
Ž .Journal of Algorithms 37, 267�282 2000
doi:10.1006�jagm.2000.1108, available online at http:��www.idealibrary.com on

Fast Algorithms to Generate Necklaces, Unlabeled
Ž .1Necklaces, and Irreducible Polynomials over GF 2

Kevin Cattell

HP Research Labs, Santa Rosa, California
E-mail: kevin cattell@hp.com�

Frank Ruskey, Joe Sawada, and Micaela Serra

Department of Computer Science, Uni�ersity of Victoria, Victoria,
British Columbia, Canada

E-mail: fruskey@csr.uvic.ca; sawada@csr.uvic.ca, mserra@csr.uvic.ca

and

C. Robert Miers

Department of Mathematics and Statistics, Uni�ersity of Victoria, Victoria,
British Columbia, Canada

E-mail: crmiers@math.uvic.ca

Received August 22, 1998

Many applications call for exhaustive lists of strings subject to various con-
straints, such as inequivalence under group actions. A k-ary necklace is an

Ž .equivalence class of k-ary strings under rotation the cyclic group . A k-ary
unlabeled necklace is an equivalence class of k-ary strings under rotation and
permutation of alphabet symbols. We present new, fast, simple, recursive algo-

Ž .rithms for generating i.e., listing all necklaces and binary unlabeled necklaces.
These algorithms have optimal running times in the sense that their running times
are proportional to the number of necklaces produced. The algorithm for generat-
ing necklaces can be used as the basis for efficiently generating many other
equivalence classes of strings under rotation and has been applied to generating
bracelets, fixed density necklaces, and chord diagrams. As another application, we
describe the implementation of a fast algorithm for listing all degree n irreducible

Ž .and primitive polynomials over GF 2 . � 2000 Academic Press

1 Research supported by NSERC.

267

0196-6774�00 $35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

CATTELL ET AL.268

1. INTRODUCTION

Four of the most natural group actions on strings over a fixed alphabet
Ž . Ž . Ž .are: a leaving the string unchanged, b reversing the string, c rotating

Ž .the string, and d permuting the symbols of the string by a permutation of
Ž .the alphabet symbols. The four groups giving rise to these actions are a

Ž . Ž . Ž .� , b � acting on the indices reversal , c the cyclic � acting on the1 2 n
Ž .indices, and d the symmetric group � acting on the alphabet, assumingk

the alphabet consists of k symbols.
Each group action, or composition of group actions, partitions the set of

k-ary strings into equivalence classes, namely the orbits of the action.
Many applications call for exhaustive lists of representatives of these
equivalence classes. To generate such equivalence classes, it is natural to
choose as representative the lexicographically smallest string. With this
representation, efficient algorithms are known for generating the equiva-

Ž . Ž . Ž . Ž .lence classes of each of the actions a , b , c , and d . By ‘‘efficient’’ we
mean that the amount of computation used in generating the objects is
proportional to the number of objects generated. Such algorithms are said
to be CAT, for constant amortized time.

Ž .For a we are simply counting in base k which is known to be efficient
Ž . Ž .for k � 2. For b efficient algorithms are easily developed. In case c the

equivalence classes are usually called necklaces. Efficient algorithms for
� �generating necklaces were developed by Fredricksen and Kessler 5 and

� �Fredricksen and Maiorana 6 ; these algorithms were proven to be efficient
� �by Ruskey et al 20 . Closely related algorithms for generating Lyndon

Ž . � �words aperiodic necklaces were developed by Duval 3 and shown to be
� � Ž .efficient by Berstel and Pocchiola 1 . In case d the representative strings

are usually called restricted growth functions and efficient algorithms for
� � � �generating them have been developed by Er 4 , Kaye 12 , and others.

In addition to these four natural group actions considered in isolation,
interesting equivalence classes also emerge by composing two or more of

Ž . Ž .the group actions. For example, composing b and c results in the
dihedral groups, with the resulting equivalence classes often called

Ž .bracelets. Only recently using the framework outlined in this paper
� �Sawada 23 developed an algorithm to generate k-ary bracelets in constant

� �amortized time. Proskurowski et al. 17 show that the orbits of the
'Ž . Ž . Ž .composition of b and d can be generated in amortized O k time,

which is CAT if k is fixed. It remains an interesting challenge to develop
efficient algorithms for the other compositions.

In this paper we present a new recursive framework for necklace
generation. We then use this framework to develop a CAT algorithm to

Žgenerate equivalence classes of the complemented cycling register which

GENERATING UNLABELED NECKLACES 269

.are in one-to-one correspondence with vortex-free tournaments . We also
use this framework to develop a CAT algorithm for generating unlabeled

Ž . Ž . Ž .binary necklaces and Lyndon words , i.e., the composition of c and d
for k � 2. This algorithm was used in the implementation of a fast

Ž .algorithm for listing all degree n irreducible polynomials over GF 2 . The
framework has also been used to efficiently generate other classes of
strings as summarized below. Undoubtedly, other applications of the
framework will also be discovered.

