Solving the Sigma-Tau Problem

Joe Sawada Aaron Williams

Abstract

Knuth assigned the following open problem a difficulty rating of 48/50 in The Art of Computer Programming Volume 4A:

For odd $n \geq 3$, can the permutations of $\{1,2, \ldots, n\}$ be ordered in a cyclic list so that each permutation is transformed into the next by applying either the operation σ, a rotation to the left, or τ, a transposition of the first two symbols?

This problem, known as the Sigma-Tau problem, is equivalent to the problem of finding a Hamilton cycle on the directed Cayley graph generated by σ and τ. In this paper we solve the SigmaTau problem by providing a simple $O(n)$-time successor rule to generate successive permutations of a Hamilton cycle in the aforementioned Cayley graph.

1 Introduction

Let \mathbf{P}_{n} denote the set of all permutations of $\{1,2, \ldots, n\}$. Let $\pi=p_{1} p_{2} \cdots p_{n}$ be a permutation in \mathbf{P}_{n} and consider the following two operations on π :

$$
\sigma(\pi)=p_{2} p_{3} \cdots p_{n} p_{1} \quad \text { and } \quad \tau(\pi)=p_{2} p_{1} p_{3} p_{4} \cdots p_{n}
$$

The operation σ rotates a permutation one position to the left and τ transposes the first two elements. The Sigma-Tau graph \mathcal{G}_{n} is a directed graph where the vertices are the permutations \mathbf{P}_{n}. There is a directed edge from π_{1} to π_{2} if and only if $\pi_{2}=\sigma\left(\pi_{1}\right)$ or $\pi_{2}=\tau\left(\pi_{1}\right)$. Such a graph can be thought of as a Cayley graph over \mathbf{P}_{n} with generators σ and τ. The Sigma-Tau graph \mathcal{G}_{4} is illustrated below.

Sigma-Tau Problem Does there exist is a Hamilton cycle in \mathcal{G}_{n} for odd $n \geq 3$?

This Sigma-Tau problem was assigned a difficulty of $48 / 50$ in Knuth's The Art of Computer Programming, making it the hardest open problem in the fascicle version of Volume 4A [1, Problem 71 in Section 7.2.1.2] since the middle-levels problem which was rated $49 / 50$ was recently solved by Mütze [2]. A reproduction of this question is shown below.
71. [48] Does the Cayley graph with generators $\sigma=(12 \ldots n)$ and $\tau=(12)$ have a Hamiltonian cycle whenever $n \geq 3$ is odd?

From general Hamilton cycles conditions given by Rankin [4] (see also [8]), it is known that there is no Hamilton cycle in \mathcal{G}_{n} for even $n>2$. For $n=3$, the following is a Hamilton cycle in \mathcal{G}_{3} :

$$
231,312,132,321,213,123 .
$$

It applies the operations $\sigma, \tau, \sigma, \sigma, \tau$ followed by σ to return to the first permutation. The Sigma-Tau problem can also be thought of as a combinatorial generation problem: Can the permutations \mathbf{P}_{n} be listed so that successive permutations (including the last/first) differ by the operation σ or τ ? The efficient ordering and generation of permutations has a long and interesting history with surveys by Sedgewick in the 1970s [7], Savage in the 1990s [5], and more recently by Knuth [1]. However the Sigma-Tau problem has remained a long-standing open problem in the area.

The Hamilton path variant of the Sigma-Tau problem was stated in 1975 in first edition of the Combinatorial Algorithms textbook by Nijenhuis and Wilf [3, Exercise 6]. An explicit Hamilton path in \mathcal{G}_{n} was recently given by the authors in [6]. Many of the same concepts are revisited here to solve the significantly more difficult Hamilton cycle problem. Specifically, the main result of this paper is to answer the Sigma-Tau problem in the affirmative, providing a simple $O(n)$-time successor rule to produce successive permutations in a Hamilton cycle of \mathcal{G}_{n}.

In the following section, we present some necessary definitions and notation along with some preliminary results. In Section 3 we describe how \mathcal{G}_{n} can be partitioned into 2 cycles, and then ultimately provide a construction for a Hamilton cycle in \mathcal{G}_{n}, for odd $n>3$. The Appendix contains a C implementation for our Hamilton cycle construction. The construction presented in this article also appears in an unpublished manuscript [9] that provides an alternate proof using rotation systems.

2 Preliminary Definitions, Notation, and Results

Unless otherwise stated, assume for the rest of this paper that $n>3$. Let $\pi=p_{1} p_{2} \cdots p_{n}$ denote a permutation in \mathbf{P}_{n}. Let \mathbf{Q} be a subset of \mathbf{P}_{n} that is closed under σ. A successor rule on \mathbf{Q} is a function $f: \mathbf{Q} \rightarrow \mathbf{Q}$ that maps each permutation π to one of $\sigma(\pi)$ or $\tau(\pi)$. Our goal is to define a successor rule on \mathbf{P}_{n}, with the appropriate conditions, that constructs a Hamilton cycle one vertex (permutation) at a time in the Sigma-Tau graph \mathcal{G}_{n}. A template for the function is as follows:

$$
f(\pi)= \begin{cases}\tau(\pi) & \text { if conditions } \\ \sigma(\pi) & \text { otherwise }\end{cases}
$$

Observe that the successor rule $f(\pi)=\sigma(\pi)$ partitions \mathcal{G}_{n} into $(n-1)$! cycles which correspond to equivalence classes of permutations under rotation. Let the lexicographically largest permutation in each cycle be its representative, and call such a permutation a cyclic permutation; each representative corresponds to a permutation starting with n. Let rotations (π) denote the set of permutations rotationally equivalent to π.

Remark 2.1 If a successor rule f induces a Hamilton cycle in \mathcal{G}_{n} then there are at least $(n-1)$! permutations π such that $f(\pi)=\tau(\pi)$.

When representing a permutation, the last symbol can be inferred from the first $n-1$ symbols. A shorthand permutation is a length $n-1$ prefix of some permutation. For $1 \leq j \leq n-2$, define $g(j)=j+1$, and define $g(n-1)=2$. A seed is a shorthand permutation $s=s_{1} s_{2} \cdots s_{n-1}$ where $s_{1}=n$ and the missing symbol x is $g\left(s_{2}\right)$ (Note: this definition is different from the one given in [6] and it is critical to our Hamilton cycle construction). Let $\boldsymbol{S e e d} \boldsymbol{s}_{n}$ denote the set of all $(n-1)(n-3)$! seeds. Given a seed s with missing symbol x, the flower of s, denoted by flower (s), is the set of all $n-1$ cyclic permutations that can be obtained by inserting x after a symbol in s. Given a seed s, let $\operatorname{perms}(\boldsymbol{s})=\bigcup_{\pi \in \text { flower }(\boldsymbol{s})} \operatorname{rotations}(\pi)$. If \boldsymbol{S} is a set of seeds, let $\operatorname{perms}(\boldsymbol{S})=\bigcup_{\boldsymbol{s} \in \boldsymbol{S}} \operatorname{perms}(\boldsymbol{s})$.

