or look-up tables [33].
Specifically, a preference table specifies the precise order that the edges are visited for each vertex
when performing Step 3 in Fleury’s Euler cycle algorithm. Thus given a preference table and a root
vertex, Step 3 in the algorithm can be applied to construct a de Bruijn sequence if combining the last
edge from each non-root vertex forms a spanning in-tree to the root. For example, the preference
tables and corresponding spanning in-trees for the Prefer-1 (rooted at 000), the Prefer-same (rooted
at 010), and the Prefer-opposite (rooted at 000) constructions are given in Figure 2 for G(3). For
the Prefer-1, the only valid root is 000. For the Prefer-same, either 010 or 101 could be chosen
as root. The Prefer-opposite has a small nuance. By a strict greedy definition, the edges will not
create a spanning in-tree for any root. But by changing the preference for the single string 111, a
spanning in-tree is created when rooted at 000. This accounts for the special case required in the
Prefer-opposite algorithm. Notice how these strings relate to the seeds in their respective greedy
constructions. For the Prefer-same, a root of 101 could also have been chosen, and doing so will yield
the complement of the Prefer-same sequence when applying this Euler cycle algorithm. Relationships
between various preference related constructions have recently been studied in [25], generalizing the
work in [29] which focused on the Prefer-opposite and Prefer-1 constructions.

Figure 2 (a) A preference table corresponding to the Prefer-1 greedy construction along with its corre-
sponding spanning in-tree rooted at 000. (b) A preference table corresponding to the Prefer-same greedy
construction along with its corresponding spanning in-tree rooted at 010. (c) A preference table corresponding to
the Prefer-opposite greedy construction along with its corresponding spanning in-tree rooted at 000.

A second well-known Euler cycle algorithm for directed graphs, attributed to Hierholzer [23], is
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as follows:

Hierholzer’s Euler cycle algorithm (cycle joining)

1. Start at an arbitrary vertex v visiting edges in a depth-first manner until returning to v, creating a cycle.

2. Repeat until all edges are visited: Start from any vertex u on the current cycle and visit remaining
edges in a DFS manner until returning to u, creating a new cycle. Join the two cycles together.

This cycle-joining approach is the basis for all successor-rule constructions of de Bruijn sequences. A
general framework for joining smaller cycles together based on an underlying feedback shift register
is given for the binary case in [20], and then more generally for larger alphabets in [21]. It is the basis
for the efficient algorithm presented in this paper, where the initial cycles are induced by a specific
feedback function.

3 Run-length encoding

The sequences Sn and On both have properties based on a run-length encoding of binary strings. The
run-length encoding (RLE) of a string ω = w1w2 · · ·wn is a compressed representation that stores
consecutively the lengths of the maximal runs of each symbol. The run length of ω is the length of its
RLE. For example, the string 11000110 has RLE 2321 and run length 4. Note that 00111001 also has
RLE 2321. Since we are dealing with binary strings, we require knowledge of the starting symbol to
obtain a given binary string from its RLE. As a further example:

S5 = 11111000001110110011010001001010 has RLE 5531222113121111.

The following facts are proved in [3].

I Proposition 1. The sequence Sn is the de Bruijn sequence of order n starting with 1 that has
the lexicographically largest RLE.

I Proposition 2. The sequence On is the de Bruijn sequence of order n starting with 1 that has
the lexicographically smallest RLE.

Let alt(n) denote the alternating sequence of 0s and 1s of length n that ends with 0: For example,
alt(6) = 101010. The following facts are also immediate from [3].

I Proposition 3. Sn has prefix 1n and has suffix alt(n−1).

I Proposition 4. On has length n prefix 010101 · · · and has suffix 10n−1.

The sequence based on lexicographic compositions [16] also has run-length properties: it is con-
structed by concatenating lexicographic compositions which are represented using a RLE. Further
discussion of this sequence is provided in Section 8.

4 Feedback functions and de Bruijn successors

Let B(n) denote the set of all binary strings of length n. We call a function f : B(n) → {0, 1} a
feedback function. Let ω = w1w2 · · ·wn be a string in B(n). A feedback shift register is a function
F : B(n) → B(n) that takes the form F (ω) = w2w3 · · ·wnf(w1w2 · · ·wn) for a given feedback
function f .

A feedback function g : B(n) → {0, 1} is a de Bruijn successor if there exists a de Bruijn
sequence of order n such that each substring ω ∈ B(n) is followed by g(ω) in the given de Bruijn
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sequence. Given a de Bruijn successor g and a seed string ω = w1w2 · · ·wn, the following function
DB(g, ω) will return a de Bruijn sequence of order n with suffix ω:

1: function DB(g, ω)
2: for i← 1 to 2n do
3: xi ← g(ω)
4: ω ← w2w3 · · ·wnxi

5: return x1x2 · · ·x2n

A linearized de Bruijn sequence is a linear string that contains every string in B(n) as a substring
exactly once. Such a string has length 2n +n−1. Note that the length n suffix of a de Bruijn sequence
Dn = DB(g, w1 · · ·wn) is w1 · · ·wn. Thus, w2 · · ·wnDn is a linearized de Bruijn sequence.

For each of the upcoming feedback functions, selecting appropriate representatives for the cycles
they induce is an important step to developing efficient de Bruijn successors for Sn and On. In
particular, consider two representatives for a given cycle based on their RLE.

RL-rep: The string with the lexicographically largest RLE; if there are two such strings, it is the
one beginning with 1.
RL2-rep: The string with the lexicographically smallest RLE; if there are two such strings, it is
the one beginning with 0.

For our upcoming discussion, define the period 2 of a string ω = w1w2 · · ·wn to be the smallest
integer p such that ω = (w1 · · ·wp)j for some integer j. If j > 1 we say that ω is periodic; otherwise,
we say it is aperiodic (or primitive).

4.1 The pure cycling register (PCR)

The pure cycling register, denoted PCR, is the feedback shift register with the feedback function
f(ω) = w1. Thus, PCR(w1w2 · · ·wn) = w2 · · ·wnw1. It is well-known that the PCR partitions
B(n) into cycles of strings that are equivalent under rotation. The following example illustrates the
cycles induced by the PCR for n = 5 along with their corresponding RL-reps and RL2-reps.

Example 1 The PCR partitions B(5) into the following eight cycles P1,P2, . . . ,P8 where the top
string in bold is the RL-rep for the given cycle. The underlined string is the RL2-rep.

P1 P2 P3 P4 P5 P6 P7 P8
11010 00101 11110 00001 11100 00011 11111 00000
10101 01010 11101 00010 11001 00110
01011 10100 11011 00100 10011 01100
10110 01001 10111 01000 00111 11000
01101 10010 01111 10000 01110 10001

The PCR is the underlying feedback function used to construct the Prefer-1 greedy construction
corresponding to the lexicographically largest de Bruijn sequence. It has also been applied in some of
the simplest and most efficient de Bruijn sequence constructions [8, 20, 31]. In these constructions,
the cycle representatives relate to the lexicographically smallest (or largest) strings in each cycle and
they can be determined in O(n) time using O(n) space using standard techniques [5, 9]. We also
apply these methods to efficiently determine the RL-reps and the RL2-reps.

2 The notion of a period often allows a fractional exponent j, but here it must be an integer.
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Clearly 0n and 1n are both RL-reps. Consider a string ω = w1w2 · · ·wn in a cycle P with RLE
r1r2 · · · r` where ` > 1. If ω is an RL-rep, then w1 6= wn because otherwise wnw1 · · ·wn−1 has a
larger RLE than ω. All strings in P that differ in the first and last bits form an equivalence class under
rotation with respect to their RLE. By definition, the RL-rep will be one that is lexicographically
largest amongst all its rotations. As noted above, such a test can be performed in O(n) time using
O(n) space. There is one special case to consider: when both a string beginning with 0 and its
complement beginning with 1 belong to the same cycle. For example, consider 00101101 and
11010010 which both have RLE 211211. Note this RLE has period p = 3 and it is maximal amongst
its rotations. By definition, the string beginning with 0 is not an RL-rep. It is not difficult to see that
such a string occurs precisely when w1 = 0 and p is odd, where p is the period of r1r2 · · · r`.

I Proposition 5. Let ω = w1w2 · · ·wn be a string with RLE r1r2 · · · r`, where ` > 1, in a cycle
P induced by the PCR. Let p be the period of r1r2 · · · r`. Then ω is the RL-rep for P if and only if
1. w1 6= wn,
2. r1r2 · · · r` is lexicographically largest amongst all its rotations, and
3. either w1 = 1 or p is even.
Moreover, testing whether or not ω is an RL-rep can be done in O(n) time using O(n) space.

In a similar manner we consider RL2-reps. Again 0n and 1n are both clearly RL2-reps. Consider
a string ω = w1w2 · · ·wn in a cycle P with run length greater than one. If ω is an RL2-rep, then
w1 6= w2 because otherwise w2 · · ·wnw1 has a smaller RLE than ω. Thus, consider all strings
s1s2 · · · sn in a cycle P such that s2 6= s1. One of these strings is the RL2-rep. Now consider
all left rotations of these strings taking the form s2 · · · sns1. Notice that a string in the latter set
with the smallest RLE will correspond to the RL2-rep after rotating the string back to the right.
As noted in the RL-case, the set of rotated strings form an equivalence class under rotation with
respect to their RLE, since their first and last bits differ. Again, the same special case arises as
with RL-reps: when both a string beginning with 0 and its complement beginning with 1 belong
to the same cycle. For example, consider the cycle containing both 10100101 and 01011010. In
each string the first two bits differ. The set of all strings in its cycle where the first two bits
differ is {10100101, 01001011, 10010110, 01011010, 10110100, 01101001}. Rotating each string
to the left we get the set {01001011, 10010110, 00101101, 10110100, 01101001, 11010010}. The
corresponding RLEs for this latter set are {112112, 121121, 211211, 112112, 121121, 211211}. In
this case there are two strings 0100100 and 10110100 that both have RLE 112112. Rotating these
strings back to the right we have 10100101 and 01011010 which both have the lexicographically
smallest RLE of 1112111 in their cycle induced by the PCR. By definition, the string beginning with
0 will be the RL2-rep. Thus ω is not an RL2-rep if w1 = 1, p is odd, and p < `, where p is the period
of the RLE r1r2 · · · r` for the string w2 · · ·wnw1.