� Necklaces: Done in this paper, CAT algorithm.
� Vortex-free tournaments: Done in this paper, CAT algorithm.
� Binary unlabeled necklaces: Done in this paper, CAT algorithm.
� Ž .Irreducible polynomials over GF 2 : Done in this paper.
� � �Fixed density necklaces: Done in Ruskey and Sawada 21 , CAT

algorithm.
� � �Bracelets: Done in Sawada 23 , a CAT algorithm.
� ŽChord diagrams i.e., 2n points on an oriented circle embedded in

.the plane joined pairwise by chords : to appear.
� Necklaces with forbidden substrings: Done in Ruskey and Sawada

� �22 , CAT algorithm if the forbidden substring is a Lyndon word.
� A basis for the nth homogeneous component of the free Lie

algebra: to appear.

The combinatorial objects which we are listing are fundamental and there
is considerable interest in having efficient algorithms to generate them.
This interest comes from mathematicians, computer scientists, electrical
engineers, and scientists in other disciplines. Our algorithms have all been

Ž .implemented and are used in the Combinatorial Object Server COS at
http:��www.theory.csc.uvic.ca� cos in the sections on Necklaces and Irre-˜

Ž .ducible Polynomials over GF 2 .

1.1. Background and Definitions
def n� 4Defining the alphabet � � 0, 1, . . . , k � 1 , the set � consists of allk k

k-ary strings of length n. Define an equivalence relation � on �� byk
� � � if and only if there exist u, � � �	 such that � � u� and � � �u.k
The equivalence classes of � are called necklaces and we identify each
necklace with the lexicographically least representative in its equivalence
class. The set of all necklaces of length n over a k-ary alphabet is denoted

Ž .N n .k

def n �N n � � � � �
 � for all � � � 1� 4Ž . Ž .k k

CATTELL ET AL.270

Ž . � 4For example N 4 � 0000, 0001, 0011, 0101, 0111, 1111 . The cardinality2
Ž . Ž . Ž .of N n is denoted N n . For a string � � a a ��� a , let � � denote ak k 1 2 n

Ž .left shift of � by one position: � a a ��� a � a ��� a a .1 2 n 2 n 1
In an unlabeled necklace we do not care about which color a bead has,

but only about whether two beads have different colors. Unlabeled neck-
laces 0001 and 0111 are identical since one can be transformed into the
other by interchanging 0 and 1 at every position of the string. Formally, the

Ž .set N n of all k-ary length n unlabeled necklaces is defined as follows:k

def iN̂ n � � � N n � �
 � � � �� � � and 0 � i � n . 2Ž . Ž . Ž . Ž .� 4Ž .k k k

ˆ ˆŽ . � 4 Ž .For example, N 4 � 0000, 0001, 0011, 0101 . As before,, we denote N n2 k
ˆ� Ž . �� N n .k

A string � is periodic if � � � k where � is nonempty and k � 0. An
aperiodic necklace is called a Lyndon word. The set of all k-ary Lyndon

Ž .words of length n is denoted L n .k

def
L n � � � N n � � is aperiodic� 4Ž . Ž .k k

Ž . � 4 Ž .For example, L 4 � 0001, 0011, 0111 . The cardinality of L n is de-2 k
Ž .noted L n .k

An unlabeled Lyndon word is an aperiodic unlabeled necklace. The set
ˆ Ž .of all k-ary length n unlabeled Lyndon words is denoted L n withk

ˆ ˆŽ . Ž . � 4cardinality L n . For example, L 4 � 0001, 0011 .k 2
A word � is called a prenecklace if it is the prefix of some necklace. The

Ž .set of all k-ary prenecklaces of length n is denoted P n .k

def n mP n � � � � � �� � N n 	 m for some m � 0 and � � �� 4Ž . Ž .k k k k

Ž . Ž . � 4 Ž .For example P 4 � N 4 � 0010, 0110 . The cardinality of P n is2 2 k
Ž . Ž .denoted P n . Let W n denote the number of prenecklaces of length atk k

most n. These numbers will prove useful in analyzing the algorithms
developed below. Formally,

n
def

W n � 1 	 P i . 3Ž . Ž . Ž .Ýk k
i�1

ˆ ˆŽ . Ž .We denote unlabeled prenecklaces P n with cardinality P n .k k

def n mˆ ˆP n � � � � � �� � N n 	 m for some m � 0 and � � �Ž . Ž .� 4k k k k

GENERATING UNLABELED NECKLACES 271

THEOREM 1.1. The following formulae are �alid for all n � 1, k � 1:

1 1
n � d n � dˆL n � 	 d k , L n � 	 d 2 , 4Ž . Ž . Ž . Ž . Ž .Ý Ýk 2n 2n� �d n odd d n

1 1
n � d n � dˆN n �
 d k , N n � N n �
 d 2 , 5Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýk 2 2n 2n� �d n odd d n

n n
ˆ ˆP n � L i , P n � L i . 6Ž . Ž . Ž . Ž . Ž .Ý Ýk k 2 2

i�1 i�1

Ž . Ž .Proof. The equations for L n and N n are well known; a proof ofk k
� �the former may be found in Graham et al. 11, p. 141 and of the latter in

ˆ ˆ� � Ž . Ž .Lothaire 16, p. 9 . The equations for N n and L n are from Gilbert2 2
� � Ž .and Riordan 8 . The equation for P n follows from Lemma 2.3 and thek
ˆ Ž .equation for P n follows from Lemma 3.2.2

2. GENERATING NECKLACES

In this section we describe a recursive algorithm for generating neck-
laces and Lyndon words. Compared with previous algorithms, our contri-
bution is a recursive formulation that leads to simpler proofs and analysis.

ŽIt is also more amenable to modification for example, existing algorithms
only generate in lexicographic order, whereas ours can generate in many

.different orders . The algorithm is based on a result, Theorem 2.1, that
tells us how to construct a length n prenecklace from a length n � 1
prenecklace. In the next section, we will use this recursive methodology to
generate all unlabeled necklaces. This methodology has already been used,

� �in other papers, to generate necklaces with fixed density 21 and bracelets
� �23 , both by CAT algorithms.

The following characterizations of Lyndon words and necklaces are well
Ž � �.known e.g., Lothaire 16, p. 64 and are clearly equivalent to the defini-

tions given earlier.

� � xy � L if and only if xy � yx , for all nonempty x , y. 7Ž .
� � xy � N if and only if xy
 yx , for all nonempty x , y. 8Ž .

We now need to state a couple of technical lemmas. The following
� �lemma is proven in 20, Lemma 1, p. 419 .

CATTELL ET AL.272

LEMMA 2.1. If � � N, then � t � N for t � 1.

Ž .The lemma below follows directly from 8 and the definition of a
prenecklace.

LEMMA 2.2. Let � � a ��� a be a prenecklace. If x is a substring of �1 n
with length k, then x � a ��� a .1 k

� �The following lemma follows from Lemma 7.14 of 18 and the ensuing
discussion.

Ž .LEMMA 2.3. Let � � a a ��� a be a string and p � lyn � . Then � � P1 2 n
if and only if a � a for j � p 	 1, . . . , n.j�p j

� Ž .For � � � , let lyn � be the length of the longest prefix of � that is ak
Lyndon word. This function is well defined since � � L. More formally,k

def
lyn a a ��� a � max 1
 p
 n � a a ��� a � L p . 9Ž . Ž . Ž .� 41 2 n 1 2 p k

Ž .For example, lyn 001010010 � 5. Note that if � � a a ��� a is a Lyndon1 2 n
Ž .word, then lyn � � n.

The following theorem is very useful. We are tempted to call it the
‘‘fundamental theorem of necklaces’’! It leads not only to the necklace
generation algorithm, but also to algorithms for producing the Lyndon

Žfactorization of a word and for determining the necklace lexicographically
.minimal rotation of a string, both in time linear in the length of the string.

The theorem specifies exact conditions, in terms of n and lyn, under which
a character can be appended to a prenecklace and still remain a preneck-

� �lace. In many ways, the theorem is implicit in the work of Fredricksen 5, 6
� � � �and Duval 2, 3 but not explicitly stated there. Reutenauer 18 has a very

similar statement on page 164.

Ž .THEOREM 2.1. Let � � a a ��� a be a string in P n � 1 and let1 2 n�1 k
Ž . Ž .p � lyn � . The string � b in P n if and only if a
 b
 k � 1. Further-k n�p

more,
p if b � an�p

lyn � b �Ž . ½ n if a � b
 k � 1.n�p

ALGORITHM 2.1.