Example 1 When $n=5$ the $4 \cdot 2!=8$ seeds are:

$$
5134,5143,5214,5241,5312,5321,5413,5431 .
$$

The flower of seed 5321 is flower $(5321)=\{54321,53421,53241,53214\}$.

$$
\begin{aligned}
\operatorname{perms}(5321)= & 54321,43215,32154,21543,15432, \\
& 53421,34215,42153,21534,15342, \\
& 53241,32415,24153,41532,15324, \\
& 53214,32145,21453,14532,45321 .
\end{aligned}
$$

Remark 2.2 Every cyclic permutation $\pi=p_{1} p_{2} \cdots p_{n}$ belongs to the flower of either one or two seeds. It belongs to the flower of the seed obtained by removing $g\left(p_{2}\right)$ from π. Also if $p_{2}=g\left(p_{3}\right)$, then it belongs to the flower of the seed obtained by removing p_{2} from π.

An immediate consequence is the following remark.
Remark 2.3 $\operatorname{perms}\left(\boldsymbol{S e e d s}_{n}\right)=\mathbf{P}_{n}$.
Our definitions of seeds and flowers are motivated by the following equivalence property. Given a permutation $\pi=p_{1} p_{2} \cdots p_{n}$, let equiv (π) be the set of all rotations of $p_{1} p_{3} p_{4} \cdots p_{n}$ with p_{2} inserted back into the second position. For example $\operatorname{equiv}(54321)=\{54321,34215,24153,14532\}$. A successor rule f is τ-equivalent if $f(\pi)=\tau(\pi)$ implies that $f\left(\pi^{\prime}\right)=\tau\left(\pi^{\prime}\right)$ for all permutations $\pi^{\prime} \in \operatorname{equiv}(\pi)$.

Lemma 2.4 A successor rule f induces a cycle cover on \mathcal{G}_{n} if and only if f is τ-equivalent.

Proof. (\Rightarrow) Suppose f induces a cycle cover on \mathcal{G}_{n}. If $f(\pi)=\tau(\pi)$ for some permutation $\pi=$ $p_{1} p_{2} \cdots p_{n}$, then $\sigma(\pi)=p_{2} p_{3} \cdots p_{n} p_{1}$ must be preceded by $\pi^{\prime}=\tau\left(p_{2} p_{3} \cdots p_{n} p_{1}\right)=p_{3} p_{2} p_{4} p_{5} \cdots p_{n} p_{1}$. Thus, $f\left(\pi^{\prime}\right)=\tau\left(\pi^{\prime}\right)$. Repeating this argument starting with π^{\prime} implies that $f\left(p_{4} p_{2} p_{5} p_{6} \cdots p_{n} p_{1} p_{3}\right)=$ $\tau\left(p_{4} p_{2} p_{5} p_{6} \cdots p_{n} p_{1} p_{3}\right)$ and so on, which implies that f is τ-equivalent. (\Leftarrow) Suppose f is τ equivalent. Consider $\pi=p_{1} p_{2} \cdots p_{n}$ and $\pi_{1}=p_{2} p_{1} p_{3} p_{4} \cdots p_{n}$ and $\pi_{2}=p_{n} p_{1} p_{2} \cdots p_{n-1}$. Note that $\tau\left(\pi_{1}\right)=\sigma\left(\pi_{2}\right)=\pi$. For f to be a cycle cover on \mathcal{G}_{n} exactly one of $f\left(\pi_{1}\right)$ and $f\left(\pi_{2}\right)$ must be π. This follows since $\pi_{2} \in \operatorname{equiv}\left(\pi_{1}\right)$.

2.1 A Hamilton Cycle for an Induced Subgraph of \mathcal{G}_{n}

Let $\mathcal{G}_{n}[\mathbf{Q}]$ denote the subgraph of \mathcal{G}_{n} induced by \mathbf{Q}. By considering the τ-equivalence property and considering a seed $s=s_{1} s_{2} \cdots s_{n-1}$ with missing symbol x, we define a successor rule on $\mathcal{G}_{n}[\operatorname{perms}(s)]$ that induces a Hamilton cycle. For $1 \leq j \leq n-1$, consider the cyclic permutation obtained by inserting x after s_{j}. Let π_{j} denote the rotation of this permutation such that x is in the second position. Define a τ-equivalent successor rule f_{s} on $\mathcal{G}_{n}[\operatorname{perms}(s)]$ as follows:

$$
f_{s}(\pi)= \begin{cases}\tau(\pi) & \text { if } \pi=\pi_{j} \text { for some } 1 \leq j \leq n-1 \\ \sigma(\pi) & \text { otherwise }\end{cases}
$$

Example 2 Consider seed $s=5321$ with missing symbol $x=4$. Repeated application of the successor rule f_{s} induces the following Hamilton cycle in $\mathcal{G}_{5}[\operatorname{perms}(5321)]$:

$$
\begin{array}{ccc}
45321,53214,32145, & 21453, \\
14532=\pi_{4}, & \\
41532,15324,53241, & 32415, \\
24153=\pi_{3}, & \\
42153,21534,15342, & 53421, \\
34215=\pi_{2}, \\
43215,32154, & 21543, & 15432, \\
54321=\pi_{1} .
\end{array}
$$

The five permutations in each row are equivalent under rotation. A τ transition is applied to move between the equivalence classes when the second symbol is the missing symbol $x=4$.

Remark $2.5 f_{s}\left(\pi_{j}\right)=\tau\left(\pi_{j}\right)=\sigma\left(\pi_{j-1}\right)$, where $\pi_{0}=\pi_{n-1}$.
Let $\operatorname{seq}(\pi)$ denote the following sequence of all permutations rotationally equivalent to π :

$$
\sigma(\pi), \sigma^{2}(\pi), \ldots, \sigma^{n-1}(\pi), \pi
$$

where σ^{j} denotes $\sigma^{j-1}(\sigma(j))$ for $j>1$. Repeated application of f_{s} induces a Hamilton cycle, denoted by $\operatorname{ham}(\boldsymbol{s})$, in $\mathcal{G}_{n}[\operatorname{perms}(\boldsymbol{s})]$ as follows:

$$
\operatorname{ham}(\boldsymbol{s})=\operatorname{seq}\left(\pi_{n-1}\right), \operatorname{seq}\left(\pi_{n-2}\right), \ldots, \operatorname{seq}\left(\pi_{1}\right)
$$

Lemma 2.6 For any seed s, the successor rule f_{s} induces a Hamilton cycle in $\mathcal{G}_{n}[\operatorname{perms}(\boldsymbol{s})]$ using $n-1 \tau$-edges.