I Proposition 6. Let ω = w1w2 · · ·wn and let r1r2 · · · r` be the RLE of w2 · · ·wnw1, where
` > 1, in a cycle P induced by the PCR. Let p be the period of r1r2 · · · r`. Then ω is the RL2-rep for
P if and only if
1. w1 6= w2,
2. r1r2 · · · r` is lexicographically smallest amongst all its rotations, and
3. either w1 = 0 or p is even or p = `.
Moreover, testing whether or not ω is an RL2-rep can be done in O(n) time using O(n) space.

4.2 The complementing cycling register (CCR)

The complementing cycling register, denoted CCR, is the FSR with the feedback function f(ω) = w1,
where w1 denotes the complement w1. Thus, CCR(w1w2 · · ·wn) = w2 · · ·wnw1. A string and its
complement will belong to the same cycle induced by the CCR.
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Example 2 The CCR partitions B(5) into the following four cycles C1,C2,C3,C4 where the top
string in bold is the RL-rep for the given cycle. The underlined string is the RL2-rep.

C1 C2 C3 C4
10101 11101 11001 11111
01010 11010 10010 11110

10100 00100 11100
01000 01001 11000
10001 10011 10000
00010 00110 00000
00101 01101 00001
01011 11011 00011
10111 10110 00111
01110 01100 01111

The CCR has been applied to efficiently construct de Bruijn sequences in variety of ways [11,
20, 24]. An especially efficient construction applies a concatenation scheme to construct a de Bruijn
sequence with discrepancy, which is the maximum difference between the number of 0s and 1s in any
substring, bounded above by 2n [18, 19].

As with the PCR, we discuss how to efficiently determine whether or not a given string is an
RL-rep or an RL2-rep for a cycle C induced by the CCR. Consider a string ω = w1w2 · · ·wn in a
cycle C. If ω is an RL-rep, then w1 = wn because otherwise wnw1 · · ·wn−1, which is also in C, has
a larger RLE than ω. All strings in C that agree in the first and last bits form an equivalence class
under rotation with respect to their RLE (that includes strings starting with both 0 and 1 for each
RLE). By definition, the RL-rep will be one that is lexicographically largest amongst all its rotations.
As noted in the previous subsection, such a test can be performed in O(n) time using O(n) space.
There are no special cases to consider here since a string and its complement always belong to the
same cycle. Thus, every RL-rep must begin with 1.

I Proposition 7. Let ω = w1w2 · · ·wn be a string with RLE r1r2 · · · r` in a cycle C induced by
the CCR. Then ω is the RL-rep for C if and only if
1. w1 = wn = 1 and
2. r1r2 · · · r` is lexicographically largest amongst all its rotations.
Moreover, testing whether or not ω is an RL-rep can be done in O(n) time using O(n) space.

In a similar manner we consider RL2-reps. Again, consider a string ω = w1w2 · · ·wn in a cycle
C. If ω is an RL2-rep, then w1 6= w2 because otherwise w2 · · ·wnw1 has a smaller RLE than ω.
Consider all such strings w2 · · ·wnw1 in a cycle C such that w2 6= w1. As noted in the RL-case,
all such strings form an equivalence class under rotation with respect to their RLE. Clearly, such a
string that has the lexicographically smallest RLE will be the RL2-rep. There are no special cases
to consider here since a string and its complement always belong to the same cycle. Thus, every
RL2-rep must begin with 0 and hence w2 = 1.

I Proposition 8. Let ω = w1w2 · · ·wn be a string with RLE r1r2 · · · r` in a cycle C induced by
the CCR. Then ω is the RL2-rep for C if and only if
1. w1 = 0 and w2 = 1, and
2. r1r2 · · · r` is lexicographically smallest amongst all its rotations.
Moreover, testing whether or not ω is an RL2-rep can be done in O(n) time using O(n) space.

4.3 The pure run-length register (PRR)

The feedback function of particular focus in this paper is f(ω) = w1⊕w2⊕wn. We will demonstrate
that FSR based on this feedback function partitions B(n) into cycles of strings with the same run



XX:10 Efficient constructions of the Prefer-same and Prefer-opposite de Bruijn sequences

length. Because of this property, we call this FSR the pure run-length register and denote it by PRR.
Thus,

PRR(w1w2 · · ·wn) = w2 · · ·wn(w1 ⊕ w2 ⊕ wn).

This follows the naming of the pure cycling register (PCR) and the pure summing register (PSR),
which is based on the feedback function f(ω) = w1 ⊕ w2 ⊕ · · · ⊕ wn [22].

Let R1,R2, . . . ,Rt denote the cycles induced by the PRR on B(n). The following example
illustrates how the cycles induced by the PRR relate to the cycles induced by the PCR and CCR.

Example 3 The PRR partitions B(6) into the following 12 cycles R1,R2, . . . ,R12 where the top
string in bold is the RL-rep for the given cycle. The underlined string is the RL2-rep. The cycles are
ordered in non-increasing order with respect to the run lengths of their RL-reps.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
101010 110101 001010 111010 110010 111101 000010 111001 000110 111110
010101 101011 010100 110100 100100 111011 000100 110011 001100 111100

010110 101001 101000 001001 110111 001000 100111 011000 111000
101101 010010 010001 010011 101111 010000 001110 110001 110000
011010 100101 100010 100110 011110 100001 011100 100011 100000

000101 001101 000001
001011 011011 000011
010111 110110 000111
101110 101100 001111
011101 011001 011111

R11 R12
111111 000000

By omitting the last bit of each string, the columns are precisely the cycles of the PCR and CCR for n = 5.
The cycles R1,R4,R5,R10 relating to the CCR start and end with the different bits. The remaining
cycles relate to the PCR; each string in these cycles start and end with the same bit.

In the example above, note that all the strings in a given cycle Ri have the same run length.

I Lemma 9. All the strings in a given cycle Ri have the same run length.

Proof. Consider a string ω = w1w2 · · ·wn and the feedback function f(ω) = w1 ⊕ w2 ⊕ wn. It
suffices to show that w2 · · ·wnf(ω) has the same run length as ω. This is easily observed since if
w1 = w2 then wn = f(ω) and if w1 6= w2 then wn 6= f(ω). J

Based on this lemma, if the strings in Ri have run length `, we say that Ri has run length `. Each
cycle Ri has another interesting property: either all the strings start and end with the same bit, or all
the strings start and end with different bits. If the strings start and end with the same bit, then Ri must
have odd run length and if we remove the last bit of each string we obtain a cycle induced by the PCR
of order n−1. In this case we say that Ri is a PCR-related cycle. Such a cycle is periodic if for each
string ω = w1w2 · · ·wn ∈ Ri, w1w2 · · ·wn−1 is periodic; otherwise, Ri is aperiodic and the cycle
contains n−1 distinct strings. If the strings start and end with the different bits, then Ri must have
even run length and if we remove the last bit of each string we obtain a cycle induced by the CCR of
order n−1. In this case we say that Ri is a CCR-related cycle. Such a cycle is periodic if for each
string ω = w1w2 · · ·wn ∈ Ri, w1w2 · · ·wn−1w1w2 · · ·wn−1 is periodic; otherwise, it is aperiodic
and the cycle contains 2n− 2 distinct strings. As an example, consider the CCR-related cycle for
n = 7 containing the strings {0011001, 0110010, 1100110, 1001101}. Consider ω = 0011001 and
note that 001100110011 is periodic. These observations were first made in [30] and are illustrated in
Example 3, where the periodic cycles are R1, R11 and R12.
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IObservation 10. Let ω, ω′ ∈ Ri and let PRRj(ω) = ω′. If Ri is PCR-related then PRR(n−1)−j(ω′) =
ω. If Ri is CCR-related then PRR(2n−2)−j(ω′) = ω and furthermore PRRn−1(ω) = ω.

The following lemma considers the RLEs for strings in a cycle Ri.

I Lemma 11. Let ω = w1w2 · · ·wn be a string in Ri with RLE of the form 1r1r2 · · · rm or
r1r2 · · · rm1. Then the RLE of any string in Ri has the form

(rs−j)rs+1 · · · rmr1 · · · rs−1(j+1),

for some 1 ≤ s ≤ m and 0 ≤ j < rs.

Proof. If the RLE of ω begins with 1 then w1 6= w2 and thus PRR(ω) = w2 · · ·wnwn will have
RLE of the form r1r2 · · · rm1. Starting with this RLE, the next r1 − 1 applications of the PRR yield
strings with RLE:

r1r2 · · · rm1, (r1−1)r2 · · · rm2, (r1−2)r2 · · · rm3, . . . , 1r2 · · · rmr1.

Repeating this pattern produces the remaining strings in Ri, which leads to the desired result. J

Example 4 Consider RL-rep ω = 0001110110 belonging to an aperiodic PCR-related cycle
containing the following nine strings with their RLE in parentheses:

0001110110 (33121), 0011101100 (23122), 0111011000 (13123),
1110110001 (31231), 1101100011 (21232), 1011000111 (11233),
0110001110 (12331),
1100011101 (23311), 1000111011 (13312).

We can apply the RL-rep and RL2-rep testers for cycles induced by the PCR and CCR to determine
whether or not a string ω is an RL-rep or an RL2-rep for a cycle Ri. These testers, outlined in the
following propositions, are critical to the efficiency of our upcoming de Bruijn successors.

I Proposition 12. Let ω = w1w2 · · ·wn be a string in a cycle Ri. Then ω is the RL-rep for Ri if
and only if
1. w1 = wn and w1w2 · · ·wn−1 is an RL-rep with respect to the PCR, or
2. w1 6= wn and w1w2 · · ·wn−1 is an RL-rep with respect to the CCR.
Moreover, testing whether or not ω is an RL-rep for Ri can be done in O(n) time using O(n) space.