Ž .procedure gen t, p : integer ;
local j : integer;
begin

Ž .if t � n then Printlt p
else begin

Ž .a � a ; gen t 	 1, p ;t t�p

GENERATING UNLABELED NECKLACES 273

� 4for j � a 	 1, . . . , k � 2, k � 1 do begint�p

Ž .a � j; gen t 	 1, t ;t

end;

end

end;

Ž .The algorithm gen t, p of Algorithm 2.1 follows directly from Theorem
2.1. The parameter p has the same meaning it had in the theorem, and the
parameter t replaces n. In general, if � � a ��� a is a prenecklace with1 t�1

Ž . Ž .lyn � � p, then a call to gen t, p will generate all length n prenecklaces
with prefix � . To generate all length n prenecklaces assign a � 0 and0

Ž .make the initial call gen 1, 1 . If the symbols selected in the for loop are
selected in increasing order, then the listing is lexicographic; in opposite
order the listing is in reverse lexicographic order. Necklaces and Lyndon

Ž .words can be produced by adding a test to the function Printlt p as
described in Table I.

Ž .We now show that algorithm gen t, p is efficient; it has the CAT
property.

Ž .THEOREM 2.2. Algorithm gen t, p is a CAT algorithm.

Ž .Proof. Call the number of nodes in the computation tree W n . Fromk
Ž .the structure of the algorithm, W n is equal to the number of preneck-k

Ž .laces of length at most n, as expressed in 3 .
Ž . Ž .From the expressions 4 and 5 we obtain the following bounds.

1 k n 1
n n �2 n n �2k � n�1 k
L n

 N n
 k 	 n�1 kŽ . Ž . Ž . Ž .Ž . Ž .k kn n n

10Ž .

TABLE I
Different Objects Output by Different Versions of Printlt

Ž .Sequence type Printlt p

Ž Ž .. Ž � �.Prenecklaces P n Println a 1..nk
Ž Ž .. Ž � �.Lyndon words L n if p � n then Println a 1..nk

Ž Ž .. Ž � �.Necklaces N n if n mod p � 0 then Println a 1..nk
Ž � �.De Bruijn sequence if n mod p � 0 then Print a 1.. p

CATTELL ET AL.274

Ž .We have from 6

n n 1
iP n � L i
 k . 11Ž . Ž . Ž .Ý Ýk k ii�1 i�1

Hence

jn n 1
iW n � 1 � P i
 k .Ž . Ž .Ý Ý Ýk k ij�1 j�1 i�1

Thus

jnW n � 1 n 1Ž .k i
 k .Ý ÝnN n k iŽ .k j�1 i�1

� � Ž Ž ..2In 20 it is shown that this last expression converges to k� k � 1 as
Žn � �. Thus the asymptotic running time per necklace or per Lyndon

Ž . Ž Ž .. Ž ..word, noting that L n is � N n by 10 is constant; the necklacek k
algorithm in Algorithm 2.1 is CAT no matter what type of object is being
generated.

2.1. Application: Generating Equi�alence Classes
of the Complemented Cycling Register

� � Ž .Golomb 10 considers the complemented cycling register CCR over
the set of all binary strings of length n. The CCR transforms a given input

Ž .string b � b b ��� b into an output string C b as shown below.1 2 n

C b b ��� b � b ��� b b .Ž .1 2 n 2 n 1

Repeated application of the operation C eventually results in the initial
Ž . Ž Ž ...string; the sequence b, C b , C C b , . . . is called a cycle. If we let

Ž .CCR n denote the number of distinct cycles of the CCR taken over all
binary strings of length n then

1
n � dCCR n �
 d 2 . 12Ž . Ž . Ž .Ý2n �odd d n

� � Ž .It is shown by Knuth 13 that the right side of 12 is equal to the number
of vortex-free tournaments on n vertices. This number is also the same as
the number of odd density binary necklaces with length n.

Now consider the mapping f that sends two consecutive members of a
Ž .cycle to their exclusive-or. For example, f 010101, 101011 � 111110. Ap-

plied to other members of the cycle a circular rotation of 111110 results.

GENERATING UNLABELED NECKLACES 275

This is true in general, as we show below.

b C b � b b b b ��� b b b bŽ . Ž . Ž . Ž . Ž .1 2 2 3 n�1 n n 1

C b C C b � b b ��� b b b b b bŽ . Ž . Ž . Ž .Ž . Ž . Ž .2 3 n�1 n n 1 1 2

Since x y � x y, these strings are shifts of one another. Further-
more, they must contain an odd number of 1’s, since b b b b1 2 2 3
 ��� b b b b � b b � 1. The process is reversible, son�1 n n 1 1 1
long as a value for b is specified. Thus there is a natural correspondence1
between binary necklaces with an odd number of 1’s and distinct cycles of
the CCR on binary strings of length n. By making small modifications to

Ž .gen t, p we can generate a unique representative from each distinct cycle
of the CCR, for a given n, as described below.

