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Abstract

Knuth assigned the following open problem a difficulty rating of 48/50 in The Art of Com-
puter Programming Volume 4A:

For odd n ≥ 3, can the permutations of {1, 2, . . . , n} be ordered in a cyclic list so
that each permutation is transformed into the next by applying either the operation
σ, a rotation to the left, or τ , a transposition of the first two symbols?

This problem, known as the Sigma-Tau problem, is equivalent to the problem of finding a Hamil-
ton cycle on the directed Cayley graph generated by σ and τ . In this paper we solve the Sigma-
Tau problem by providing a simple O(n)-time successor rule to generate successive permuta-
tions of a Hamilton cycle in the aforementioned Cayley graph.

1 Introduction
Let Pn denote the set of all permutations of {1, 2, . . . , n}. Let π = p1p2 · · · pn be a permutation in
Pn and consider the following two operations on π:

σ(π) = p2p3 · · · pnp1 and τ(π) = p2p1p3p4 · · · pn.

The operation σ rotates a permutation one position to the left and τ transposes the first two elements.
The Sigma-Tau graph Gn is a directed graph where the vertices are the permutations Pn. There is a
directed edge from π1 to π2 if and only if π2 = σ(π1) or π2 = τ(π1). Such a graph can be thought
of as a Cayley graph over Pn with generators σ and τ . The Sigma-Tau graph G4 is illustrated below.
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Sigma-Tau Problem Does there exist is a Hamilton cycle in Gn for odd n ≥ 3?

This Sigma-Tau problem was assigned a difficulty of 48/50 in Knuth’s The Art of Computer Pro-
gramming, making it the hardest open problem in the fascicle version of Volume 4A [1, Problem 71
in Section 7.2.1.2] since the middle-levels problem which was rated 49/50 was recently solved by
Mütze [2]. A reproduction of this question is shown below.

From general Hamilton cycles conditions given by Rankin [4] (see also [8]), it is known that there
is no Hamilton cycle in Gn for even n > 2. For n = 3, the following is a Hamilton cycle in G3:

231, 312, 132, 321, 213, 123.

It applies the operations σ, τ, σ, σ, τ followed by σ to return to the first permutation. The Sigma-Tau
problem can also be thought of as a combinatorial generation problem: Can the permutations Pn be
listed so that successive permutations (including the last/first) differ by the operation σ or τ? The
efficient ordering and generation of permutations has a long and interesting history with surveys by
Sedgewick in the 1970s [7], Savage in the 1990s [5], and more recently by Knuth [1]. However the
Sigma-Tau problem has remained a long-standing open problem in the area.

The Hamilton path variant of the Sigma-Tau problem was stated in 1975 in first edition of the
Combinatorial Algorithms textbook by Nijenhuis and Wilf [3, Exercise 6]. An explicit Hamilton
path in Gn was recently given by the authors in [6]. Many of the same concepts are revisited here
to solve the significantly more difficult Hamilton cycle problem. Specifically, the main result of
this paper is to answer the Sigma-Tau problem in the affirmative, providing a simple O(n)-time
successor rule to produce successive permutations in a Hamilton cycle of Gn.

In the following section, we present some necessary definitions and notation along with some
preliminary results. In Section 3 we describe how Gn can be partitioned into 2 cycles, and then
ultimately provide a construction for a Hamilton cycle in Gn, for odd n > 3. The Appendix contains
a C implementation for our Hamilton cycle construction. The construction presented in this article
also appears in an unpublished manuscript [9] that provides an alternate proof using rotation systems.

2 Preliminary Definitions, Notation, and Results
Unless otherwise stated, assume for the rest of this paper that n > 3. Let π = p1p2 · · · pn denote
a permutation in Pn. Let Q be a subset of Pn that is closed under σ. A successor rule on Q is a
function f : Q → Q that maps each permutation π to one of σ(π) or τ(π). Our goal is to define a
successor rule on Pn, with the appropriate conditions, that constructs a Hamilton cycle one vertex
(permutation) at a time in the Sigma-Tau graph Gn. A template for the function is as follows:

f(π) =

{
τ(π) if conditions;
σ(π) otherwise.
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Observe that the successor rule f(π) = σ(π) partitions Gn into (n−1)! cycles which correspond to
equivalence classes of permutations under rotation. Let the lexicographically largest permutation in
each cycle be its representative, and call such a permutation a cyclic permutation; each representa-
tive corresponds to a permutation starting with n. Let rotations(π) denote the set of permutations
rotationally equivalent to π.