I Proposition 13. Let ω = w1w2 · · ·wn be a string in a cycle Ri. Then ω is the RL2-rep for Ri

if and only if
1. w1 = wn and w1w2 · · ·wn−1 is an RL2-rep with respect to the PCR, or
2. w1 6= wn and w1w2 · · ·wn−1 is an RL2-rep with respect to the CCR.
Moreover, testing whether or not ω is an RL2-rep for Ri can be done in O(n) time using O(n) space.

The above propositions can easily be verified by the reader based on the definitions of RL-reps and
RL2-reps and applying Lemma 11.

5 Generic de Bruijn successors based on the PRR

In this section we provide two generic de Bruijn successors that are applied to derive specific de
Bruijn successors for Sn and On in the subsequent sections. The results relate specifically to the PRR
and we assume that R1,R2, . . . ,Rt denote the cycles induced by the PRR on B(n).
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Let ω = w1w2 · · ·wn be a binary string. Define the conjugate of ω to be ω̂ = w1w2 · · ·wn.
Similar to Hierholzer’s cycle-joining approach discussed in Section 2, Theorem 3.5 from [20]
can be applied to systematically join together the ordered cycles R1,R2, . . . ,Rt given certain
representatives αi for each Ri. This theorem is restated as follows when applied to the PRR and the
function f(ω) = w1 ⊕ w2 ⊕ wn.

I Theorem 14. For each 1 < i ≤ t, if the conjugate α̂i of the representative αi for cycle Ri

belongs to some Rj where j < i, then

g(ω) =
{
f(ω) if ω or ω̂ is in {α2, α3, . . . , αt};
f(ω) otherwise

is a de Bruijn successor.

Together, the ordering of the cycles and the sequence α2, α3, . . . , αt correspond to a rooted tree,
where the nodes are the cycles R1,R2, . . . ,Rt with R1 designated as the root. There is an edge
between two nodes Ri and Rj where i > j, if and only if α̂i is in Rj ; we say that Rj is the parent
of Ri. Each edge represents the joining of two cycles similar to the technique used in Hierholzer’s
Euler cycle algorithm (see Section 2). An example of such a tree for n = 6 is given in the following
example.

Example 5 Consider the cycles R1,R2, . . . ,R12 for n = 6 from Example 3 along with their
corresponding RL-reps αi for each Ri. For each i > 1, α̂i belongs to some Rj where j < i. Thus, we
can apply Theorem 14 to obtain a de Bruijn successor g(ω) based on these representatives. The following
tree illustrates the joining of these cycles based on g:

R1

R2

R5 R4

R9 R8 R7 R6

R3

R11R12

R10

α3

α̂3

Starting with 101010 from R1, and repeatedly applying the function g(ω) we obtain the de Bruijn
sequence:

1010100100110001101100111001010110100010000101110111100000011111.

Note that the RL-rep of R3 is α3 = 001010 and its conjugate α̂3 = 101010 is found in its parent R1.
The last string visited in each cycle Ri, for i > 1, is its representative αi.

The following observations, which will be applied later in our more technical proofs, follow from the
tree interpretation of the ordered cycles rooted at R1 from Theorem 14 as illustrated in the previous
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example.3

I Observation 15. Let g be a de Bruijn successor from Theorem 14 based on representatives
α2, α3, . . . , αt. Let Dn = DB(g, w1w2 · · ·wn) and let D′n = w2 · · ·wnDn denote a linearized de
Bruijn sequence. If the length n prefix of D′n is in R1, then for each 1 < i ≤ t:

1. α̂i appears before all strings in Ri,
2. the m strings of Ri appear in the following order: PRR(αi),PRR2(αi), . . . ,PRRm(αi) = αi,
3. if Ri and Rk are on the same level in the corresponding tree of cycles rooted at R1, then either

every string in Ri comes before every string in Rk or vice-versa,
4. the strings in all descendant cycles of Ri appear after α̂i and before αi, and
5. if α̂i = a1a2 · · · an, then a2 · · · ang(α̂i) is in Ri.

As an application of Theorem 14, consider the cycles R1,R2, . . . ,Rt to be ordered in non-
increasing order based on the run length of each cycle. Such an ordering is given in Example 3 for
n = 6. Using this ordering, let αi = a1a2 · · · an be any string in Ri, for i > 1, such that a1 = a2.
Note that α̂i has run length that is one more than the run length of αi and thus α̂i belongs to some Rj

where j < i. Thus, Theorem 14 can be applied to describe the following generic de Bruijn successor
based on the PRR.

I Theorem 16. Let R1,R2, . . . ,Rt be listed in non-increasing order with respect to the run
length of each cycle. Let αi = a1a2 · · · an denote a representative in Ri such that a1 = a2, for
each 1 < i ≤ t. Let ω = w1w2 · · ·wn and let f(ω) = w1 ⊕ w2 ⊕ wn. Then the function:

g(ω) =
{
f(ω) if ω or ω̂ is in {α2, α3, . . . , αt};
f(ω) otherwise.

is a de Bruijn successor.

Now consider the cycles R1,R2, . . . ,Rt to be ordered in non-decreasing order based on the run
length of each cycle. This means the first two cycles R1 and R2 will be the cycles containing 0n

and 1n. But given this ordering, there is no way to satisfy Theorem 14 since the conjugate of any
representative for R2 will not be found in R1. However, if we let Rt = {1n}, and order the remaining
cycles in non-decreasing order based on the run length of each cycle, then we obtain a result similar
to Theorem 16. Observe, that this relates to the special case described for the Prefer-opposite greedy
construction illustrated in Figure 2. Using this ordering, let αi = a1a2 · · · an be any string in Ri, for
1 < i < t, such that a1 6= a2. Such a string exists since R1 = {0n} and Rt = {1n}. This means α̂i

has run length that is one less than the run length of αi and thus α̂i belongs to some Rj where j < i.
For the special case when i = t, the conjugate of 1n clearly is found in some Rj where j < t. Thus,
Theorem 14 can be applied again to describe another generic de Bruijn successor based on the PRR.

I Theorem 17. Let Rt = {1n} and let the remaining cycles R1,R2, . . . ,Rt−1 be listed in
non-decreasing order with respect to the run length of each cycle. Let αi = a1a2 · · · an denote
a representative in Ri such that a1 6= a2, for each 1 < i < t. Let ω = w1w2 · · ·wn and let
f(ω) = w1 ⊕ w2 ⊕ wn. Then the function:

g2(ω) =
{
f(ω) if ω or ω̂ is in {α2, α3, . . . , αt};
f(ω) otherwise.

is a de Bruijn successor.

3 Note that Theorem 14 and Observation 15 apply more generally to any non-singular feedback function f .
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When Theorem 16 and Theorem 17 are applied naïvely, the resulting de Bruijn successors are not
efficient since storing the set {α2, α3, . . . , αt} requires exponential space. However, if a membership
tester for the set can be defined efficiently, then there is no need for the set to be stored. Such sets of
representatives are presented in the next two sections.

6 A de Bruijn successor for Sn

In this section we define a de Bruijn successor for Sn. Recall the partition R1,R2, . . . ,Rt of B(n)
induced by the PRR. In addition to the RL-rep, we define a new representative for each cycle, called
the LC-rep, where the LC stands for Lexicographic Compositions which are further discussed in
Section 8. Then, considering these two representatives along with a small set of special strings, we
define a third representative, called the same-rep. For each representative, we can apply Theorem 16
to produce a new de Bruijn successor. The definitions for these three representatives are as follows:

RL-rep: The string with the lexicographically largest RLE; if there are two such strings, it is the
one beginning with 1.
LC-rep: The RL-rep for cycles with run length 1 and n. For all other classes, it is the string ω
with RLE 21i−1ri+1 · · · r` where i = ` or ri+1 6= 1 such that PRRi+1(ω) is the RL-rep.

same-rep:
{

RL-rep if the RL-rep is same-special
LC-rep otherwise.

We say an RL-rep is same-special if it belongs to the set SP(n) defined as follows:

SP(n) is the set of length n binary strings that begin and end with 0 and have RLE of the
form (212x)y1z , where x ≥ 0, y ≥ 2, and z ≥ 2.

The RL-reps have already been illustrated in Section 4. There are relatively few strings in SP(n) and
they all have odd run length since they begin and end with 0; they belong to PCR-related cycles. The
need for identifying same-special strings is revealed in the proof for the upcoming Proposition 20.

Example 6 The RLE of the strings in SP(n) for n = 10, 11, 12, 13.

n = 10: 2221111
n = 11: 2222111, 221111111, 211211111
n = 12: 2222211, 222111111
n = 13: 222211111, 22111111111, 21121111111

To illustrate an LC-rep, consider the string ω = 110101111011 with RLE 2111412. The string ω
is an LC-rep since PRR5(ω) = 111101110101 which is an RL-rep with RLE 4131111. Note that
another way to define the LC-rep is as follows: If the RLE of an RL-rep ends with i consecutive 1s,
then the corresponding LC-rep is the string ω such that PRRi+1(ω) is the RL-rep.

Let RL(n), LC(n), and Same(n) denote the sets of all length n RL-reps, LC-reps, and same-
reps, respectively, not including the representative with run length n. Consider the following
feedback functions where ω = w1w2 · · ·wn and f(ω) = w1 ⊕ w2 ⊕ wn:

RL(ω) =
{
f(ω) if ω or ω̂ is in RL(n);
f(ω) otherwise,

LC(ω) =
{
f(ω) if ω or ω̂ is in LC(n);
f(ω) otherwise,

S(ω) =
{
f(ω) if ω or ω̂ is in Same(n);
f(ω) otherwise.
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I Theorem 18. The feedback functions RL(ω), LC(ω) and S(ω) are de Bruijn successors.