Ž .First add an additional parameter d to gen t, p which keeps track of
the number of 1’s in the string. If the resulting string of length N has an
even number of 1’s then it is rejected. We also maintain another array b

Žwhich holds a representative for a cycle of the CCR not necessarily the
.lexicographically least representative . We use the equation b � a t t�1

b at each recursive call to find the next bit in the representative for thet�1
cycle; this adds only a constant amount of computation to each node of the
computation tree.

The resulting algorithm is CAT since its running time is proportional to
the running time for generating all odd density necklaces, since the
number of odd density necklaces is asymptotically half the total number of
necklaces.

3. GENERATING UNLABELLED BINARY NECKLACES

In this section we develop a CAT algorithm to generate all binary
unlabeled necklaces. Recall that an unlabeled necklace is an equivalence
class of necklaces under permutation of alphabet symbols. In the binary
case, a necklace and its complement are in the same equivalence class. As
representative we choose the lexicographically smallest string in the equiv-

ˆ Ž .alence class, giving rise to the set N n .2
ˆ ˆŽ . Ž .In Section 1 we gave explicit expressions to count N n , L n , and2 2

ˆ Ž .P n . The following two lemmas are analogous to Lemmas 2.1 and 2.3 for2
necklaces.

ˆ t ˆLEMMA 3.1. If � � a ��� a � N, then � � N for t � 1.1 n

Proof. Let � � b ��� b be equivalent to � under permutation of its1 n
symbols. Then by definition of an unlabeled necklace, � must be greater

CATTELL ET AL.276

than or equal to � and thus � t must be greater than or equal to � t. From
Lemma 2.1 � t is a necklace and therefore by definition � t is an unlabeled
necklace for t � 1.

LEMMA 3.2. Let � � a ��� a be a string and let p equal the length of the1 n
ˆlongest unlabeled Lyndon prefix of � . Then � � P if and only if a � a forj�p j

j � p 	 1, . . . , n.

Proof. If a � a for j � p 	 1, . . . , n, then � � � t for some t � 1j�p j
ˆ t	1where � � a ��� a � L and is a prefix of �. By Lemma 3.1, � is an1 p

ˆ ˆunlabeled necklace and thus � � P. Conversely, assume that � � P. If
Ž .lyn � � q and p � q then there must exist a Lyndon prefix of � with

ˆlength greater than p that is not in L. This implies that there exists a
Ž .permutation � of the alphabet symbols such that � a , . . . , a � a ��� a .1 q 1 q

This contradicts the assumption that � is an unlabeled prenecklace, since
no matter what we append to the string � , it can never be an unlabeled

Ž .necklace. Now since we must have p � lyn � , by Lemma 2.3 a � aj�p j
for j � p 	 1, . . . , n.

To generate unlabeled necklaces, we could simply generate all necklaces
and perform a test for each necklace to determine whether or not it is the
unlabeled representative. To perform this test, we take the complement of
the generated necklace and use a necklace finding algorithm to find its

Ž Ž ..corresponding necklace. Such an algorithm which runs in time O n can
easily be derived from Duval’s algorithm for factoring a string into Lyndon

� �words 2 or from Theorem 2.1. We then compare the resulting necklace to
the original; if the original is not larger, then it is an unlabeled necklace.

Ž Ž ..This algorithm yields an overall running time of O nN n , which is far
from efficient.

In order to improve upon this naıve algorithm to generate unlabeled¨
necklaces we must improve upon the linear time test required at the end
of the necklace generation. In the remainder of this section we build up to
a theorem, Theorem 3.1, which suggests the addition of another parameter

Ž .to the necklace algorithm gen t, p . The constant time maintenance of this
parameter at each node of the computation tree eliminates the need for
the linear time test, thus yielding a CAT algorithm to generate unlabeled
necklaces.

Before we state our main theorem, we first introduce some additional
ˆ Ž .notation and state some useful lemmas. Note that N n consists exactly of2

ithose necklaces � that satisfy �
 � � for all 0 � i � n. Observe thatŽ .

� � � �if x � y , then x
 y if and only if x � y. 13Ž .

GENERATING UNLABELED NECKLACES 277

Ž .LEMMA 3.3. Let � � � ��� a � N n . If there is a k such that, for1 n 2
ie�ery 0 � i
 k, we ha�e �
 � � and a ��� a � a ��� a , thenŽ . k	1 n 1 n�k

ˆ Ž .� � N n .2

Proof. By the definition of an unlabeled necklace, a necklace is its
unlabeled representative if and only if it is less than or equal to each of its

icomplemented rotations. We are given that �
 � � for 0 � i
 k soŽ .
iwe need only show that �
 � � for k � i � n.Ž .