2.2 A Tree-like Structure of Seeds

The seeds of the set $\boldsymbol{S e e d s} \boldsymbol{r}_{n}$ can be arranged into a tree-like structure that has exactly one cycle. Consider a seed $s=s_{1} s_{2} \cdots s_{n-1}$ with missing symbol x. Define the parent of s, denoted by $\operatorname{parent}(\boldsymbol{s})$, to be the seed obtained by removing $g(x)$ from $s_{1} x s_{2} \cdots s_{n-1}$. Let $\alpha(\boldsymbol{s})$ be the length $n-3$ prefix of $s_{2}\left(s_{2}-1\right) \cdots 2(n-1)(n-2) \cdots 2$. By this definition, the last element of $\alpha(\boldsymbol{s})$ is $g(x)$. The decreasing subsequence of s is the longest prefix of $\alpha(\boldsymbol{s})$ that appears as a subsequence in $s_{3}, s_{4}, \ldots, s_{j-1}$, where j is such that $s_{j}=1$. This is well-defined since 1 appears in every seed, but not in the first position. The level of s is $(n-3)$ minus the length of its decreasing subsequence.

Example 3 The decreasing subsequence of the following seeds is highlighted in blue.

seed \boldsymbol{s}	$\alpha(\boldsymbol{s})$	level	$\operatorname{parent}(\boldsymbol{s})$
64213	432	2	65413
63521	325	1	64321
64321	432	0	65431

Lemma 2.7 If s is a seed at level $\ell>0$, then parent (s) is at level $\ell-1$.
Proof. Let $s=s_{1} s_{2} \cdots s_{n-1}$ be a seed with missing symbol x. Since $\ell>0$, the last symbol of $\alpha(\boldsymbol{s})$, which is $g(x)$, will not be in \boldsymbol{s} 's decreasing subsequence. Thus, the decreasing subsequence of $\operatorname{parent}(\boldsymbol{s})$ is the decreasing subsequence of s with $g(x)$ added to the front. Thus, parent (\boldsymbol{s}) is at level $\ell-1$.

Let $\boldsymbol{H u b _ { n }}$ denote the subset of seeds at level 0 . A seed $s_{1} s_{2} \cdots s_{n-1}$ with missing symbol x is in $\boldsymbol{H u} \boldsymbol{b}_{n}$ if and only if $x s_{2} s_{3} \cdots s_{n-2}$ is a rotation of $(n-1)(n-2) \cdots 2, s_{1}=n$, and $s_{n-1}=1$. Denote the $n-2$ seeds in the $\boldsymbol{H u} \boldsymbol{b}_{n}$ by $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{n-2}$. They can be ordered as follows, where $\operatorname{parent}\left(\boldsymbol{h}_{j}\right)=\boldsymbol{h}_{j+1}$ (with $\boldsymbol{h}_{n-1}=\boldsymbol{h}_{1}$) and each \boldsymbol{h}_{i} is missing the symbol $i+1$.

$$
\begin{aligned}
\boldsymbol{h}_{1} & =n(n-1)(n-2) \cdots 31, \\
\boldsymbol{h}_{2} & =n 2(n-1)(n-2) \cdots 41, \\
\boldsymbol{h}_{3} & =n 32(n-1)(n-2) \cdots 51, \\
\cdots & \cdots \cdots \\
\boldsymbol{h}_{n-2} & =n(n-2)(n-3) \cdots 1 .
\end{aligned}
$$

Example 4 For $n=6$, the parent structure of all seeds is illustrated below, where $\boldsymbol{h}_{1}=65431$, $\boldsymbol{h}_{2}=62541, \boldsymbol{h}_{3}=63251, \boldsymbol{h}_{4}=64321$.

Lemma 2.8 Let $n>4$ and let \boldsymbol{s}_{1} and \boldsymbol{s}_{2} be distinct seeds where $\boldsymbol{s}_{1}=s_{1} s_{2} \cdots s_{n-1}$ has missing symbol x. If $\boldsymbol{s}_{2}=\operatorname{parent}\left(\boldsymbol{s}_{1}\right)$ then flower $\left(\boldsymbol{s}_{1}\right) \cap$ flower $\left(\boldsymbol{s}_{2}\right)=\left\{s_{1} x s_{2} \cdots s_{n-1}\right\}$. If $\boldsymbol{s}_{2} \neq \operatorname{parent}\left(\boldsymbol{s}_{1}\right)$ and $\boldsymbol{s}_{1} \neq \operatorname{parent}\left(\boldsymbol{s}_{2}\right)$ then flower $\left(\boldsymbol{s}_{1}\right) \cap$ flower $\left(\boldsymbol{s}_{2}\right)=\emptyset$.

Proof. Suppose $\boldsymbol{s}_{2}=\operatorname{parent}\left(\boldsymbol{s}_{1}\right)$. From the definition of parent, $s_{1} x s_{2} \cdots s_{n-1}$ is in flower $\left(\boldsymbol{s}_{1}\right) \cap$ flower $\left(\boldsymbol{s}_{2}\right)$. Every other cyclic permutation in flower $\left(\boldsymbol{s}_{1}\right)$ starts with $s_{1} s_{2}$, where $s_{2}=x-1$ or $s_{2}=$ $n-1$ and $x=2$. Therefore since $n>4$, these permutations are not in flower $\left(s_{2}\right)$. Thus flower $\left(\boldsymbol{s}_{1}\right) \cap$ flower $\left(\boldsymbol{s}_{2}\right)=\left\{s_{1} x s_{2} \cdots s_{n-1}\right\}$. Now suppose that $\boldsymbol{s}_{2} \neq \operatorname{parent}\left(\boldsymbol{s}_{1}\right)$ and $\boldsymbol{s}_{1} \neq \operatorname{parent}\left(\boldsymbol{s}_{2}\right)$ and flower $\left(\boldsymbol{s}_{1}\right) \cap$ flower $\left(s_{2}\right) \neq \emptyset$. Then flower $\left(s_{1}\right) \cap$ flower $\left(s_{2}\right)$ must contain some cyclic permutation $\pi=s_{1} s_{2} \cdots s_{j} x s_{j+1} \cdots s_{n-1}$ where $2 \leq j \leq n-1$. Note that if $j=1$ then $\boldsymbol{s}_{2}=\operatorname{parent}\left(\boldsymbol{s}_{1}\right)$. By removing any symbol from π except x or s_{2}, the resulting shorthand permutation is not seed, by its definition. However, if removing s_{2} is a seed, then $s_{1}=\operatorname{parent}\left(s_{2}\right)$, a contradiction. Thus in this case flower $\left(s_{1}\right) \cap$ flower $\left(s_{2}\right)=\emptyset$.