Proof. Let the partition R1,R2, . . . ,Rt of B(n) induced by the PRR be listed in non-increasing
order with respect to the run length of each cycle. Observe that R1 is the cycle whose strings have run
length n, and thus any representative of R1 will have run length n. By definition, this representative
is not in the sets RL(n), LC(n), and Same(n). Now consider Ri for i > 1. Clearly the RL-rep for
Ri will begin with 00 or 11 and by definition, the LC-rep for Ri also begins with 00 or 11. Together
these results imply that each same-rep for Ri will also begin with 00 or 11. Thus, it follows directly
from Theorem 16 that RL(ω), LC(ω) and S(ω) are de Bruijn successors. J

Recall that alt(n) denotes the alternating sequence of 0s and 1s of length n that ends with 0.
Let Xn = x1x2 · · ·x2n be the de Bruijn sequence returned by DB(S, 0alt(n−1)); it will have suffix
equal to the seed 0alt(n−1). Let X ′n denote the linearized de Bruijn sequence alt(n−1)Xn. Our
goal is to show that Xn = Sn. Our proof applies the following two propositions.

I Proposition 19. Xn has prefix 1n.

Proof. The result follows from n applications of the successor S to the seed 0alt(n−1). J

I Proposition 20. If β is a string in B(n) such that the run length of β is one more than the run
length of β̂ and neither β nor β̂ are same-reps, then β̂ appears before β in X ′n.

A proof of this proposition is given later in Section 10.

I Theorem 21. The de Bruijn sequences Sn and Xn are the same.

Proof. Let Sn = s1s2 · · · s2n , let Xn = x1x2 · · ·x2n . Recall that Xn ends with alt(n−1). From
Proposition 3 and Proposition 19, x1x2 · · ·xn = s1s2 · · · sn = 1n and moreover Sn and Xn share
the same length n−1 suffix. Suppose there exists some smallest t, where n < t ≤ 2n, such that
st 6= xt. Let β = xt−n · · ·xt−1 denote the length n substring of Xn ending at position t−1.
Then xt 6= xt−1, because otherwise the RLE of Xn is lexicographically larger than that of Sn,
contradicting Proposition 1. We claim that β̂ comes before β in X ′n, by considering two cases,
recalling f(ω) = w1 ⊕ w2 ⊕ wn:

If xt = f(β), then by the definition of S, neither β nor β̂ are in Same(n). By the definition of f
and since xt 6= xt−1, the first two bits of β must differ from each other. Thus, the run length of β
is one more than the run length of β̂. Thus the claim holds by Proposition 20.
If xt 6= f(β), then either β or β̂ are in Same(n). Let β = b1b2 · · · bn. Then PRR(β) =
b2 · · · bnst and PRR(β̂) = b2 · · · bnxt. Since f(β) = bn, b1 = b2, which implies β̂ is not in
Same(n). Thus β is a same-rep and the claim thus holds by Observation 15 (item 1).

Since β̂ appears before β in X ′n then β̂ must be a substring of alt(n−1)x1 · · ·xt−2. Thus, either
xt−n+1 · · ·xt−1xt or xt−n+1 · · ·xt−1st must be in alt(n−1)x1 · · ·xt−1 which contradicts the fact
that both Xn and Sn are de Bruijn sequences. Thus, there is no n < t ≤ 2n such that st 6= xt and
hence Sn = Xn. J

7 A de Bruijn successor for On

To develop an efficient de Bruijn successor for On, we follow an approach similar to that for Sn,
except this time we focus on the lexicographically smallest RLEs and RL2-reps. Again, we consider
three different representatives for the cycles R1,R2, . . . ,Rt of B(n) induced by the PRR.
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RL2-rep: The string with the lexicographically smallest RLE; if there are two such strings, it is
the one beginning with 0.
LC2-rep: The strings 0n and 1n for the classes {0n} and {1n} respectively. For all other classes,
it is the string ω with RLE r1r2 · · · r` such that r1 = 1 and PRRr2(ω) is the RL2-rep.

opp-rep:
{

RL2-rep if the RL2-rep is opp-special
LC2-rep otherwise.

We say an RL2-rep is opp-special if it belongs to the set SP2(n) defined as follows:

SP2(n) is the set of length n binary strings that begin with 1 and have RLE of the form 1xzy

where z is odd and y > x.

The RL2-reps have already been illustrated in Section 4. There are relatively few strings in SP2(n)
and they all have odd run length; they belong to PCR-related cycles. The need for identifying
opp-special strings is revealed in the proof for the upcoming Proposition 24.

Example 7 The RLEs of the strings in SP2(n) for n = 10, 11, 12, 13:

n = 10: 111111112, 1111114, 11116, 118, 12223, 127, 136, 145
n = 11: 111111113, 1111115, 11117, 119, 12224, 128, 137, 146
n = 12: 11111111112, 111111114, 1111116, 11118,11(10), 12225, 129, 138, 147, 156
n = 13: 11111111113, 111111115, 1111117, 11119,11(11), 12226, 12(10), 139, 148, 157

Except for the cases 0n and 1n, the LC-rep will begin with 10 and 01. As an example, consider
ω = 10000101001 which has RLE r1r2r3r4r5r6r7 = 1411121. It is an LC-rep since PRR4(ω) is
the RL2-rep 01010010000 with RLE 1111214. Note the last value of this RLE will correspond to r2.

Let RL2(n), LC2(n), and OPP(n) denote the set of all length n RL2-reps, LC2-reps, and opp-
reps, respectively, not including the representative 0n. Consider the following feedback functions
where ω = w1w2 · · ·wn and f(ω) = w1 ⊕ w2 ⊕ wn:

RL2(ω) =
{
f(ω) if ω or ω̂ is in RL2(n);
f(ω) otherwise,

LC2(ω) =
{
f(ω) if ω or ω̂ is in LC2(n);
f(ω) otherwise,

O(ω) =
{
f(ω) if ω or ω̂ is in OPP(n);
f(ω) otherwise.

I Theorem 22. The feedback functions RL2(ω), LC2(ω) and O(ω) are de Bruijn successors.

Proof. Let the partition R1,R2, . . . ,Rt of B(n) induced by the PRR be listed such that Rt = {1n}
and the remaining t−1 cycles are ordered in non-decreasing order with respect to the run length of
each cycle. This means that R1 = {0n} and its representative, which must be 0n, is not in the sets
RL2(n), LC2(n), and OPP(n) by their definition. Now consider Ri for 1 < i < t. Clearly the
RL2-rep for Ri, which is a string with the lexicographically smallest RLE, will begin with 01 or 10.
Similarly, the LC2-rep for Ri must begin with 01 or 10 by its definition. Together these results imply
that each opp-rep for Ri will also begin with 01 or 10. Thus, if follows directly from Theorem 17
that RL2(ω), LC2(ω) and O(ω) are de Bruijn successors. J

Recall from Proposition 4 that the length n suffix of On is 10n−1. Let Yn = y1y2 · · · y2n be
the de Bruijn sequence returned by DB(O, 10n−1); it will have suffix 10n−1. Let Y ′n denote the
linearized de Bruijn sequence 0n−1Yn. Our goal is to show that Yn = On. Our proof applies the
following two propositions.
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I Proposition 23. Yn has length n prefix 010101 · · · .

Proof. The result follows from n applications of the successor O to the seed 10n−1. J

I Proposition 24. If β is a string in B(n) such that the run length of β is one less than the run
length of β̂ and neither β nor β̂ are opp-reps, then β̂ appears before β in Y ′n.

A proof of this proposition is given later in Section 11.

I Theorem 25. The de Bruijn sequences On and Yn are the same.

Proof. Let On = o1o2 · · · o2n , let Yn = y1y2 · · · y2n . From Proposition 4 and Proposition 23,
y1y2 · · · yn = o1o2 · · · on = 0101 · · · and moreover On and Yn share the same length n−1 suffix
0n−1. Based on these prefix and suffix conditions and because both On and Yn are de Bruijn
sequences, clearly the substring 01n−1 is followed by a 1 in both sequences. Suppose there exists
some smallest t, where n < t ≤ 2n, such that ot 6= yt. Let β = yt−n · · · yt−1 denote the length
n substring of Yn ending at position t−1. Then yt = yt−1, because otherwise the RLE of Yn is
lexicographically smaller than that of On, contradicting Proposition 2. We claim that β̂ comes before
β in Y ′n, by considering two cases, recalling f(ω) = w1 ⊕ w2 ⊕ wn:

If yt = f(β), then by the definition of O, neither β nor β̂ are in OPP(n). By the definition of f
and since yt = yt−1, the first two bits of β are the same. Thus, the run length of β is one less than
the run length of β̂. Thus the claim holds by Proposition 24.
If yt 6= f(β), then either β or β̂ are in OPP(n). Let β = b1b2 · · · bn. Then PRR(β) = b2 · · · bnot

and PRR(β̂) = b2 · · · bnyt. Since f(β) 6= bn, b1 6= b2, which implies β̂ is not in OPP(n) since
the case when β 6= 01n−1 was already handled. Thus β is an opp-rep and the claim holds by
Observation 15 (item 1).

Since β̂ appears before β in Y ′n then β̂ must be a substring of 0n−1y1 · · · yt−2. Thus, either
yt−n+1 · · · yt−1yt or yt−n+1 · · · yt−1ot must be in 0n−1y1 · · · yt−1 which contradicts the fact that
both Yn and On are de Bruijn sequences. Thus, there is no n < t ≤ 2n such that ot 6= yt and hence
On = Yn. J

8 Lexicographic compositions

As mentioned earlier, Fredricksen and Kessler devised a construction based on lexicographic compo-
sitions [16]. Let Ln denote the de Bruijn sequence of order n that results from this construction. The
sequences Sn and Ln first differ at n = 7 (as noted below), and for n ≥ 7 they were conjectured to
match for a significant prefix [15, 16]:

S7 = 1111111000000011111011110011110100000100001100001011100011100100
0110111011000100111010110011001011011010011010100010100100101010,

L7 = 1111111000000011111011110011110100000100001100001011100011100100
0110111011000100111010110011001011011010100010100110100100101010.