Since a ��� a � a ��� a , taking x � a ��� a in Lemma 2.2k	1 n 1 n�k i	1 n
yields either a ��� a � a ��� a or a ��� a � a ��� a . In thei	1 n 1 n�i i	1 n 1 n�i
former case the result is trivial. In the latter case we consider a ��� an� i	1 n

n� i	1and look at two subcases. If n � i 	 1
 k, then � � � � whichŽ .
implies a ��� a � a ��� a . If n � i 	 1 � k, then a ��� a is an� i	1 n 1 1 n�i	1 n
substring of a ��� a and is therefore a substring of the prenecklacek	1 n
a ��� a . By Lemma 2.2 we have a ��� a � a ��� a . Thus in both1 n�i n�i	1 n 1 i

Ž .subcases a ��� a � a ��� a . Now using 13 we have a ��� a �n� i	1 n 1 i 1 i
ia ��� a which gives us the result a ��� a a ��� a � � � � �Ž .n� i	1 n i	1 n 1 i

for k � i � n.

Ž .COROLLARY 3.1. Let � � a ��� a � N n . If a ��� a � a ��� a1 n 2 i n 1 n�i	1
for all 1
 i
 n then � is an unlabeled necklace.

Proof. If a ��� a � a ��� a , then a ��� a a ��� a � � . If therei n 1 n�i	1 i n 1 i�1
exists a smallest i such that a ��� a � a ��� a then, by Lemma 3.3, �i n 1 n�i	1
is an unlabeled necklace. Otherwise, � is an unlabeled necklace by
definition.

We need one final definition before presenting the main theorem of this
Ž .section. Define com a ��� a to be the smallest positive value c, for1 n

which

a ��� a � a ��� a , 14Ž .c	1 n 1 n�c

Ž .or n if no such value of c exists. For example, com 000111000111 � 3,
ŽŽ .m.. Ž n.com 01 � 1, and com 0 � n; these last two examples represent

extreme values for com. First, we give a lemma useful in proving the
theorem.

LEMMA 3.4. A binary string � � a ��� a is an unlabeled prenecklace if1 n
and only if � is a prenecklace and a ��� a � a ��� a for all 1
 i
 n.i n 1 n�i	1

ˆŽ .Proof. Assume that � is an unlabeled prenecklace. Since P n is a
Ž .subset of P n then � is a prenecklace. By definition of an unlabeled

prenecklace there exists an unlabeled necklace � such that � � � for
some string . Thus by the definition of an unlabeled necklace a ��� a �i n
a ��� a for all 1
 i
 n.1 n�i	1

CATTELL ET AL.278

Ž .To prove the converse we let p � lyn � . If n mod p � 0 then � is a
necklace. By Corollary 3.1, � is also an unlabeled necklace and thus by
definition � is an unlabeled prenecklace. Otherwise, if n mod p � 0 then

Ž .	 n � p
we construct a string � � a ��� a of length m by extending � . By1 p
Žobserving that a ��� a is an unlabeled necklace using the fact that1 p

.a ��� a is a necklace and Corollary 3.1 we get a ��� a1 p 1 p
Ž .
 a ��� a a ��� a for all 1
 i
 p. Thus by 13 we have a ��� a � ai p 1 i�1 1 p i

� ���� a a ��� a . Therefore for 1
 i
 p n�p we have a ��� a � a ���p 1 i�1 i m 1
a . Again since a ��� a is an unlabeled necklace, a ��� a � a ���m� i	1 1 p i p 1

� �a . Thus we have a ��� a � a ��� a for p n�p � i
 m. Nowp� i	1 i m 1 m�i	1
since � is a necklace Corollary 3.1 shows that � is an unlabeled necklace,
and thus by definition � is an unlabeled prenecklace.

ˆ Ž . Ž .THEOREM 3.1. Let � � a a ��� a � P n � 1 and c � com � . The1 2 n�1 2
ˆ Ž . Ž . Ž . Ž .string ab � P n if and only if i ab � P n and ii a � 0 or b � a .2 2 n�c n�c

Furthemore

n if b � a � 0n�c
com � b �Ž . ½ c if b � a .n�c

ˆ Ž .Proof. Assume that � b � P n . By Lemma 3.4 we also have � b �2
Ž .P n . If a � b � 1 then the string a ��� a � a ��� a , a contra-2 n�c 1 n�c c	1 n

diction to the definition of an unlabeled prenecklace. Therefore either
a or b � 0. If a � 1 and b � 0 then b � a . Thus either a � 0n�c n�c n�c n�c
or b � a .n�c