This lemma along with the definition of f_{s} implies that given a seed $s=s_{1} s_{2} \cdots s_{n-1}$ with missing symbol $x, s_{1} x s_{2} \cdots s_{n-1}$ is the unique permutation π in $\operatorname{perms}(\boldsymbol{s}) \cap \operatorname{perms}(\operatorname{parent}(\boldsymbol{s}))$ such that $f_{\boldsymbol{s}}(\pi)=\tau(\pi)$. Let $\tau \operatorname{parent}(\boldsymbol{s})$ denote this permutation $s_{1} x s_{2} \cdots s_{n-1}$.

3 Successor Rules to Construct Hamilton Paths/Cycles in \mathcal{G}_{n}

In this section, we start by showing that the following successor rule partitions \mathcal{G}_{n} into two cycles. Then by modifying the rule for a single permutation, a successor rule is presented that constructs a Hamilton path in \mathcal{G}_{n}. By modifying the rule for $n-1$ permutations we obtain a successor rule that constructs a Hamilton cycle in \mathcal{G}_{n} for odd n.

Let \boldsymbol{S} be a subset of $\boldsymbol{S e e d s} \boldsymbol{s}_{n}$. Define the successor rule $F_{\boldsymbol{S}}$ on $\mathcal{G}_{n}[\operatorname{perms}(\boldsymbol{S})]$ as follows:

$$
F_{\boldsymbol{S}}(\pi)= \begin{cases}\tau(\pi) & \text { if there exists } \boldsymbol{s} \in \boldsymbol{S} \text { such that } \pi \in \operatorname{perms}(\boldsymbol{s}) \text { and } f_{\boldsymbol{s}}(\pi)=\tau(\pi) ; \\ \sigma(\pi) & \text { otherwise } .\end{cases}
$$

Remark 3.1 The successor rule F_{S} is τ-equivalent.

As a first step, we focus on how this successor rule behaves on $\boldsymbol{H u b} \boldsymbol{b}_{n}$. For our upcoming Hamilton cycle construction on \mathcal{G}_{n}, we will want to keep track of some special permutations. Consider the $n-2$ permutations obtained by taking all rotations of $(n-1) \cdots 32$ and inserting n into the first position and 1 into the second last position:

$$
\begin{array}{ll}
\mathbf{p}_{1} & =n(n-2) \cdots 321(n-1), \\
\mathbf{p}_{2} & =n(n-3) \cdots 32(n-1) 1(n-2), \\
\mathbf{p}_{3} & =n(n-4) \cdots 32(n-1)(n-2) 1(n-3), \\
\cdots & \cdots \\
\mathbf{p}_{n-2} & =n(n-1) \cdots 4312 .
\end{array}
$$

Define \mathbf{p}_{n-1} as follows:

$$
\mathbf{p}_{n-1}=n(n-3)(n-4) \cdots 2(n-2)(n-1) 1 .
$$

Removing the second symbol from each of these $n-1$ permutations results in a seed at level 1 and each permutation is the τ parent of the resulting seed. The following example illustrates how $F_{\boldsymbol{H u} \boldsymbol{b}_{n}}$ partitions $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H u} \boldsymbol{b}_{n}\right)\right]$ into two cycles for $n=6$.

Example 5 For $n=6, \mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{5}$ are:

$$
\mathbf{p}_{1}=643215, \mathbf{p}_{2}=632514, \mathbf{p}_{3}=625413, \mathbf{p}_{4}=654312, \mathbf{p}_{5}=632451
$$

$F_{\boldsymbol{H u b}_{6}}$ partitions $\mathcal{G}_{6}\left[\operatorname{perms}\left(\boldsymbol{H u b} \boldsymbol{b}_{6}\right)\right]$ into the following two cycles C_{1} and C_{2}. The cycle C_{1} contains the permutations $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$ in that relative order highlighted in blue. The cycle C_{2} contains \mathbf{p}_{5} highlighted in blue.

```
C1}
```

 564321, 643215, 432156, 321564, 215643, 156432, 516432, 164325, 643251,
 463251, 632514, 325146, 251463, 514632, 146325, 416325, 163254, 632541,
 362541, 625413, 254136, 541362, 413625, 136254, 316254, 162543, 625431,
 265431, 654312, 543126, 431265, 312654, 126543, 216543, 165432, 654321.
 $C_{2}=$
$543216,432165,321654, \quad 231654,316542,165423,654231,542316,423165,243165,431652,316524,165243,652431,524316$,
$254316,543162,431625, \quad 341625,416253,162534,625341,253416,534162,354162,541623,416235,162354,623541,235416$, $325416,254163,541632,451632,516324,163245,632451,324516,245163,425163,251634,516342,163425,634251,342516$, $432516,325164,251643, \quad 521643,216435,164352,643521,435216,352164, \quad 532164,321645,216453,164532,645321,453216$.

Observe that C_{1} starts with $\tau(654321)$ and ends with 654321 while C_{2} begins with $\sigma(654321)$.

Lemma 3.2 $F_{\boldsymbol{H u b}_{n}}$ partitions $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H u b}_{n}\right)\right]$ into two cycles C_{1} and C_{2} where C_{1} contains the permutations $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n-2}$ while respecting their relative order, and C_{2} contains \mathbf{p}_{n-1}. Moreover, C_{1} contains $n \cdots 321$ and C_{2} contains $(n-2)(n-1)(n-3)(n-4) \cdots 1 n$.