After discovering the de Bruijn successor for Sn, we observed that the de Bruijn sequence
resulting from the de Bruijn successor LC(ω) corresponded to Ln for small values of n. Recall that
alt(n) denotes the alternating sequence of 0s and 1s of length n that ends with 0. Let LCn be the de
Bruijn sequence returned by DB(LC, 0alt(n−1)).

I Conjecture 26. The de Bruijn sequences LCn and Ln are the same.

We verified that LCn is the same as Ln for all n < 30. However, as the description of the
algorithm to construct Ln is rather detailed [16], we did not attempt to prove this conjecture.
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9 Efficient implementation

Given a membership tester for RL(n), testing whether or not a string is an LC-rep or a same-rep can
easily be done in O(n) time and O(n) space. Similarly, given the membership tester for RL2(n),
testing whether or not a string is an LC2-rep or a opp-rep can easily be done in O(n) time and O(n)
space. Thus, by applying Proposition 12 and Proposition 13, we can implement each of our six de
Bruijn successors in O(n) time using O(n) space.

I Theorem 27. The six de Bruijn successors RL(ω), LC(ω), S(ω) , RL2(ω), LC2(ω) and O(ω)
can be implemented in O(n) time using O(n) space.

10 Proof of Proposition 20

Recall that Xn = DB(S, 0alt(n−1)) and X ′n = alt(n−1)Xn. We begin by restating Proposition 20
by reversing the roles of β and β̂ in the original statement for convenience:

If β is a string in B(n) such that the run length of β is one less than the run length of β̂ and
neither β nor β̂ are same-reps, then β appears before β̂ in X ′n.

The first step is to further refine the ordering of the cycles R1,R2, . . . ,Rt used in the proof of
Theorem 18 to prove that S(ω) was a de Bruijn successor. In particular, let R1,R2, . . . ,Rt be the
cycles of B(n) induced by the PRR ordered in non-increasing order with respect to the run lengths of
each cycle, additionally refined so the cycles with the same run lengths are ordered in decreasing
order with respect to the RLE of the RL-rep. If two RL-reps have the same RLE, then the cycle
with RL-rep starting with 1 comes first. Let σi, γi, αi denote the RL-rep, LC-rep, and same-rep,
respectively, for Ri, where 1 ≤ i ≤ t; let Ri denote the RLE of σi.

Assume the run length of β is one less than the run length of β̂ (the RLE of β must begin with a
value greater than 1), and neither β nor β̂ are same-reps. Since each string in R1 has maximal run
length n, β ∈ Ri for some 1 < i ≤ t and thus Ri is of the form r1r2 · · · rm1v where rm > 1. Let
Rj contain α̂i which means Rj is the parent of Ri. Let Rk contain β̂. In general, we will show
that either j < k or j = k; see Figure 3. The cases for when j < k are handled in Section 10.1. In
the next steps, we will focus on the situations when j = k. Through computer experimentation for
n ≤ 25, we verified that j = k only for specific instances of β equal to γi, γi, σi, or σi. In our formal
proof, we find that Rj is aperiodic. Thus, by Observation 15 (item 2), we determine the smallest
positive integers a and b such that PRRa(α̂i) = β̂ and PRRb(α̂i) = αj and demonstrate that a < b.

Outline of next steps:

1. σi ∈ SP(n)
2. σi /∈ SP(n)

Consider m = 1
Consider m > 1

Handle the case when β = γi

Consider one RLE possibility for β which includes an instance when β = γi

Consider a second RLE possibility for β which includes instances when β = σi,
β = σi, and β = γi

Handle the instances when β = σi or β = σi
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(a)

Rj Rk

Ri

αi

α̂i

β

β̂

(b)

Rj

Ri

αi

α̂i

β

β̂

αj αj

Figure 3 Illustrating the possible relationships between β and β̂: (a) j = k, (b) j < k, noting the run length
of Rj and Rk are the same.

CASE 1: σi ∈ SP. In this case, αi = σi has RLE of the form (212x)y1z and begins with 0, where
x ≥ 0 and y, z ≥ 2. Thus α̂i ∈ Rj has RLE 12x+2(212x)y−11z . Considering the RLE possibilities
of the other strings in Rj , as outlined in Lemma 11, we deduce

σj = PRR2x+2(α̂i) begins with 1 and has RLE (212x)y−11z+2x+2.

Clearly Rj is aperiodic. Suppose β = γi; it will have RLE 21z+2x−1(212x)y−11. Observe that
PRRz+2x+1(β̂) has the same RLE as σj , but begins with 0. Thus, since Rj is CCR-related and
applying Observation 10, PRR(z+2x+1)+(n−1)(β̂) = σj , and thus PRR(n−1)−z+1(α̂i) = β̂. By
definition, PRRz+2x+1+2x+2(γj) = σj , which means that PRRz+2x+1(γj) = α̂i. Since Rj is CCR-
related, αj = γj . Thus a = n − z, b = (2n − 2) − (z + 2x + 1), and clearly a < b. For all other
cases such that β 6= σi (the same-rep), it is a simple exercise to see that Rj > Rk, and hence j < k.

Example 8 Consider Ri where αi = σi = 00101101010 ∈ SP(n) and has RLE 211211111. The
corresponding LC-rep β = γi = 11010100101 has RLE 211112111. Below are the strings from Rj

including σ̂i and γ̂i in the order that they appear in X ′11. Note that β̂ appears after α̂i (a = 8, b = 14).
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01010101011
10101010110
01010101101
10101011010
01010110101
10101101010 ← σ̂i = α̂i

01011010101
10110101010
01101010101
11010101010 ← σj , the RL-rep, with RLE 2111111111
10101010100
01010101001
10101010010
01010100101 ← γ̂i = β̂

10101001010
01010010101
10100101010
01001010101
10010101010
00101010101 ← αj = γj(= σj), the same-rep and LC-rep for this cycle

CASE 2: σi /∈ SP(n). By definition αi = γi. This case involves some rather technical analysis of
the RLE for various strings. Assume Ri = r1r2 · · · rm1v , where m ≥ 1 and r1, rm ≥ 2. Then,

αi = γi has RLE 21v−1r1r2 · · · rm−1(rm−1) where PRRv+1(αi) = σi, and
α̂i has RLE 1v+1r1r2 · · · rm−1(rm−1) and is in Rj .

Consider the RLE possibilities of the other strings in Rj as outlined in Lemma 11. Given that σi is
an RL-rep, we deduce

σj =
{

PRRv+1(α̂i) if σi begins with 1;
PRR(n−1)+v+1(α̂i) if σi begins with 0 (Ri is PCR-related).

In both cases σj begins with 1 (implying αj = γj) and Rj = r1r2 · · · rm−1(rm−1)1v+1.

B Claim 28. If Rj is the parent of Ri then σj begins with 1 and Rj is aperiodic.

Note this claim also held for the case when σi ∈ SP(n). Observe that Rj is indeed aperiodic, since
if we assume otherwise, it implies that σi is not an RL-rep.

Suppose m = 1. Then the RLE of β is r11v, the RLE of β̂ is 1(r1−1)1v, the RLE of αi = γi

is 21v(r1−1) and the RLE of α̂i is 1v+1(r1−1). Thus, Rj = (r1−1)1v+1 and the RLE of γj is
21v(r1−2). If Ri is CCR-related and β = σi, which begins with 0, then Rj = Rk where σj begins
with 1 and σk begins with 0. Thus j < k. Otherwise, β = σi. By its RLE, σj /∈ SP(n), so αj = γj .
From the above RLEs, PRRv+1(α̂i) = β̂ and thus a = v + 1. Applying Observation 10, if Rj

is a CCR-related cycle and β begins with 1, then it is easily verified that b = (2n − 2) − 1 is the
smallest value such that PRRb(α̂i) = αj ; otherwise b = (n− 1)− 1 is the smallest value such that
PRRb(α̂i) = αj . In both cases a < b.

Suppose m > 1. Let d = m, unless rm = 2, in which case let d be the largest index less than m
such that rd > 1. Then given Rj , σj = PRRm−d+1+(v+1)(γj). Thus:

αj = γj =


PRR(n−1)−(m−d+1)(α̂i) if Ri is CCR-related;
PRR(2n−2)−(m−d+1)(α̂i) if Ri is PCR-related and σi begins with 1;
PRR(n−1)−(m−d+1)(α̂i) if Ri is PCR-related and σi begins with 0.

(1)
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Consider β = γi. If Ri is CCR-related then σj begins with 1, but σk begins with 0, and hence j < k.
Otherwise, Ri is PCR-related and Rj is CCR-related and hence αj = γj . Since both γi and γi

belong to Ri, both σi and σi belong to Ri. Thus σi begins with 1 and b = (2n−2) − (m−d+1).
Since αi = γi, we have PRRn−1(α̂i) = α̂i = β̂. Thus, a = n−1 and clearly a < b.

Based on the possibilities given in Lemma 11 using ω = σi, the RLE for other possible β is of
the form

(rs−j)rs+1 · · · rm1v−1r1 · · · rs−1(j+1),

for some 1 ≤ s ≤ m where rs ≥ 2 and 0 ≤ j ≤ rs − 2. Thus, β̂ has RLE of the form

1(rs−j−1)rs+1 · · · rm1v−1r1 · · · rs−1(j+1).

Note that r1 ≥ rq for all 1 < q ≤ m. If Rk begins with a value less than r1, then clearly Rj > Rk

and j < k. Otherwise, based on the possible RLEs for β̂ and applying Lemma 11 (using ω = β̂), Rk

must begin with some rs′ = r1 and have the form

rs′ · · · rs−1(j+1)(rs−j−1)rs+1 · · · rm1v−1r1 · · · rs′−11, such that 0 < s′ < s, or (2)

rs′ · · · rm1v−1r1 · · · rs−1(j+1)(rs−j−1)rs+1 · · · rs′−11, such that s < s′ ≤ m, (3)

where 0 ≤ j ≤ rs − 2.