To prove the converse we need only show that a ��� a � a ��� ai n 1 n�i	1
ˆ Ž . Ž .for all 1
 i
 n by Lemma 3.4. Because � � P n � 1 and c � com �2

we observe that a ��� a � a ��� a for all 1
 i
 c. Thus we clearlyi n�1 1 n�i
also have a ��� a � a ��� a for 1
 i
 c. If a � b theni n 1 n�i	1 n�c

Ž .a ��� a � a ��� a by definition of com � . If a � b � 0 then wec	1 n 1 n�c n�c
have by a similar argument that a ��� a � a ��� a . Now applyingc	1 n 1 n�c
Lemma 2.2 for either case we get a ��� a � a ��� a for c 	 1
 i
i n 1 n�i	1
n. Therefore a ��� a � a ��� a for all 1
 i
 n and thus � b �i n 1 n�i	1
ˆ Ž .P n .2

Ž .Furthermore if a � b, then we clearly have com � b � c and ifn�c
Ž .b � a � 0, then by our convention com � b � n since there is non�c

Ž .value of c for which 14 holds. Note that the case a � b � 1 cannotn�c
occur by the discussion in the first paragraph of the proof.

This theorem implies that we can generate all unlabeled prenecklaces
Ž .and thus unlabeled necklaces by introducing the additional parameter c

Ž .to the prenecklace generation algorithm gen t, p . Pseudocode for this
Ž .algorithm is given in Algorithm 3.1. The initial call is genU 2, 1, 1 , first

GENERATING UNLABELED NECKLACES 279

initializing a � a � 0. Unlabeled necklaces, Lyndon words, and preneck-0 1
laces can all be produced by using Table I as before. In general, if

Ž . Ž .� � a ��� a is an unlabeled prenecklace with lyn � � p and com �1 t�1
Ž .� c, then a call to genU t, p, c will generate all length n unlabeled

prenecklaces with prefix � .

ALGORITHM 3.1.

Ž .Procedure genU t, p, c: integer ;
begin

Ž .if t � n then Printlt p ;
else begin

if a � 0 then begint�c

if a � 0 then begint�p

Ž .a � 0; genU t 	 1, p, t ;t

end;
a � 1;t

Ž .if a � 1 then genU t 	 1, p, c ;t�p

Ž .else genU t 	 1, t, c ;
end else begin

Ž .a � 0; genU t 	 1, p, c ;t

end;
end;

end;

Ž .Observe that the computation tree of genU t, p, c is a subtree of the
Ž .computation tree of gen t, p and that only constant computation is

performed at each node of the tree. Furthermore, the number of unla-
beled binary necklaces is at least half the number of labeled binary
necklaces. These observations prove the following theorem.

Ž .THEOREM 3.2. Algorithm genU t, p, c is a CAT algorithm.

It remains an interesting challenge to extend these ideas to generate
unlabeled necklaces over nonbinary alphabets; there seems to be no
obvious way to extend Theorem 3.1.

Ž .3.1. Application: Generating All Irreducible Polynomials o�er GF 2

Ž . Ž .� �In the finite field GF 2 , we denote by GF 2 x the set of all polynomi-
Ž .als over GF 2 in indeterminate x. A nonzero polynomial p is said to be

Ž .irreducible over GF 2 if it has no nontrivial factorization p � p p . An1 2

CATTELL ET AL.280

irreducible polynomial is also primiti�e if it has a root � such that �
Ž n. Ž � 2 3 4generates the nonzero elements of GF 2 that is, � , � , � , . . . �

Ž n. � 4.GF 2 � 0 . If p has one such root, then all of its roots are generators.
Ž . Ž .The number of degree n irreducible polynomials over GF 2 is L n ,2

which is the same as the number of binary Lyndon words of length n.
There is a natural correspondence between the two sets which we use to
generate all irreducible and primitive polynomials of given degree. In the
following paragraph we explain the correspondence.

Let q be a primitive polynomial of degree n and � one of its roots. For
each � � � b, where b ranges from 1 to 2 n � 1, there is an equivalence

� 2 4 2 m� 14class �, � , � , . . . , � of size m, where m � n. These equivalence classes
are in one-to-one correspondence with irreducible polynomials whose

Ž . Ž .Ž 2 .degree divides n by forming the polynomial p x � x 	 � x 	 � ���
Ž 2 m� 1. � � Ž1 	 � . This correspondence is explained in Golomb 9 and see

� � � �Luneberg 15 or Reutenauer 18 for another correspondence via normal¨
.bases , but we have not before seen it exploited in an algorithmic context.

The irreducible polynomials of degree n are those for which m � n.
Since successive powers of two amount to taking circular shifts of b, all

irreducible polynomials of degree n may be generated by feeding in a
primitive root � and generating all Lyndon words of length n. As each
Lyndon word is generated it is converted into an integer b and then the

Ž .corresponding irreducible polynomial p x is computed. An irreducible
polynomial is primitive if and only if b and 2 n � 1 are relatively prime.