Proof. Since $F_{\boldsymbol{H u b}_{n}}$ is τ-equivalent, from Lemma 2.4 it will induce a cycle cover on $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H} \boldsymbol{u} \boldsymbol{b}_{n}\right)\right]$. We explicitly show that it induces a two cycle cover with the properties mentioned. Given a $\boldsymbol{H} \boldsymbol{u} \boldsymbol{b}_{n}$ seed $\boldsymbol{h}_{i}=s_{1} s_{2} \cdots s_{n-1}$ with missing symbol $x=i+1$, define π_{j}^{i} in a similar manner used when defining π_{j} in $\operatorname{ham}(\boldsymbol{s})$: it is the permutation obtained by inserting x after s_{j} in the seed \boldsymbol{h}_{i}, followed by a rotation so that x is in the second position. Let $\pi_{j}^{0}=\pi_{j}^{n-2}$ and let $\pi_{j}^{n-1}=\pi_{j}^{1}$. Since $\boldsymbol{h}_{i}=n(i)(i-1) \cdots 2(n-1)(n-2) \cdots(i+2) 1$,

$$
\pi_{n-2}^{i}=(i+2)(i+1) 1 n(i)(i-1) \cdots 2(n-1)(n-2) \cdots(i+3) .
$$

Applying three rotations we have:

$$
\sigma^{3}\left(\pi_{n-2}^{i}\right)=n(i)(i-1) \cdots 2(n-1)(n-2) \cdots(i+1) 1=\pi_{1}^{i-1} .
$$

Now, from the definition of $\operatorname{ham}(s)$ and Remark 2.5 we have

- $F_{\boldsymbol{H u b}_{n}}\left(\pi_{1}^{i-1}\right)=\tau\left(\pi_{1}^{i-1}\right)=\sigma\left(\pi_{n-1}^{i-1}\right)$ which is the first permutation of $\operatorname{seq}\left(\pi_{n-1}^{i-1}\right)$,
- $F_{\boldsymbol{H u b} \boldsymbol{b}_{n}}\left(\pi_{n-1}^{i}\right)=\tau\left(\pi_{n-1}^{i}\right)=\sigma\left(\pi_{n-2}^{i}\right)$, and
- $F_{\boldsymbol{H}_{\boldsymbol{u b}}^{n}}\left(\pi_{2}^{i}\right)=\tau\left(\pi_{2}^{i}\right)=\sigma\left(\pi_{1}^{i}\right)=\sigma\left(\sigma^{3}\left(\pi_{n-2}^{i+1}\right)\right)$.

Using these properties, we can explicitly trace the two cycles in $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H} \boldsymbol{u} \boldsymbol{b}_{n}\right)\right]$. Let C_{1} be the following cycle obtained by applying $F_{\boldsymbol{H u b}_{n}}$ starting from the first permutation of $\operatorname{seq}\left(\pi_{n-1}^{n-2}\right)$:

$$
\begin{array}{cccc}
\operatorname{seq}\left(\pi_{n-1}^{n-2}\right), & \sigma\left(\pi_{n-2}^{n-2}\right), & \sigma^{2}\left(\pi_{n-2}^{n-2}\right), & \sigma^{3}\left(\pi_{n-2}^{n-2}\right), \\
\operatorname{seq}\left(\pi_{n-1}^{n-3}\right), & \sigma\left(\pi_{n-2}^{n-3}\right), & \sigma^{2}\left(\pi_{n-2}^{n-3}\right), & \sigma^{3}\left(\pi_{n-2}^{n-3}\right), \\
\operatorname{seq}\left(\pi_{n-1}^{n-4}\right), & \sigma\left(\pi_{n-2}^{n-4}\right), & \sigma^{2}\left(\pi_{n-2}^{n-4}\right), & \sigma^{3}\left(\pi_{n-2}^{n-4}\right), \\
\cdots & \cdots \\
\operatorname{seq}\left(\pi_{n-1}^{1}\right), & \sigma\left(\pi_{n-2}^{1}\right), & \sigma^{2}\left(\pi_{n-2}^{1}\right), & \sigma^{3}\left(\pi_{n-2}^{1}\right) .
\end{array}
$$

The cycle C_{1} contains $(n+3)(n-2)$ permutations. Each row corresponds to the first $n+3$ permutations for some $h a m\left(\boldsymbol{h}_{i}\right)$. Also observe that for $1 \leq i \leq n-2, \mathbf{p}_{i}$ is a member of rotations $\left(\pi_{n-1}^{n-1-i}\right)$. Thus $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n-2}$ appear in C_{1} respecting the relative order. Moreover, $\sigma^{3}\left(\pi_{n-2}^{1}\right)=\pi_{1}^{n-2}=$ $n \cdots 321$ is the last permutation in C_{1}. Let C_{2} be the following cycle obtained by applying $F_{\boldsymbol{H u b} \boldsymbol{b}_{n}}$ starting from $\sigma^{4}\left(\pi_{n-2}^{1}\right)$:

$$
\begin{array}{cc}
\sigma^{4}\left(\pi_{n-2}^{1}\right), \sigma^{5}\left(\pi_{n-2}^{1}\right), \ldots, \sigma^{n}\left(\pi_{n-2}^{1}\right), & \operatorname{seq}\left(\pi_{n-3}^{1}\right), \operatorname{seq}\left(\pi_{n-4}^{1}\right), \ldots, \operatorname{seq}\left(\pi_{2}^{1}\right), \\
\sigma^{4}\left(\pi_{n-2}^{2}\right), \sigma^{5}\left(\pi_{n-2}^{2}\right), \ldots, \sigma^{n}\left(\pi_{n-2}^{2}\right), & \operatorname{seq}\left(\pi_{n-3}^{2}\right), \operatorname{seq}\left(\pi_{n-4}^{2}\right), \ldots, \operatorname{seq}\left(\pi_{2}^{2}\right), \\
\sigma^{4}\left(\pi_{n-2}^{3}\right), \sigma^{5}\left(\pi_{n-2}^{3}\right), \ldots, \sigma^{n}\left(\pi_{n-2}^{3}\right), & \operatorname{seq}\left(\pi_{n-3}^{3}\right), \operatorname{seq}\left(\pi_{n-4}^{3}\right), \ldots, \operatorname{seq}\left(\pi_{2}^{3}\right), \\
\ldots & \ldots \\
\sigma^{4}\left(\pi_{n-2}^{n-2}\right), \sigma^{5}\left(\pi_{n-2}^{n-2}\right), \ldots, \sigma^{n}\left(\pi_{n-2}^{n-2}\right), & \operatorname{seq}\left(\pi_{n-3}^{n-2}\right), \operatorname{seq}\left(\pi_{n-4}^{n-2}\right), \ldots, \operatorname{seq}\left(\pi_{2}^{n-2}\right) .
\end{array}
$$

The cycle C_{2} contains the remaining $((n-3)+n(n-4))(n-2)$ permutations of perms $\left(\boldsymbol{H u} \boldsymbol{b}_{n}\right)$. The permutation \mathbf{p}_{n-1} belongs to rotations $\left(\pi_{n-3}^{n-3}\right)$, and thus belongs to C_{2}. Moreover C_{2} ends with $\pi_{2}^{n-2}=(n-2)(n-1)(n-3)(n-4) \cdots 1 n$.