Remark 2.1 If a successor rule f induces a Hamilton cycle in Gn then there are at least (n−1)!
permutations π such that f(π) = τ(π).

When representing a permutation, the last symbol can be inferred from the first n−1 symbols. A
shorthand permutation is a length n−1 prefix of some permutation. For 1 ≤ j ≤ n−2, define
g(j) = j+1, and define g(n−1) = 2. A seed is a shorthand permutation s = s1s2 · · · sn−1 where
s1 = n and the missing symbol x is g(s2) (Note: this definition is different from the one given in [6]
and it is critical to our Hamilton cycle construction). Let Seedsn denote the set of all (n−1)(n−3)!
seeds. Given a seed s with missing symbol x, the flower of s, denoted by flower(s), is the set of all
n−1 cyclic permutations that can be obtained by inserting x after a symbol in s. Given a seed s, let
perms(s) =

⋃
π∈flower(s) rotations(π). If S is a set of seeds, let perms(S) =

⋃
s∈S perms(s).

Example 1 When n = 5 the 4 · 2! = 8 seeds are:

5134, 5143, 5214, 5241, 5312, 5321, 5413, 5431.

The flower of seed 5321 is flower(5321) = {54321, 53421, 53241, 53214}.

perms(5321) = 54321, 43215, 32154, 21543, 15432,

53421, 34215, 42153, 21534, 15342,

53241, 32415, 24153, 41532, 15324,

53214, 32145, 21453, 14532, 45321.

Remark 2.2 Every cyclic permutation π = p1p2 · · · pn belongs to the flower of either one or two
seeds. It belongs to the flower of the seed obtained by removing g(p2) from π. Also if p2 = g(p3),
then it belongs to the flower of the seed obtained by removing p2 from π.

An immediate consequence is the following remark.

Remark 2.3 perms(Seedsn) = Pn.

Our definitions of seeds and flowers are motivated by the following equivalence property. Given
a permutation π = p1p2 · · · pn, let equiv(π) be the set of all rotations of p1p3p4 · · · pn with p2 inserted
back into the second position. For example equiv(54321) = {54321, 34215, 24153, 14532}. A
successor rule f is τ -equivalent if f(π) = τ(π) implies that f(π′) = τ(π′) for all permutations
π′ ∈ equiv(π).

Lemma 2.4 A successor rule f induces a cycle cover on Gn if and only if f is τ -equivalent.
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Proof. (⇒) Suppose f induces a cycle cover on Gn. If f(π) = τ(π) for some permutation π =
p1p2 · · · pn, then σ(π) = p2p3 · · · pnp1 must be preceded by π′ = τ(p2p3 · · · pnp1) = p3p2p4p5 · · · pnp1.
Thus, f(π′) = τ(π′). Repeating this argument starting with π′ implies that f(p4p2p5p6 · · · pnp1p3) =
τ(p4p2p5p6 · · · pnp1p3) and so on, which implies that f is τ -equivalent. (⇐) Suppose f is τ -
equivalent. Consider π = p1p2 · · · pn and π1 = p2p1p3p4 · · · pn and π2 = pnp1p2 · · · pn−1. Note
that τ(π1) = σ(π2) = π. For f to be a cycle cover on Gn exactly one of f(π1) and f(π2) must be π.
This follows since π2 ∈ equiv(π1). 2

2.1 A Hamilton Cycle for an Induced Subgraph of Gn
Let Gn[Q] denote the subgraph of Gn induced by Q. By considering the τ -equivalence property
and considering a seed s = s1s2 · · · sn−1 with missing symbol x, we define a successor rule on
Gn[perms(s)] that induces a Hamilton cycle. For 1 ≤ j ≤ n−1, consider the cyclic permutation
obtained by inserting x after sj . Let πj denote the rotation of this permutation such that x is in the
second position. Define a τ -equivalent successor rule fs on Gn[perms(s)] as follows:

fs(π) =

{
τ(π) if π = πj for some 1 ≤ j ≤ n−1;
σ(π) otherwise.