Suppose Rk has the form in (2). Since σi is an RL-rep,

r1 · · · rm1v ≥ rs′ · · · rs−1rsrs+1 · · · rm1v−1r1 · · · rs′−11.

We want to compare

Rj = r1r2 · · · rm−1(rm−1)1v+1 with

Rk = rs′ · · · rs−1(j+1)(rs−j−1)rs+1 · · · rm1v−1r1 · · · rs′−11.

ClearlyRj > Rk unless rs′ · · · rs−1(j+1) = r1 · · · rm−1(rm−1) and (rs−j−1)rs+1 · · · rm1v−1r1 · · · rs′−11 =
1v+1. Thus, s = m, s′ = 1, and j = rm − 2. This implies β = γi (same-rep) or β = γi.

Suppose Rk has the form in (3). Since σi is an RL-rep,

r1 · · · rm1v ≥ rs′ · · · rm1v−1r1 · · · rs−1rsrs+1 · · · rs′−11.

We want to compare

Rj = r1r2 · · · rm−1(rm−1)1v+1 with

Rk = rs′ · · · rm1v−1r1 · · · rs−1(j+1)(rs−j−1)rs+1 · · · rs′−11.

ClearlyRj ≥ Rk based on the RLEs described before this claim. SupposeRj = Rk. Then s′−s ≤ v,
and the suffix (rs−j−1)rs+1 · · · rs′−11 must be all 1s with (j + 1) = rm − 1. Thus j = rs − 2
and rs = rm. If s′ − s = v, then the RLE for β is the same as Ri. Since σi is an RL-rep, this
implies that r1r2 · · · rm is periodic. This is easily deduced since a proper suffix of r1r2 · · · rm is
equal to a prefix. If r1r2 · · · rm is not of the form (21p)q for p ≥ 0 and q > 1, then Rk < Rj ,
contradiction. This means β = γi (same-rep), or β = γi (already handled). If s′ − s < v then
clearly rs = rm = 2, since both (j+1) and (rs−j−1) must be 1. Suppose s 6= 1. Note that
rm−s+2 · · · rm−1(rm − 1)1v+1 = r1 · · · rs−111rs+1 · · · rs′−11. However since s′ − s < v, this
implies that r1 · · · rs−1 < rm−s+2 · · · rm which contradicts the fact that σi is the RL-rep (applying
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Lemma 11). Thus s = 1 and r1 = 2. Again comparing Rj and Rk:

Rj = (r1 · · · rs′−1) (rs′ · · · r2s′−1) · · · (rm−s′ · · · rm−1)1v+2 and

Rk = (rs′ · · · r2s′−1) · · · (rm−s′ · · · rm−1)rm1v−11s′+1.

Since r1 · · · rs′−1 = 21s′−2 and rm = 2, β has RLE of the form (21p)q1u where: (i) p ≥ 0 since
p = s′ − 2; (ii) q > 1 since m > 1; and (iii) u > 1 since u = (v + 2)− (2 + s′ − 2) = v − s′ + 2
and s′ − 1 < v. Thus:

αi = γi has RLE 21u+p−1(21p)q−11,
α̂i has RLE 1u+p+1(21p)q−11,

PRRu−1(α̂i) is β̂ or β̂ , and
d = m− (p+ 1) and m− d+ 1 = p+ 2.

Suppose Ri is PCR-related. Then Rj is CCR-related cycle and thus αj = γj . If β begins with 1,
then β = σi and a = u− 1, and b = (2n− 2)− (p+ 2). Clearly a < b. If β begins with 0 and p is
odd, then β = σi, a = u− 1, and b = (n− 1)− (p+ 2) from (1). Clearly a < b. If β begins with 0
and p is even, then if u > 1, σi ∈ SP(n), contradiction.

Suppose Ri is CCR-related. Then b = (n − 1) − (p + 2) from (1). Suppose β begins with 1;
β = σi. If p is even, then Rj = Rk, but σj begins with 1 and σk begins with 0. Thus j < k. If p
is odd, then σj = PRRp+2(β̂) and since v = u + p, we have a = u + p + 1 − (p + 2) = u − 1
and thus a < b. Suppose β begins with 0; β = σi. If p is odd, then Rj = Rk, but σj begins
with 1 and σk begins with 0, and hence j < k. If p is even, then σj = PRRp+2(β̂) and again
a = u+ p+ 1− (p+ 2) = u− 1 and a < b.

10.1 j < k

The proof for the case when j < k applies the following two claims.

B Claim 29. If Rj and Rk have the same run length where j < k such that σj and σk both begin
with 1, then every string from Rj appears in X ′n before any string from Rk.

Proof. The proof is by induction on the levels of the related tree of cycles rooted by R1. The base
case trivially holds for cycles with run length n since there is only one such cycle R1. Assume that
the result holds for all cycles at levels with run length greater than ` < n. Consider two cycles Rj and
Rk with run length ` such that σj and σk both begin with 1; neither σj nor σk are same-special and
since j < k, Rj > Rk. Let Rx and Ry denote the parents of Rj and Rk, respectively. By Claim 28,
both σx and σy begin with 1. Given Rj > Rk, our earlier analysis (just before Claim 28) implies that
the RLE of σx is greater than the RLE of σy . Thus, by the ordering of the cycles, x < y. By induction,
every string from Rx appears before every string from Ry in X ′n, and hence by Observation 15 (item
4), we have our result. J

B Claim 30. Let Rk and Rk′ be cycles with k′ < k such that σk and σk′ have the same RLE
r1r2 · · · rm1v where rm > 1 and v ≥ 0. Then every string from Rk′ appears in X ′n before any string
from Rk.

Proof. By the ordering of the cycles, σk′ begins with 1 and σk begins with 0; they belong to
PCR-related cycles. Note that σk = σk′ and similarly γk = γk′ . Thus, σ̂k = σ̂k′ and γ̂k = γ̂k′ and
each pair, respectively, will belong to the same CCR-related cycle. If σk ∈ SP(n), we previously
observed that γ̂k and σ̂k belong to the same cycle, and thus Rk and Rk′ have the same parent. If
σk /∈ SP(n), then Rk and Rk′ also have the same parent containing both γ̂k and γ̂k′ . Let R`

be the shared parent of Rk and Rk′ . Since σk′ begins with 1, αk′ = γk′ . If m = 1, then we
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already saw that α` = PRR(2n−3)(α̂k′) and α` = PRR(n−2)(α̂k). If m > 1, we observed that
α` = PRR(2n−2)−(m−d+1)(α̂k′) from (1), recalling d = m unless rm = 2, in which case let d is
the largest index less than m such that rd > 1. If σk ∈ SP(n) then αk = σk and from earlier
analysis α` = PRR(2n−2)−(v+1)(α̂k) noting (m− d+ 1) ≤ v in this case; otherwise, αk = γk, and
α` = PRR(n−1)−(m−d+1)(α̂k) from (1). In all cases, applying Observation 15, α̂k′ appears before
α̂k in X ′n, and every string in Rk′ appears in X ′n before any string in Rk. J

Recall that σj begins with 1 from Claim 28. Thus, if σk begins with 1, then Claim 29 implies that
all strings from Rj appear in X ′n before all strings from Rk. Otherwise, if σk begins with 0, then it
must correspond to a PCR-related cycle. Consider Rk′ containing RL-rep σk which begins with 1; it
has the same RLE as σk. By Claim 30, all strings from Rk′ appear in X ′n before all strings from Rk.
If j = k′, we are done; otherwise j < k′ < k and Claim 29 implies that all strings from Rj appear
in X ′n before all strings from Rk′ . Finally, by applying Observation 15 (item 4), all strings from Ri

including β will appear in X ′n before all strings from Rk including β̂.

11 Proof of Proposition 24

The proof of this proposition follows similar steps as the proof for Proposition 20; however, the
RLE analysis is less complex. Recall that Yn = DB(O, 10n−1) and Y ′n = 0n−1Yn. We restate
Proposition 24, reversing the roles of β and β̂ from its original statement for convenience:

If β is a string in B(n) such that the run-length of β is one more than the run-length of β̂ and
neither β nor β̂ are opp-reps, then β appears before β̂ in Y ′n.

The first step is to further refine the ordering of the cycles R1,R2, . . . ,Rt used in the proof of
Theorem 22 to prove that O(ω) was a de Bruijn successor. In particular, let R1,R2, . . . ,Rt−1 be
the cycles of B(n) induced by the PRR, not including Rt = {1n}, ordered in non-decreasing order
with respect to the run lengths of each cycle. This ordering is additionally refined so the cycles with
the same run lengths are ordered in increasing order with respect to the RLE of the RL2-rep. If two
RL2-reps have the same RLE, then the cycle with RL2-rep starting with 0 comes first. Let σi, γi, αi

denote the RL2-rep, LC2-rep, and opp-rep, respectively, for Ri, where 1 ≤ i ≤ t; let Ri denote the
RLE of σi. Assume the run length of β is one more than the run length of β̂, and neither β nor β̂ are
opp-reps. This run-length constraint implies that the RLE of β must begin with 1. Since each string
in R1 and Rt has run length 1, β ∈ Ri for some 1 < i < t. Let Rj contain α̂i which means Rj is
the parent of Ri. Let Rk contain β̂. Like the proof in the previous section, we show that either j < k

or j = k; see Figure 3. The cases for when j < k are handled in Section 11.1. As we analyze the
cases when j = k, we find that Rj is aperiodic. Thus, by Observation 15 (item 2), we determine the
smallest positive integers a and b such that PRRa(α̂i) = β̂ and PRRb(α̂i) = αj and demonstrate that
a < b.