Because of the tree-like structure of the seeds, we can treat the cycles C_{1} and C_{2} of $\boldsymbol{H u \boldsymbol { b } _ { n }}$ as a base case and then repeatedly add appropriate seeds to grow the two cycles.

Lemma 3.3 Let $n>4$ and let $s_{1}, s_{2}, \ldots, s_{m}$ be an increasing ordering of $\boldsymbol{S e e d} s_{n}$ by level, where $m=(n-1)(n-3)!$. Let $\boldsymbol{S}=\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{j}\right\}$ for some $n-2 \leq j \leq m$. Then $F_{\boldsymbol{S}}$ partitions $\mathcal{G}_{n}[\operatorname{perms}(\boldsymbol{S})]$ into two cycles C_{1} and C_{2}.

Proof. The proof is by induction on j. The base case when $j=n-2$ is covered by Lemma 3.2 since the first $n-2$ seeds are the $\boldsymbol{H u b}_{n}$ seeds with level 0 . Consider $\boldsymbol{S}=\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{j}\right\}$ for $n-2 \leq$ $j<m$. Inductively, assume that F_{S} partitions $\mathcal{G}_{n}[\operatorname{perms}(\boldsymbol{S})]$ into two cycles C_{1} and C_{2}. Since $F_{\left\{s_{j+1}\right\}}=f_{s_{j+1}}, F_{\left\{s_{j+1}\right\}}$ induces a Hamilton cycle in $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{s}_{j+1}\right)\right]$. By the ordering of the seeds, $\boldsymbol{s}_{j+1}=s_{1} s_{2} \cdots s_{n-1}$ has level $\ell>0$ and all seeds at a smaller level are in $\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \ldots, \boldsymbol{s}_{j}\right\}$. Thus, by Lemma 2.7 and Lemma 2.8 there is exactly one seed s in $\left\{s_{1}, s_{2}, \ldots, s_{j}\right\}$, namely parent $\left(s_{j+1}\right)$, such that flower $\left(s_{j+1}\right) \cap$ flower (s) is not empty. Moreover this intersection contains the single cyclic permutation $\pi=s_{1} x s_{2} \cdots s_{n-1}$. Thus, from the definition of $\operatorname{ham}\left(\boldsymbol{s}_{j}\right), \pi$ is the only permutation in $\operatorname{perms}(\boldsymbol{S})$ such that $F_{\boldsymbol{S} \cup\left\{s_{j+1}\right\}}(\pi)$ is not in perms (\boldsymbol{S}). Suppose that π is in C_{1}. By replacing the edge $(\pi, \sigma(\pi))$ in C_{1} constructed by F_{S} from the inductive hypothesis with the sub-path of $\operatorname{ham}\left(\boldsymbol{s}_{j+1}\right)$ starting with π and ending with $\sigma(\pi)$, we obtain a larger cycle C_{1} constructed by $F_{S \cup\left\{s_{j+1}\right\}}$ that contains all permutations in $\operatorname{perms}\left(\boldsymbol{s}_{j+1}\right)$. The case for when π is in C_{2} is analogous.

When $\boldsymbol{S}=\boldsymbol{S e e d s}{ }_{n}$, the successor rule $F_{\boldsymbol{S}}$ is equivalent to the following.

2-cycle successor rule

Let $\pi=p_{1} p_{2} \cdots p_{n}$ be a permutation and let r be the symbol to the right of n when π is considered cyclically and skipping over p_{2}.

$$
F(\pi)= \begin{cases}\tau(\pi) & \text { if }\left(r, p_{2}\right) \in\{(1,2),(2,3), \ldots,(n-2, n-1),(n-1,2)\} \\ \sigma(\pi) & \text { otherwise }\end{cases}
$$

3.1 Hamilton Path Successor

From Lemma 3.2, $F_{\boldsymbol{H u b}_{n}}$ partitions $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H u b} \boldsymbol{b}_{n}\right)\right]$ into two cycles C_{1} and C_{2} where C_{1} contains $\pi_{1}=n \cdots 321$ and C_{2} contains $\pi_{2}=(n-2)(n-1)(n-3)(n-4) \cdots 1 n$. Lemma 3.3 and its proof construction together with Remark 2.3 demonstrate that F partitions \mathcal{G}_{n} into two cycles C_{1} and C_{2} where C_{1} contains π_{1} and C_{2} contains π_{2}. Since $F\left(\pi_{1}\right)=\tau\left(\pi_{1}\right)$ and $F\left(\pi_{2}\right)=\tau\left(\pi_{2}\right)$ by changing the successor of π_{1} from $\tau\left(\pi_{1}\right)$ to $\sigma\left(\pi_{1}\right)=\tau\left(\pi_{2}\right)$ in F we obtain a successor rule that constructs a Hamilton Path in \mathcal{G}_{n} starting from $\tau\left(\pi_{1}\right)$ and ending with π_{2}.

Hamilton path successor rule for \mathcal{G}_{n}

Let $\pi=p_{1} p_{2} \cdots p_{n}$ be a permutation and let r be the symbol to the right of n when π is considered cyclically and skipping over p_{2}. Define the successor rule $H P$ on \mathcal{G}_{n} as follows:

$$
H P(\pi)= \begin{cases}\tau(\pi) & \text { if }\left(r, p_{2}\right) \in\{(1,2),(2,3), \ldots,(n-2, n-1),(n-1,2)\} \text { and } \pi \neq n \cdots 321 \\ \sigma(\pi) & \text { otherwise }\end{cases}
$$

Our results prove the following theorem for $n>4$. The correctness for cases $n=2,3,4$ are easily verified by iterating $H P(\pi)$ starting from 12, 231, and 3421 respectively. For $n=2$ we get 12, 21 . For $n=3$ we get $231,312,123,213,132,321$. For $n=4$ we get:

$$
\begin{aligned}
& 3421,4213,2413,4132,1324,3241,2341,3412,4123,1234,2134,1342, \\
& 3142,1423,4231,2431,4312,3124,1243,2143,1432,4321,3214,2314 .
\end{aligned}
$$

Theorem 3.4 The successor rule HP induces a Hamilton path in \mathcal{G}_{n} starting from $\tau(n \cdots 321)$ and ending with $(n-2)(n-1)(n-3)(n-4) \cdots 1 n$, for all $n>1$.

This Hamilton path successor is similar to, but not the same as the one presented in [6].