Example 2 Consider seed s = 5321 with missing symbol x = 4. Repeated application of the
successor rule fs induces the following Hamilton cycle in G5[perms(5321)]:

45321, 53214, 32145, 21453,
14532 = π4,

41532, 15324, 53241, 32415,
24153 = π3,

42153, 21534, 15342, 53421,
34215 = π2,

43215, 32154, 21543, 15432,
54321 = π1.

21543 15432

24153 41532

32154

5432143215

45321

14532

21453

15342
34215

42153

53421

21534

5321 53214

32145

32415 53241

15324

The five permutations in each row are equivalent under rotation. A τ transition is applied to
move between the equivalence classes when the second symbol is the missing symbol x = 4.

Remark 2.5 fs(πj) = τ(πj) = σ(πj−1), where π0 = πn−1.

Let seq(π) denote the following sequence of all permutations rotationally equivalent to π:

σ(π), σ2(π), . . . , σn−1(π), π,

where σj denotes σj−1(σ(j)) for j > 1. Repeated application of fs induces a Hamilton cycle,
denoted by ham(s), in Gn[perms(s)] as follows:

ham(s) = seq(πn−1), seq(πn−2), . . . , seq(π1).

Lemma 2.6 For any seed s, the successor rule fs induces a Hamilton cycle in Gn[perms(s)] using
n−1 τ -edges.
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2.2 A Tree-like Structure of Seeds
The seeds of the set Seedsn can be arranged into a tree-like structure that has exactly one cycle.
Consider a seed s = s1s2 · · · sn−1 with missing symbol x. Define the parent of s, denoted by
parent(s), to be the seed obtained by removing g(x) from s1xs2 · · · sn−1. Let α(s) be the length
n−3 prefix of s2(s2−1) · · · 2(n−1)(n−2) · · · 2. By this definition, the last element of α(s) is g(x).
The decreasing subsequence of s is the longest prefix of α(s) that appears as a subsequence in
s3, s4, . . . , sj−1, where j is such that sj = 1. This is well-defined since 1 appears in every seed, but
not in the first position. The level of s is (n−3) minus the length of its decreasing subsequence.

Example 3 The decreasing subsequence of the following seeds is highlighted in blue.

seed s α(s) level parent(s)
64213 432 2 65413
63521 325 1 64321
64321 432 0 65431

Lemma 2.7 If s is a seed at level ` > 0, then parent(s) is at level `−1.

Proof. Let s = s1s2 · · · sn−1 be a seed with missing symbol x. Since ` > 0, the last symbol of
α(s), which is g(x), will not be in s’s decreasing subsequence. Thus, the decreasing subsequence
of parent(s) is the decreasing subsequence of s with g(x) added to the front. Thus, parent(s) is at
level `−1. 2

Let Hubn denote the subset of seeds at level 0. A seed s1s2 · · · sn−1 with missing symbol x
is in Hubn if and only if xs2s3 · · · sn−2 is a rotation of (n−1)(n−2) · · · 2, s1 = n, and sn−1 = 1.
Denote the n−2 seeds in the Hubn by h1,h2, . . . ,hn−2. They can be ordered as follows, where
parent(hj) = hj+1 (with hn−1 = h1) and each hi is missing the symbol i+ 1.

h1 = n(n−1)(n−2) · · · 31,
h2 = n2(n−1)(n−2) · · · 41,
h3 = n32(n−1)(n−2) · · · 51,
· · · · · · · · ·

hn−2 = n(n−2)(n−3) · · · 1.

Example 4 For n = 6, the parent structure of all seeds is illustrated below, where h1 = 65431,
h2 = 62541, h3 = 63251, h4 = 64321.
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Lemma 2.8 Let n > 4 and let s1 and s2 be distinct seeds where s1 = s1s2 · · · sn−1 has missing
symbol x. If s2 = parent(s1) then flower(s1)∩ flower(s2) = {s1xs2 · · · sn−1}. If s2 6= parent(s1)
and s1 6= parent(s2) then flower(s1) ∩ flower(s2) = ∅.