CASE 1: σi ∈ SP2(n). In this case αi = σi begins with 1 and Ri = 1xzy where z is odd and
y > x. Thus α̂i ∈ Rj begins with 0 and has RLE (x+1)xz−1y. Considering the RLE possibilities of
the other strings in Rj , as outlined in Lemma 11, clearly

σj = PRRx(α̂i) begins with 0 and has RLE 1xz−1(y+x),

and Rj is aperiodic. Suppose β = γi; it will have RLE 1yxz and begin with 0. Observe that PRRy(β̂)
has the same RLE as σj , but begins with 1. Thus, since Rj is CCR-related and applying Observa-
tion 10, PRRy+(n−1)(β̂) = σj , and thus PRR(n−1)+x−y(α̂i) = β̂. By definition, PRRy+x(γj) = σj ,
which means that PRRy(γj) = α̂i. Since Rj is CCR-related, αj = γj . Thus a = (n−1) + x − y,
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b = (2n−2)− y, and clearly a < b. For all other cases such that β 6= σi (the opp-rep), it is a simple
exercise to see that Rj < Rk, and hence j < k.

Example 9 Consider Ri where αi = σi = 10011001111 ∈ SP2(11) and has RLE 12224. The
corresponding LC2-rep β = γi = 01111001100 has RLE 14222. Below are the strings from Rj including
σ̂i and γ̂i in the order that they appear in Y ′11. Note that β̂ appears after α̂i (a = 8, b = 16).

00000011001
00000110011
00001100111
00011001111 ← σ̂i = α̂i

00110011111
01100111111 ← σj , the RL2-rep, with RLE 1226
11001111110
10011111100
00111111001
01111110011
11111100110
11111001100 ← γ̂i = β̂

11110011000
11100110000
11001100000
10011000000 ← σj

00110000001
01100000011
11000000110
10000001100 ← αj = γj , the opp-rep and LC2-rep for this cycle

CASE 2: σi /∈ SP2(n). If m = 1 then Ri is CCR-related and Ri = 1r1. Thus β = 01n−1 = σi

since it is is not an opp-rep. However, β̂ = 1n is an opp-rep. Contradiction. Thus, assume m > 1.
By definition αi = γi. Assume Ri = 1r1r2 · · · rm. Then,

αi = γi has RLE 1rmr1r2 · · · rm−1 where PRRrm(αi) = σi, and
α̂i has RLE (rm+1)r1r2 · · · rm−1 and is in Rj .

Consider the RLE possibilities of the other strings in Rj as outlined in Lemma 11. Given that σi is
an RL-rep, clearly

σj =
{

PRRrm(α̂i) if σi begins with 0;
PRR(n−1)+rm(α̂i) if σi begins with 1 (Ri is PCR-related).

In both cases σj begins with 0 (implying αj = γj) and Rj = 1r1r2 · · · rm−2(rm−1+rm).

B Claim 31. If Rj is the parent of Ri then σj begins with 0 and Rj is aperiodic.

Note this claim also held for the case when σi ∈ SP2(n). Observe that Rj is indeed aperiodic,
since if we assume otherwise, it implies that σi is not an RL2-rep. By definition of an LC2-rep,
σj = PRRrm−1+rm(γj). Thus:

αj = γj =


PRR(n−1)−rm−1(α̂i) if Ri is CCR-related;
PRR(2n−2)−rm−1(α̂i) if Ri is PCR-related and σi begins with 0;
PRR(n−1)−rm−1(α̂i) if Ri is PCR-related and σi begins with 1.

(4)
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Suppose β = γi. If Ri is CCR-related then σj begins with 0, but σk begins with 1, and hence
j < k. Otherwise, Ri is PCR-related and Rj is CCR-related and hence αj = γj . Since both γi and γi

belong to Ri, both σi and σi belong to Ri. Thus σi begins with 0 and from (4), b = (2n−2)− rm−1.
Since αi = γi, we have PRRn−1(α̂i) = α̂i = β̂. Thus, a = n−1 and clearly a < b.

Since the RLE of β begins with 1, from Lemma 11, the RLE for β must be of the form
1rs · · · rmr1 · · · rs−1 for some 1 ≤ s ≤ m. Similar to our analysis for Rj , Rk must begin
with 1 followed by a rotation of rs+1 · · · rmr1 · · · rs−2(rs−1+rs). Suppose 1 < s ≤ m. Let
r1 · · · rm = (r1 · · · rp)q for some largest q ≥ 1. Then since σi is an RL2-rep, Rj < Rk unless s is a
multiple of p, in which case β = γi (opp-rep) or β = γi (already handled). Suppose s = 1, which
means β = σi or β = σi. Since σi is an RL2-rep, for each 1 < s′ ≤ m, the string rs′ · · · rm is less
than or equal to the prefix of σi of the same length. Thus, for s′ 6= 2, Rj < Rk. If s′ = 2, Rj < Rk

unless r1 · · · rm−2 = r2 · · · rm−1 and r1 = rm−1, in which case Rj = Rk. Since σi is an RL2-rep,
rm ≥ r1. Thus, β has RLE of the form 1xzy where y ≤ x. If y = x, then β = γi (opp-rep) or
β = γi (already handled). Thus consider y > x. We now consider whether or not Ri is CCR-related
or PCR-related. Note rm−1 = x and rm = y.

Suppose Ri is CCR-related. If β = σi, then σj begins with 0, but σk begins with 1 and thus
j < k. Otherwise, if β = σi then j = k. From (4), b = (n−1)− x. Note that PRRx(β̂) = σj and
previously we observed that PRRy(α̂i) = σj . Thus, a = y − x and clearly a < b.

Suppose Ri is PCR-related. By its RLE, clearly σi is not in Ri. Thus β = σi. If β begins
with 1, then since z must be odd, β ∈ SP2(n) – contradiction. If β begins with 0, then observe
that PRRx(β̂) = σj and hence PRR(n−1)−x(σj) = β̂. Thus a = (n − 1) − x + y. From (4),
b = (2n− 2)− x and clearly a < b.

11.1 j < k

This section applies the same arguments as Section 10.1.

B Claim 32. If Rj and Rk have the same run length where j < k such that σj and σk both begin
with 0, then every string from Rj appears in Y ′n before any string from Rk.

Proof. The proof is by induction on the levels of the related tree of cycles rooted by R1. The base
case trivially holds for cycles with run length 1, as there are not two cycles that meet the conditions.
Assume that the result holds for all cycles at levels with run length less than ` > 1. Consider
two cycles Rj and Rk with run length ` such that σj and σk both begin with 0; neither σj nor σk

are opp-special and since j < k, Rj < Rk. Let Rx and Ry denote the parents of Rj and Rk,
respectively. By Claim 31, both σx and σy begin with 0. Given Rj > Rk, our earlier analysis (just
before Claim 31) implies that the RLE of σx is less than the RLE of σy . Thus, by the ordering of the
cycles, x < y. By induction, every string from Rx appears before every string from Ry in Y ′n, and
hence by Observation 15 (item 4), we have our result. J

B Claim 33. Let Rk and Rk′ be cycles with k′ < k such that σk and σk′ have the same RLE
1r1r2 · · · rm where m ≥ 1. Then every string from Rk′ appears in Y ′n before any string from Rk.

Proof. By the ordering of the cycles, σk′ begins with 0 and σk begins with 1; they belong to
PCR-related cycles. Note that σk = σk′ and similarly γk = γk′ . Thus, σ̂k = σ̂k′ and γ̂k = γ̂k′ and
each pair, respectively, will belong to the same CCR-related cycle. If σk ∈ SP2(n) we previously
observed that γ̂k and σ̂k belong to the same cycle, and thus Rk and Rk′ have the same parent. If
σk /∈ SP2(n), then Rk and Rk′ also have the same parent containing both γ̂k and γ̂k′ . Let R` be the
shared parent of Rk and Rk′ . Since σk′ begins with 0, αk′ = γk′ . If m = 1 there is only one cycle
and it is CCR-related. If m > 1, then α` = PRR(2n−2)−rm−1(α̂k′) from (4). If σk ∈ SP2(n), then
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αk = σk and from earlier analysis α` = PRR(2n−2)−rm(α̂k), where rm = y; otherwise αk = γk,
and α` = PRR(n−1)−rm−1(α̂k). In both cases, applying Observation 15, α̂k′ appears before α̂k in
Y ′n, and every string in Rk′ appears in Y ′n before any string in Rk. J

Recall that σj begins with 0 from Claim 31. Thus, if σk begins with 0, then Claim 32 implies that
all strings from Rj appear in Y ′n before all strings from Rk. Otherwise, if σk begins with 1, then it
must correspond to a PCR-related cycle. Consider Rk′ containing RL2-rep σk which begins with 0;
it has the same RLE as σk. By Claim 33, all strings from Rk′ appear in Y ′n before all strings from
Rk. If j = k′, we are done; otherwise j < k′ < k and Claim 32 implies that all strings from Rj

appear in Y ′n before all strings from Rk′ . Finally, by applying Observation 15 (item 4), all strings
from Ri including β will appear in Y ′n before all strings from Rk including β̂.

12 Future work

The following questions provide avenues for future research.

P1. Can Sn, On, or Ln be generated via a concatenation approach, and if so, can they be generated
in O(1) time per symbol using polynomial space?

P2. The (greedy) prefer-same and prefer-opposite de Bruijn sequences for alphabets of size k > 2
are described at http://debruijnsequence.org. Are there simple de Bruijn successors for
these generalized sequences?

P3. Does there exist an efficient decoding algorithm for the sequences Sn, On, or Ln? That is,
without generating the sequence, at what position r do we find a given string ω (unranking)? And,
given a string ω, at what position r does it appear (ranking)?

P4. Answer Conjecture 26.