3.2 Hamilton Cycle Successor

To convert the 2 -cycle successor F into a Hamilton cycle successor (which must be τ-equivalent by Lemma 2.4) we change the definition of $n-1$ transitions from σ to τ. Consider the $n-1$ permutations obtained by taking all rotations of $12 \cdots(n-1)$ and inserting n into the second position:

$$
\left.\begin{array}{rl}
\mathbf{r}_{1} & =(n-1) n 12 \cdots(n-2), \\
\mathbf{r}_{2} & =(n-2) n(n-1) 12 \cdots(n-3), \\
\mathbf{r}_{3} & =(n-3) n(n-2)(n-1) 12 \cdots(n-4), \\
\cdots & \cdots
\end{array}\right) .
$$

Let $\mathbf{R}_{n}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n-1}\right\}$. The following lemma is proved at the end of this subsection.
Lemma 3.5 F partitions \mathcal{G}_{n} into two cycles C_{1} and C_{2} where C_{1} contains the permutations $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n-2}$ while respecting their relative order, and C_{2} contains \mathbf{r}_{n-1}.

By changing the definition of F for the permutations in \mathbf{R}_{n}, we obtain the following successor rule.

Hamilton cycle successor rule for \mathcal{G}_{n} where $n>3$ is odd

Let $\pi=p_{1} p_{2} \cdots p_{n}$ be a permutation and let r be the symbol to the right of n when π is considered cyclically and skipping over p_{2}. Define the successor rule $H C$ on \mathcal{G}_{n} as follows:

$$
H C(\pi)= \begin{cases}\tau(\pi) & \text { if }\left(r, p_{2}\right) \in\{(1,2),(2,3), \ldots,(n-2, n-1),(n-1,2)\} \text { or } \pi \in \mathbf{R}_{n} \\ \sigma(\pi) & \text { otherwise }\end{cases}
$$

Example 6 An illustration of how the successor rule $H C(\pi)$ joins the two cycles C_{1} and C_{2} constructed by applying the 2 -cycle successor F on \mathcal{G}_{7} is given below.

Theorem 3.6 The successor rule $H C$ induces a Hamilton cycle in \mathcal{G}_{n}, for odd $n>3$.
Proof. From Lemma 3.5, F partitions \mathcal{G}_{n} into two cycles C_{1} and C_{2} where C_{1} contains the permutations $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n-2}$ while respecting their relative order, and C_{2} contains \mathbf{r}_{n-1}. Observe that $\tau\left(\mathbf{r}_{i}\right)=\sigma\left(\mathbf{r}_{i+1}\right)$ for $1 \leq i<n-1$ and $\tau\left(\mathbf{r}_{n-1}\right)=\sigma\left(\mathbf{r}_{1}\right)$. Also, $F\left(\mathbf{r}_{i}\right)=\sigma\left(\mathbf{r}_{i}\right)$ for all i. Considering C_{1}, let \mathbf{q}_{i} denote the permutation before \mathbf{r}_{i+1} for $1 \leq i<n-2$ and let \mathbf{q}_{r-2} denote the permutation before \mathbf{r}_{1}. Then C_{1} is given by

$$
C_{1}=\mathbf{r}_{1}, \sigma\left(\mathbf{r}_{1}\right), \ldots, \mathbf{q}_{1}, \quad \mathbf{r}_{2}, \sigma\left(\mathbf{r}_{2}\right), \ldots, \mathbf{q}_{2}, \quad \mathbf{r}_{3}, \sigma\left(\mathbf{r}_{3}\right), \ldots, \mathbf{q}_{3}, \quad \cdots \quad \mathbf{r}_{n-2}, \sigma\left(\mathbf{r}_{n-2}\right), \ldots, \mathbf{q}_{n-2}
$$

Similarly, letting \mathbf{q}_{n-1} denote the permutation before \mathbf{r}_{n-1} in C_{2} we have

$$
C_{2}=\mathbf{r}_{n-1}, \sigma\left(\mathbf{r}_{n-1}\right), \ldots, \mathbf{q}_{n-1}
$$

By changing the successor of each \mathbf{r}_{i} from $\sigma\left(\mathbf{r}_{i}\right)$ to $\tau\left(\mathbf{r}_{i}\right)$ in F we obtain $H C$ which produces the following Hamilton cycle for odd n :

$$
\begin{gathered}
\mathbf{r}_{1}, \sigma\left(\mathbf{r}_{2}\right), \ldots, \mathbf{q}_{2}, \quad \mathbf{r}_{3}, \sigma\left(\mathbf{r}_{4}\right), \ldots, \mathbf{q}_{4}, \cdots \quad \mathbf{r}_{n-2}, \sigma\left(\mathbf{r}_{n-1}\right), \ldots, \mathbf{q}_{n-1}, \quad \mathbf{r}_{n-1}, \sigma\left(\mathbf{r}_{1}\right), \ldots, \mathbf{q}_{1}, \\
\mathbf{r}_{2}, \sigma\left(\mathbf{r}_{3}\right), \ldots, \mathbf{q}_{3}, \quad \mathbf{r}_{4}, \sigma\left(\mathbf{r}_{5}\right), \ldots, \mathbf{q}_{5}, \cdots \\
\mathbf{r}_{n-3}, \sigma\left(\mathbf{r}_{n-2}\right), \ldots, \mathbf{q}_{n-2} .
\end{gathered}
$$

A complete C implementation of both the Hamilton path and Hamilton cycle successors is given in the Appendix.

3.2.1 Proof of Lemma 3.5

Recall that $F=F_{\text {Seeds }_{n}}$. For each $\mathbf{r}_{j}, \pi=\sigma\left(\mathbf{r}_{j}\right)=p_{1} p_{2} \cdots p_{n}$ is a cyclic permutation where $p_{2} \neq g\left(p_{3}\right)$. Thus, by Remark 2.2, π belongs exclusively to the flower of the seed obtained by removing $g\left(p_{2}\right)$ from π. Denote this seed by $s d\left(\mathbf{r}_{j}\right)$. Given a seed s at level $\ell>0$, define $\operatorname{prehub}(\boldsymbol{s})$ to be the seed at level 1 obtained by applying the parent operation $\ell-1$ times starting with s.