Proof. Suppose s2 = parent(s1). From the definition of parent, s1xs2 · · · sn−1 is in flower(s1) ∩
flower(s2). Every other cyclic permutation in flower(s1) starts with s1s2, where s2 = x−1 or s2 =
n−1 and x = 2. Therefore since n > 4, these permutations are not in flower(s2). Thus flower(s1)∩
flower(s2) = {s1xs2 · · · sn−1}. Now suppose that s2 6= parent(s1) and s1 6= parent(s2) and
flower(s1)∩ flower(s2) 6= ∅. Then flower(s1)∩ flower(s2) must contain some cyclic permutation
π = s1s2 · · · sjxsj+1 · · · sn−1 where 2 ≤ j ≤ n−1. Note that if j = 1 then s2 = parent(s1). By
removing any symbol from π except x or s2, the resulting shorthand permutation is not seed, by its
definition. However, if removing s2 is a seed, then s1 = parent(s2), a contradiction. Thus in this
case flower(s1) ∩ flower(s2) = ∅. 2

This lemma along with the definition of fs implies that given a seed s = s1s2 · · · sn−1 with
missing symbol x, s1xs2 · · · sn−1 is the unique permutation π in perms(s)∩perms(parent(s)) such
that fs(π) = τ(π). Let τparent(s) denote this permutation s1xs2 · · · sn−1.

3 Successor Rules to Construct Hamilton Paths/Cycles in Gn
In this section, we start by showing that the following successor rule partitions Gn into two cycles.
Then by modifying the rule for a single permutation, a successor rule is presented that constructs a
Hamilton path in Gn. By modifying the rule for n−1 permutations we obtain a successor rule that
constructs a Hamilton cycle in Gn for odd n.

Let S be a subset of Seedsn. Define the successor rule FS on Gn[perms(S)] as follows:

FS(π) =

{
τ(π) if there exists s ∈ S such that π ∈ perms(s) and fs(π) = τ(π);
σ(π) otherwise.
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Remark 3.1 The successor rule FS is τ -equivalent.

As a first step, we focus on how this successor rule behaves on Hubn. For our upcoming Hamil-
ton cycle construction on Gn, we will want to keep track of some special permutations. Consider
the n−2 permutations obtained by taking all rotations of (n−1) · · · 32 and inserting n into the first
position and 1 into the second last position:

p1 = n(n−2) · · · 321(n−1),
p2 = n(n−3) · · · 32(n−1)1(n−2),
p3 = n(n−4) · · · 32(n−1)(n−2)1(n−3),
· · · · · · · · ·
pn−2 = n(n−1) · · · 4312.

Define pn−1 as follows:

pn−1 = n(n−3)(n−4) · · · 2(n−2)(n−1)1.

Removing the second symbol from each of these n−1 permutations results in a seed at level 1 and
each permutation is the τparent of the resulting seed. The following example illustrates how FHubn

partitions Gn[perms(Hubn)] into two cycles for n = 6.

Example 5 For n = 6, p1,p2, . . . ,p5 are:

p1 = 643215, p2 = 632514, p3 = 625413, p4 = 654312, p5 = 632451.

FHub6 partitions G6[perms(Hub6)] into the following two cycles C1 and C2. The cycle C1

contains the permutations p1,p2,p3,p4 in that relative order highlighted in blue. The cycle C2

contains p5 highlighted in blue.

C1 =

564321, 643215, 432156, 321564, 215643, 156432, 516432, 164325, 643251,
463251, 632514, 325146, 251463, 514632, 146325, 416325, 163254, 632541,
362541, 625413, 254136, 541362, 413625, 136254, 316254, 162543, 625431,
265431, 654312, 543126, 431265, 312654, 126543, 216543, 165432, 654321.

C2 =

543216,432165,321654, 231654,316542,165423,654231,542316,423165, 243165,431652,316524,165243,652431,524316,
254316,543162,431625, 341625,416253,162534,625341,253416,534162, 354162,541623,416235,162354,623541,235416,
325416,254163,541632, 451632,516324,163245,632451,324516,245163, 425163,251634,516342,163425,634251,342516,
432516,325164,251643, 521643,216435,164352,643521,435216,352164, 532164,321645,216453,164532,645321,453216.