P5. Can Fredricksen and Kessler’s de Bruijn sequence construction Ln [16] be generalized to larger
alphabets?
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A Implementation of the de Bruijn successors RL(ω), LC(ω), and S(ω)

#include<stdio.h>
#include<math.h>
#define N_MAX 50
int n;

// =============================================================================
// Compute the RLE of a[1..m] in run[1..r], returning r = ruh length
// =============================================================================
int RLE(int a[], int run[], int m) {

int i,j,r,old;

old = a[m+1];
a[m+1] = 1 - a[m];
r = j = 0;
for (i=1; i<=m; i++) {

if (a[i] == a[i+1]) j++;
else { run[++r] = j+1; j = 0; }

}
a[m+1] = old;
return r;

}
// ===============================================================================
// Check if a[1..n] is a "special" RL representative. It must be that a[1] = a[n]
// and the RLE of a[1..n] is of the form (21^j)^s1^t where j is even, s >=2, t>=2
// ===============================================================================
int Special(int a[]) {

int i,j,r,s,t,run[N_MAX];

if (a[1] != 0 || a[n] != 0) return 0;
r = RLE(a,run,n);

// Compute j of prefix 21^j
if (run[1] != 2) return 0;
j = 0;
while (run[j+2] == 1 && j+2 <= r) j++;

// Compute s of prefix (21^j)^s
s = 1;
while (s <= r/(1+j) -1 && run[s*(j+1)+1] == 2) {

for (i=1; i<=j; i++) if (run[s*(j+1)+1+i] != 1) return 0;
s++;

}

// Test remainder of string is (21^j)^s is 1^t
for (i=s*(j+1)+1; i<=r; i++) if (run[i] != 1) return 0;
t = r - s*(1+j);

if (s >= 2 && t >= 2 && j%2 == 0) return 1;
return 0;

}
// =============================================================================
// Apply PRR^{t+1} to a[1..n] to get b[1..n], where t is the length of the
// prefix before the first 00 or 11 in a[2..n] up to n-2
// =============================================================================
int Shift(int a[], int b[]) {

int i,t = 0;
while (a[t+2] != a[t+3] && t < n-2) t++;
for (i=1; i<=n; i++) b[i] = a[i];
for (i=1; i<=n; i++) b[i+n] = (b[i] + b[i+1] + b[n+i-1]) % 2;
for (i=1; i<=n; i++) b[i] = b[i+t+1];
return t;

}
// =============================================================================
// Test if b[1..len] is the lex largest rep (under rotation), if so, return the
// period p; otherwise return 0. Eg. (411411, p=3)(44211, p=5) (411412, p=0).
// =============================================================================
int IsLargest(int b[], int len) {

int i, p=1;
for (i=2; i<=len; i++) {

if (b[i-p] < b[i]) return 0;
if (b[i-p] > b[i]) p = i;

}
if (len % p != 0) return 0;
return p;

}
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// =============================================================================
// Membership testers not including the cycle containing 0101010...
// =============================================================================
int RLrep(int a[]) {

int p,r,rle[N_MAX];

r = RLE(a,rle,n-1);
p = IsLargest(rle,r);

// PCR-related cycle
if (a[1] == a[n]) {

if (r == n-1 && a[1] == 1) return 0; // Ignore root a[1..n] = 1010101..
if (r == 1) return 1; // Special case: a[1..n] = 000..0 or 111..1
if (p > 0 && a[1] != a[n-1] && (p == r || a[1] == 1 || p%2 == 0)) return 1;

}
// CCR-related cycle
if (a[1] != a[n]) {

if (p > 0 && a[1] == 1 && (a[n-1] == 1)) return 1;
}
return 0;

}
// =============================================================================
int LCrep(int a[]) {

int b[N_MAX];

if (a[1] != a[2]) return 0;
Shift(a,b);
return RLrep(b);

}
// =============================================================================
int SameRep(int a[]) {

int b[N_MAX];

Shift(a,b);
if (Special(a) || (LCrep(a) && !Special(b))) return 1;
return 0;

}
// =============================================================================
// Repeatedly apply the Prefer-Same or LC or RL successor rule starting with 1^n
// =============================================================================
void DB(int type) {

int i,j,v,a[N_MAX],REP;

for (i=1; i<=n; i++) a[i] = 1; // Initial string

for (j=1; j<=pow(2,n); j++) {
printf("%d", a[1]);

v = (a[1] + a[2] + a[n]) % 2;
REP = 0;
// Membership testing of a[1..n]
if (type == 1 && SameRep(a)) REP = 1;
if (type == 2 && LCrep(a)) REP = 1;
if (type == 3 && RLrep(a)) REP = 1;

// Membership testing of conjugate of a[1..n]
a[1] = 1 - a[1];
if (type == 1 && SameRep(a)) REP = 1;
if (type == 2 && LCrep(a)) REP = 1;
if (type == 3 && RLrep(a)) REP = 1;

// Shift String and add next bit
for (i=1; i<n; i++) a[i] = a[i+1];
if (REP) a[n] = 1 - v;
else a[n] = v;

}
}
//------------------------------------------------------
int main() {

int type;

printf("Enter (1) Prefer-same (2) LC (3) RL: "); scanf("%d", &type);
printf("Enter n: "); scanf("%d", &n);

DB(type);
}
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B Implementation of the de Bruijn successors RL2(ω), LC2(ω), and O(ω)

#include<stdio.h>
#include<math.h>
#define N_MAX 50
int n;

// =============================================================================
// Compute the RLE of a[s..m] in run[1..r], returning r = run length
// =============================================================================
int RLE(int a[], int run[], int s, int m) {

int i,j,r,old;

old = a[m+1];
a[m+1] = 1 - a[m];
r = j = 0;
for (i=s; i<=m; i++) {

if (a[i] == a[i+1]) j++;
else { run[++r] = j+1; j = 0; }

}
a[m+1] = old;
return r;

}
// ===============================================================================
// Check if a[1..n] is a "special" RL representative: the RLE of a[1..n] is of
// the form 1 x^j y where y > x and j is odd. Eg. 12224, 1111113 (PCR-related)
// ===============================================================================
int Special(int a[]) {

int i,r,rle[N_MAX];

r = RLE(a,rle,1,n);
if (r%2 == 0) return 0;
for (i=3; i<r; i++) if (rle[i] != rle[2]) return 0;
if (a[1] == 1 && a[2] == 0 && i == r && rle[r] > rle[2]) return 1;
return 0;

}
// =============================================================================
// Apply PRR^{t} to a[1..n] to get b[1..n], where t is the length of the
// prefix in a[1..n] before the first 01 or 10 in a[2..n]
// =============================================================================
int Shift(int a[], int b[]) {

int i,t=1;

while (a[t+1] == a[t+2] && t < n-1) t++;
for (i=1; i<=n; i++) b[i] = a[i];
for (i=1; i<=n; i++) b[i+n] = (b[i] + b[i+1] + b[n+i-1]) % 2;
for (i=1; i<=n; i++) b[i] = b[i+t];
return t;

}
// =============================================================================
// Test if b[1..len] is the lex smallest rep (under rotation), if so, return the
// period p; otherwise return 0. Eg. (114114, p=3)(11244, p=5)(124114, p=0).
// =============================================================================
int IsSmallest(int b[], int len) {

int i, p=1;
for (i=2; i<=len; i++) {

if (b[i-p] > b[i]) return 0;
if (b[i-p] < b[i]) p = i;

}
if (len % p != 0) return 0;
return p;

}
// =============================================================================
// Membership testers with case for 111111...1 (run length for a[2..n])
// =============================================================================
int RL2rep(int a[]) {

int p,r,rle[N_MAX];

r = RLE(a,rle,2,n);
if (r == 1) return 1; // Special case: a[1..n] = 000..0 or 111..1
if (a[1] == a[2]) return 0;
p = IsSmallest(rle,r);

if (a[1] == a[n] && p > 0 && (p == r || a[1] == 0 || p%2 == 0)) return 1; //PCR-related
if (a[1] != a[n] && p > 0 && a[1] == 0) return 1; // CCR-related
return 0;

}
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// =============================================================================
int LC2rep(int a[]) {

int t,b[N_MAX];

if (a[1] == a[2]) return 0;
t = Shift(a,b);
return RL2rep(b);

}
// =============================================================================
int OppRep(int a[]) {

int b[N_MAX];

Shift(a,b);
if (Special(a) || (LC2rep(a) && !Special(b))) return 1;
return 0;

}
// =============================================================================
// Repeatedly apply the Prefer Opp or LC or RL successor rule starting with 1^n
// =============================================================================
void DB(int type) {

int i,j,v,a[N_MAX],REP;

// Initial string
for (i=1; i<=n; i+=2) a[i] = 0;
for (i=2; i<=n; i+=2) a[i] = 1;

for (j=1; j<=pow(2,n); j++) {
printf("%d", a[1]);

v = (a[1] + a[2] + a[n]) % 2;
REP = 0;
// Membership testing of a[1..n]
if (type == 1 && OppRep(a)) REP = 1;
if (type == 2 && LC2rep(a)) REP = 1;
if (type == 3 && RL2rep(a)) REP = 1;

// Membership testing of conjugate of a[1..n]
a[1] = 1 - a[1];
if (type == 1 && OppRep(a)) REP = 1;
if (type == 2 && LC2rep(a)) REP = 1;
if (type == 3 && RL2rep(a)) REP = 1;

// Shift String and add next bit
for (i=1; i<n; i++) a[i] = a[i+1];
if (REP) a[n] = 1 - v;
else a[n] = v;

}
}
//------------------------------------------------------
int main() {

int type;

printf("Enter (1) Prefer-opposite (2) LC2 (3) RL2: "); scanf("%d", &type);
printf("Enter n: "); scanf("%d", &n);

DB(type);
}


	Introduction
	Euler cycle algorithms and the de Bruijn graph
	Run-length encoding
	Feedback functions and de Bruijn successors
	The pure cycling register (PCR)
	The complementing cycling register (CCR)
	The pure run-length register (PRR)

	Generic de Bruijn successors based on the PRR
	A de Bruijn successor for Sn
	A de Bruijn successor for On
	Lexicographic compositions
	Efficient implementation
	Proof of Proposition 20
	 j<k 

	Proof of Proposition 24
	 j<k 

	Future work
	Implementation of the de Bruijn successors RL(), LC(), and S() 
	Implementation of the de Bruijn successors RL2(), LC2(), and O() 