Lemma 3.7 If $1 \leq j \leq n-2$ then $\operatorname{prehub}\left(s d\left(\mathbf{r}_{j}\right)\right)$ is the seed obtained by removing the first symbol of $\sigma^{j}((n-1)(n-2) \cdots 2)$, inserting n at the beginning and inserting 1 into the second last position. Additionally, prehub $\left(\operatorname{sd}\left(\mathbf{r}_{n-1}\right)\right)=n(n-4)(n-5) \cdots 2(n-2)(n-1) 1$.
Proof. The decreasing subsequence of $s d\left(\mathbf{r}_{1}\right)=n 134 \cdots(n-1)$ has length 0 . Thus \mathbf{r}_{1} is at level $n-3$. Applying $n-4$ parent operations we obtain the seed $n(n-3)(n-4) \cdots 21(n-1)$ at level 1 , which is $\operatorname{prehub}\left(\operatorname{sd}\left(\mathbf{r}_{1}\right)\right)$. For $2 \leq j \leq n-2$, consider $\mathbf{r}_{j}=(n-j) n(n-j+1) \cdots(n-1) 12 \cdots(n-j-1)$. The decreasing subsequence of $\operatorname{sd}\left(\mathbf{r}_{j}\right)$ is simply $(n-j+1)$ with length 1 . Thus, $n-5$ applications of the parent operation are required to get to $\operatorname{prehub}\left(s d\left(\mathbf{r}_{j}\right)\right)$ and this will yield the required seed. The decreasing subsequence of $s d\left(\mathbf{r}_{n-1}\right)=n 245 \cdots(n-1) 1$ is $2(n-1)$, which has length 2 . Applying $n-6$ parent operations we obtain the seed $n(n-4)(n-5) \cdots 2(n-2)(n-1) 1$ at level 1 , which is $\operatorname{prehub}\left(s d\left(\mathbf{r}_{n-1}\right)\right)$.

By inserting the missing symbol from $\operatorname{prehub}\left(\operatorname{sd}\left(\mathbf{r}_{j}\right)\right)$ into the second position we obtain \mathbf{p}_{j}.
Corollary 3.8 For $1 \leq j \leq n-1$, the permutation $\tau \operatorname{parent}\left(\operatorname{prehub}\left(\operatorname{sd}\left(\mathbf{r}_{j}\right)\right)\right)=\mathbf{p}_{j}$.
From Lemma 3.2, $F_{\boldsymbol{H u b}_{n}}$ partitions $\mathcal{G}_{n}\left[\operatorname{perms}\left(\boldsymbol{H u b} \boldsymbol{b}_{n}\right)\right]$ into two cycles C_{1} and C_{2} where C_{1} contains $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n-2}$ in that relative order and C_{2} contains \mathbf{p}_{n-1}. Lemma 3.3 and its proof construction, along with Remark 2.3 demonstrate that F partitions \mathcal{G}_{n} into two cycles C_{1} and C_{2} where C_{1} contains $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n-2}$ in that relative order and C_{2} contains \mathbf{p}_{n-1}. Together, Corollary 3.8, the inductive proof of Lemma 3.3, and the tree-like structure of the seeds imply that C_{1}, considered starting from \mathbf{p}_{1}, will be of the form:

$$
\mathbf{p}_{1}, \ldots, \mathbf{r}_{1}, \ldots, \mathbf{p}_{2}, \ldots, \mathbf{r}_{2}, \ldots, \cdots, \mathbf{p}_{n-2}, \ldots, \mathbf{r}_{n-2}, \ldots
$$

It also means that \mathbf{r}_{n-1} is in C_{2}. This proves Lemma 3.5.

References

[1] D. E. Knuth. The Art of Computer Programming, Volume 4A Combinatorial Algorithms, Part 1. AddisonWesley, 2011.
[2] T. Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical Society, 112(4):677-713, 2016.
[3] A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, New York, 1st edition, 1975.
[4] R. A. Rankin. A campanological problem in group theory. Mathematical Proceedings of the Cambridge Philosophical Society, 44:17-25, 1948.
[5] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605-629, 1997.
[6] J. Sawada and A. Williams. A Hamilton path for the Sigma-Tau problem. In SODA'18: The Twenty Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2018.
[7] R. Sedgewick. Permutation generation methods. ACM Comput. Surv., 9(2):137-164, 1977.
[8] R. G. Swan. A simple proof of Rankin's campanological theorem. The American Mathematical Monthly, 106(2):159-161, February 1999.
[9] A. Williams. Hamiltonicity of the Cayley digraph on the symmetric group generated by $\sigma=(12 \cdots n)$ and $\tau=(12)$. ArXiv e-prints, 2013.

Appendix - C code for a Hamilton path in \mathcal{G}_{n} or a Hamilton cycle in \mathcal{G}_{n} for odd n

```
#include <stdio.h>
int n, pi[100], PATH=0, CYCLE=0;
void Print() {
    for (int i=1; i<=n; i++) printf("%d", pi[i]); printf("\n");
}
void Sigma() {
    int tmp, i;
    tmp = pi[1];
    for (i=1; i < n; i++) pi[i] = pi[i+1];
    pi[n] = tmp;
}
void Tau() {
    int tmp = pi[1]; pi[1] = pi[2]; pi[2] = tmp;
}
//---------------------------------------------------------------
// RETURN TRUE IF pi[1..n]= n.. 21
int SpecialPerm() {
    for (int i=1; i<=n; i++) if (pi[i] != n-i+1) return 0;
    return 1;
}
//---------------------------------------------------------------
// RETURN TRUE IF pi[1]pi[3..n] is a rotation of 12..n-1
int SpecialSet() {
    if (pi[2] != n) return 0;
    if (pi[1] < n-1 && pi[1]+1 != pi[3]) return 0;
    if (pi[1] == n-1 && pi[3] != 1) return 0;
    for (int i=3; i<n; i++) {
        if (pi[i] < n-1 && pi[i]+1 != pi[i+1]) return 0;
        if (pi[i] == n-1 && pi[i+1] != 1) return 0;
    }
    return 1;
}
void Next() {
    int r,i=1;
    while(pi[i] != n) i++;
    if (i == 1) r = pi[3];
    else if (i == n) r = pi[1];
    else r = pi[i+1];
    if (PATH && SpecialPerm()) Sigma();
    else if ((r<n-1 && pi[2]==r+1) || (r==n-1 && pi[2]==2)) Tau();
    else if (CYCLE && SpecialSet()) Tau();
    else Sigma();
}
int main() {
    int total=0, TOTAL=1, i, type;
    printf("ENTER 1 (Hamilton Path) or 2 (Hamilton Cycle):"); scanf("%d", &type);
    if (type == 1) PATH = 1;
    if (type == 2) CYCLE = 1;
    printf("ENTER n (must be odd for cycle): "); scanf("%d", &n);
    for (i=2; i<=n; i++) TOTAL = TOTAL *i; // TOTAL = n!
    for (i=1; i<=n; i++) pi[i] = n-i+1; // INITAL PERM = tau(n..21)
    Tau();
    while (total < TOTAL) {
        Print();
        Next();
        total++;
} }
```