Observe that C1 starts with τ(654321) and ends with 654321 while C2 begins with σ(654321).

Lemma 3.2 FHubn partitions Gn[perms(Hubn)] into two cycles C1 and C2 where C1 contains the
permutations p1,p2, . . . ,pn−2 while respecting their relative order, and C2 contains pn−1. More-
over, C1 contains n · · · 321 and C2 contains (n−2)(n−1)(n−3)(n−4) · · · 1n.

7



Proof. Since FHubn is τ -equivalent, from Lemma 2.4 it will induce a cycle cover on Gn[perms(Hubn)].
We explicitly show that it induces a two cycle cover with the properties mentioned. Given a Hubn
seed hi = s1s2 · · · sn−1 with missing symbol x = i + 1, define πij in a similar manner used when
defining πj in ham(s): it is the permutation obtained by inserting x after sj in the seed hi, fol-
lowed by a rotation so that x is in the second position. Let π0

j = πn−2j and let πn−1j = π1
j . Since

hi = n(i)(i−1) · · · 2(n−1)(n−2) · · · (i+2)1,

πin−2 = (i+2)(i+1)1n(i)(i−1) · · · 2(n−1)(n−2) · · · (i+3).

Applying three rotations we have:

σ3(πin−2) = n(i)(i−1) · · · 2(n−1)(n−2) · · · (i+1)1 = πi−11 .

Now, from the definition of ham(s) and Remark 2.5 we have

• FHubn(π
i−1
1 ) = τ(πi−11 ) = σ(πi−1n−1) which is the first permutation of seq(πi−1n−1),

• FHubn(π
i
n−1) = τ(πin−1) = σ(πin−2), and

• FHubn(π
i
2) = τ(πi2) = σ(πi1) = σ(σ3(πi+1

n−2)).

Using these properties, we can explicitly trace the two cycles in Gn[perms(Hubn)]. Let C1 be the
following cycle obtained by applying FHubn starting from the first permutation of seq(πn−2n−1):

seq(πn−2n−1), σ(πn−2n−2), σ2(πn−2n−2), σ3(πn−2n−2),
seq(πn−3n−1), σ(πn−3n−2), σ2(πn−3n−2), σ3(πn−3n−2),
seq(πn−4n−1), σ(πn−4n−2), σ2(πn−4n−2), σ3(πn−4n−2),

· · ·
seq(π1

n−1), σ(π1
n−2), σ2(π1

n−2), σ3(π1
n−2).

The cycle C1 contains (n+3)(n−2) permutations. Each row corresponds to the first n+3 permuta-
tions for some ham(hi). Also observe that for 1 ≤ i ≤ n−2, pi is a member of rotations(πn−1−in−1 ).
Thus p1,p2, . . . ,pn−2 appear in C1 respecting the relative order. Moreover, σ3(π1

n−2) = πn−21 =
n · · · 321 is the last permutation in C1. Let C2 be the following cycle obtained by applying FHubn

starting from σ4(π1
n−2):

σ4(π1
n−2), σ

5(π1
n−2), . . . , σ

n(π1
n−2), seq(π1

n−3), seq(π1
n−4), . . . , seq(π1

2),
σ4(π2

n−2), σ
5(π2

n−2), . . . , σ
n(π2

n−2), seq(π2
n−3), seq(π2

n−4), . . . , seq(π2
2),

σ4(π3
n−2), σ

5(π3
n−2), . . . , σ

n(π3
n−2), seq(π3

n−3), seq(π3
n−4), . . . , seq(π3

2),
· · · · · ·

σ4(πn−2n−2), σ
5(πn−2n−2), . . . , σ

n(πn−2n−2), seq(πn−2n−3), seq(πn−2n−4), . . . , seq(πn−22 ).

The cycle C2 contains the remaining ((n−3) + n(n − 4))(n−2) permutations of perms(Hubn).
The permutation pn−1 belongs to rotations(πn−3n−3), and thus belongs to C2. Moreover C2 ends with
πn−22 = (n−2)(n−1)(n−3)(n−4) · · · 1n. 2

Because of the tree-like structure of the seeds, we can treat the cycles C1 and C2 of Hubn as a
base case and then repeatedly add appropriate seeds to grow the two cycles.
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Lemma 3.3 Let n > 4 and let s1, s2, . . . , sm be an increasing ordering of Seedsn by level, where
m = (n−1)(n−3)!. Let S = {s1, s2, . . . , sj} for some n−2 ≤ j ≤ m. Then FS partitions
Gn[perms(S)] into two cycles C1 and C2.

Proof. The proof is by induction on j. The base case when j = n−2 is covered by Lemma 3.2 since
the first n−2 seeds are the Hubn seeds with level 0. Consider S = {s1, s2, . . . , sj} for n−2 ≤
j < m. Inductively, assume that FS partitions Gn[perms(S)] into two cycles C1 and C2. Since
F{sj+1} = fsj+1

, F{sj+1} induces a Hamilton cycle in Gn[perms(sj+1)]. By the ordering of the seeds,
sj+1 = s1s2 · · · sn−1 has level ` > 0 and all seeds at a smaller level are in {s1, s2, . . . , sj}. Thus,
by Lemma 2.7 and Lemma 2.8 there is exactly one seed s in {s1, s2, . . . , sj}, namely parent(sj+1),
such that flower(sj+1)∩flower(s) is not empty. Moreover this intersection contains the single cyclic
permutation π = s1xs2 · · · sn−1. Thus, from the definition of ham(sj), π is the only permutation in
perms(S) such that FS∪{sj+1}(π) is not in perms(S). Suppose that π is in C1. By replacing the edge
(π, σ(π)) in C1 constructed by FS from the inductive hypothesis with the sub-path of ham(sj+1)
starting with π and ending with σ(π), we obtain a larger cycle C1 constructed by FS∪{sj+1} that
contains all permutations in perms(sj+1). The case for when π is in C2 is analogous. 2

When S = Seedsn, the successor rule FS is equivalent to the following.

2-cycle successor rule
Let π = p1p2 · · · pn be a permutation and let r be the symbol to the right of n when π is
considered cyclically and skipping over p2.

F (π) =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)};
σ(π) otherwise.

3.1 Hamilton Path Successor
From Lemma 3.2, FHubn partitions Gn[perms(Hubn)] into two cyclesC1 andC2 whereC1 contains
π1 = n · · · 321 and C2 contains π2 = (n−2)(n−1)(n−3)(n−4) · · · 1n. Lemma 3.3 and its proof
construction together with Remark 2.3 demonstrate that F partitions Gn into two cycles C1 and C2

where C1 contains π1 and C2 contains π2. Since F (π1) = τ(π1) and F (π2) = τ(π2) by changing
the successor of π1 from τ(π1) to σ(π1) = τ(π2) in F we obtain a successor rule that constructs a
Hamilton Path in Gn starting from τ(π1) and ending with π2.

Hamilton path successor rule for Gn
Let π = p1p2 · · · pn be a permutation and let r be the symbol to the right of n when π is
considered cyclically and skipping over p2. Define the successor rule HP on Gn as follows:

HP(π) =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)} and π 6= n · · · 321;
σ(π) otherwise.
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Our results prove the following theorem for n > 4. The correctness for cases n = 2, 3, 4 are easily
verified by iterating HP(π) starting from 12, 231, and 3421 respectively. For n = 2 we get 12, 21.
For n = 3 we get 231, 312, 123, 213, 132, 321. For n = 4 we get:

3421, 4213, 2413, 4132, 1324, 3241, 2341, 3412, 4123, 1234, 2134, 1342,
3142, 1423, 4231, 2431, 4312, 3124, 1243, 2143, 1432, 4321, 3214, 2314.

Theorem 3.4 The successor rule HP induces a Hamilton path in Gn starting from τ(n · · · 321) and
ending with (n−2)(n−1)(n−3)(n−4) · · · 1n, for all n > 1.

This Hamilton path successor is similar to, but not the same as the one presented in [6].

3.2 Hamilton Cycle Successor
To convert the 2-cycle successor F into a Hamilton cycle successor (which must be τ -equivalent by
Lemma 2.4) we change the definition of n−1 transitions from σ to τ . Consider the n−1 permutations
obtained by taking all rotations of 12 · · · (n−1) and inserting n into the second position:

r1 = (n−1)n12 · · · (n−2),
r2 = (n−2)n(n−1)12 · · · (n−3),
r3 = (n−3)n(n−2)(n−1)12 · · · (n−4),
· · · · · · · · ·
rn−2 = 2n345 · · · (n−1)1,
rn−1 = 1n23 · · · (n−1).

Let Rn = {r1, r2, . . . , rn−1}. The following lemma is proved at the end of this subsection.

Lemma 3.5 F partitions Gn into two cyclesC1 andC2 whereC1 contains the permutations r1, r2, . . . , rn−2
while respecting their relative order, and C2 contains rn−1.

By changing the definition of F for the permutations in Rn, we obtain the following successor rule.

Hamilton cycle successor rule for Gn where n > 3 is odd
Let π = p1p2 · · · pn be a permutation and let r be the symbol to the right of n when π is
considered cyclically and skipping over p2. Define the successor rule HC on Gn as follows:

HC (π) =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)} or π ∈ Rn;
σ(π) otherwise.

Example 6 An illustration of how the successor rule HC (π) joins the two cycles C1 and C2

constructed by applying the 2-cycle successor F on G7 is given below.
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Theorem 3.6 The successor rule HC induces a Hamilton cycle in Gn, for odd n > 3.

Proof. From Lemma 3.5, F partitions Gn into two cycles C1 and C2 where C1 contains the per-
mutations r1, r2, . . . , rn−2 while respecting their relative order, and C2 contains rn−1. Observe that
τ(ri) = σ(ri+1) for 1 ≤ i < n−1 and τ(rn−1) = σ(r1). Also, F (ri) = σ(ri) for all i. Considering
C1, let qi denote the permutation before ri+1 for 1 ≤ i < n−2 and let qr−2 denote the permutation
before r1. Then C1 is given by

C1 = r1, σ(r1), . . . ,q1, r2, σ(r2), . . . ,q2, r3, σ(r3), . . . ,q3, · · · rn−2, σ(rn−2), . . . ,qn−2.

Similarly, letting qn−1 denote the permutation before rn−1 in C2 we have

C2 = rn−1, σ(rn−1), . . . ,qn−1.

By changing the successor of each ri from σ(ri) to τ(ri) in F we obtain HC which produces the
following Hamilton cycle for odd n:

r1, σ(r2), . . . ,q2, r3, σ(r4), . . . ,q4, · · · rn−2, σ(rn−1), . . . ,qn−1, rn−1,σ(r1), . . . ,q1,

r2, σ(r3), . . . ,q3, r4, σ(r5), . . . ,q5, · · · rn−3, σ(rn−2), . . . ,qn−2.

2

A complete C implementation of both the Hamilton path and Hamilton cycle successors is given in
the Appendix.

3.2.1 Proof of Lemma 3.5

Recall that F = FSeedsn . For each rj , π = σ(rj) = p1p2 · · · pn is a cyclic permutation where
p2 6= g(p3). Thus, by Remark 2.2, π belongs exclusively to the flower of the seed obtained by
removing g(p2) from π. Denote this seed by sd(rj). Given a seed s at level ` > 0, define prehub(s)
to be the seed at level 1 obtained by applying the parent operation `− 1 times starting with s.
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Lemma 3.7 If 1 ≤ j ≤ n−2 then prehub(sd(rj)) is the seed obtained by removing the first symbol
of σj((n−1)(n−2) · · · 2), inserting n at the beginning and inserting 1 into the second last position.
Additionally, prehub(sd(rn−1)) = n(n−4)(n−5) · · · 2(n−2)(n−1)1.

Proof. The decreasing subsequence of sd(r1) = n134 · · · (n−1) has length 0. Thus r1 is at level
n−3. Applying n−4 parent operations we obtain the seed n(n−3)(n−4) · · · 21(n−1) at level 1,
which is prehub(sd(r1)). For 2 ≤ j ≤ n−2, consider rj = (n−j)n(n−j+1) · · · (n−1)12 · · · (n−j−1).
The decreasing subsequence of sd(rj) is simply (n−j+1) with length 1. Thus, n−5 applications
of the parent operation are required to get to prehub(sd(rj)) and this will yield the required seed.
The decreasing subsequence of sd(rn−1) = n245 · · · (n−1)1 is 2(n−1), which has length 2. Apply-
ing n−6 parent operations we obtain the seed n(n−4)(n−5) · · · 2(n−2)(n−1)1 at level 1, which is
prehub(sd(rn−1)). 2

By inserting the missing symbol from prehub(sd(rj)) into the second position we obtain pj .

Corollary 3.8 For 1 ≤ j ≤ n−1, the permutation τparent(prehub(sd(rj))) = pj .

From Lemma 3.2, FHubn partitions Gn[perms(Hubn)] into two cycles C1 and C2 where C1

contains p1,p2, . . . ,pn−2 in that relative order and C2 contains pn−1. Lemma 3.3 and its proof con-
struction, along with Remark 2.3 demonstrate that F partitions Gn into two cycles C1 and C2 where
C1 contains p1,p2, . . . ,pn−2 in that relative order and C2 contains pn−1. Together, Corollary 3.8,
the inductive proof of Lemma 3.3, and the tree-like structure of the seeds imply that C1, considered
starting from p1, will be of the form:

p1, . . . , r1, . . . ,p2, . . . , r2, . . . , · · · ,pn−2, . . . , rn−2, . . .
It also means that rn−1 is in C2. This proves Lemma 3.5.
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Appendix - C code for a Hamilton path in Gn or a Hamilton cycle in Gn for odd n

#include <stdio.h>
int n, pi[100], PATH=0, CYCLE=0;
//-------------------------------------------------------
void Print() {

for (int i=1; i<=n; i++) printf("%d", pi[i]); printf("\n");
}
//-------------------------------------------------------
void Sigma() {

int tmp, i;

tmp = pi[1];
for (i=1; i < n; i++) pi[i] = pi[i+1];
pi[n] = tmp;

}
//-------------------------------------------------------
void Tau() {

int tmp = pi[1]; pi[1] = pi[2]; pi[2] = tmp;
}
//-------------------------------------------------------
// RETURN TRUE IF pi[1..n]= n..21
int SpecialPerm() {

for (int i=1; i<=n; i++) if (pi[i] != n-i+1) return 0;
return 1;

}
//-------------------------------------------------------
// RETURN TRUE IF pi[1]pi[3..n] is a rotation of 12..n-1
int SpecialSet() {

if (pi[2] != n) return 0;
if (pi[1] < n-1 && pi[1]+1 != pi[3]) return 0;
if (pi[1] == n-1 && pi[3] != 1) return 0;
for (int i=3; i<n; i++) {

if (pi[i] < n-1 && pi[i]+1 != pi[i+1]) return 0;
if (pi[i] == n-1 && pi[i+1] != 1) return 0;

}
return 1;

}
//-------------------------------------------------------
void Next() {

int r,i=1;

while(pi[i] != n) i++;
if (i == 1) r = pi[3];
else if (i == n) r = pi[1];
else r = pi[i+1];

if (PATH && SpecialPerm()) Sigma();
else if ((r < n-1 && pi[2]==r+1) || (r==n-1 && pi[2]==2)) Tau();
else if (CYCLE && SpecialSet()) Tau();
else Sigma();

}
//-------------------------------------------------------
int main() {

int total=0, TOTAL=1, i, type;

printf("ENTER 1 (Hamilton Path) or 2 (Hamilton Cycle):"); scanf("%d", &type);
if (type == 1) PATH = 1;
if (type == 2) CYCLE = 1;
printf("ENTER n (must be odd for cycle): "); scanf("%d", &n);

for (i=2; i<=n; i++) TOTAL = TOTAL *i; // TOTAL = n!
for (i=1; i<=n; i++) pi[i] = n-i+1; // INITAL PERM = tau(n..21)
Tau();

while (total < TOTAL) {
Print();
Next();
total++;

} }
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