Ž . n Ž .The reciprocal of a degree n polynomial f x is the polynomial x f 1�x .
The reciprocal of an irreducible polynomial is irreducible, and the recipro-
cal of a primitive polynomial is primitive. Under the correspondence
mentioned above reciprocal polynomials correspond to those generated by
the complement of the number used to produce b. Thus we do not
generate all Lyndon words, but only the unlabeled Lyndon words. This

Ž .saves asymptotically a factor of two in the computation time.
Our algorithm was implemented in C with each polynomial stored in a

single machine word in the obvious manner. The intermediate calculations
Ž n.involve polynomials over GF 2 , which are stored as length n arrays of

words. In one day on a middle-of-the-road workstation we can generate all
134,215,680 irreducible polynomials of degree 32, noting along the way the
67,108,864 that are primitive. Of course, for large values of n it becomes
infeasible to generate all irreducible polynomials, but the algorithm can
still be used to generate as many as are wanted. The program poly.c,
available on COS, was compiled using gcc -04 and run on a Sun Microsys-
tems Ultra 1 machine.

Theoretically, the computation of each irreducible polynomial takes
Ž 2 .O n polynomial multiplications. Our multiplication routine is the naıve¨

algorithm implemented on machine words. For larger n faster algorithms,

GENERATING UNLABELED NECKLACES 281

� �such as those discussed in von zur Gathen 24 , should be used. The
Ž .algorithm along with the other algorithms outlined in this paper is well

suited to parallelization using a system such as Brendan McKay’s autoson,
since there is a natural tree structure to the recursive algorithm which can
be used to assign different subtrees to different processors.

We used the algorithm to compute various statistics of irreducible
polynomials and these have led to several results and conjectures about
the sizes of various subclasses of irreducible polynomials. For example, the
number of irreducible polynomials with an odd number of nonzero odd

ˆ Ž .terms is L n . As another example, the number of irreducible polynomi-k
n�1 ˆŽ . Ž .als with trace 1 coefficient of x is L n .k

ACKNOWLEDGMENTS

We thank the referees for their helpful comments. Algorithm 2.1 and Theorem 2.1 were
� �discovered in 1993�94 by the second author as he was preparing 19 . It was one of the

� �referees that pointed out that the essence of Theorem 2.1 is contained in Reutenauer 18 .

REFERENCES

1. J. Berstel and M. Pocchiola, Average cost of Duval’s algorithm for generating Lyndon
Ž .words, Theoret. Comput. Sci. 132 1994 , 415�425.

Ž .2. J.-P. Duval, Factoring words over an ordered alphabet, J. Algorithms 4 1983 , 363�381.
3. J.-P. Duval, Generation d’une section des classes de conjugaison et arbre des mots de´ ´

Ž .Lyndon de longueur bornee, Theoret. Comput. Sci. 60 1988 , 255�283.´
Ž .4. M. C. Er, A fast algorithm for generating set partitions, Comput. J. 31 1988 , 283�284.

5. H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two
Ž .colors, Discrete Math. 61 1986 , 181�188.

6. H. Fredricksen and I. J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn
Ž .sequences, Discrete Math. 23 1978 , 207�210.

7. J. von zur Gathen and J. Gerhard, ‘‘Arithmetic and Factorization of Polynomials over
F ,’’ Technical report tr-rsfb-96-018, University of Paderborn, Germany, 1996.2

8. E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math. 5
Ž .1961 , 657�665.

9. S. W. Golomb, ‘‘Irreducible Polynomials, Synchronization Codes, Primitive Necklaces,
and the Cyclotomic Algebra,’’ Univ. of North Carolina Monograph Series in Probability
and Statistics, Vol. 4, pp. 358�370, 1967.

10. S. W. Golomb, ‘‘Shift Register Sequences,’’ Holden-Day, Oakland, 1967.
11. R. L. Graham, D. E. Knuth, and O. Patashnik, ‘‘Concrete Mathematics,’’ Addison-

Wesley, Reading, MA, 1989.
Ž .12. R. A. Kaye, A Gray code for set partitions, Inform. Process. Lett. 5 1976 , 171�173.

13. D. E. Knuth, ‘‘Axioms and Hulls,’’ Lecture Notes in Compu ter Science, Vol. 606,
Springer-Verlag, Berlin�New York, 1992.

14. R. Lidl and H. Niederreiter, ‘‘Introduction to Finite Fields and Their Applications,’’
Cambridge Univ. Press, Cambridge, UK, 1994.

CATTELL ET AL.282

15. H. Luneburg, ‘‘Tools and Fundamental Constructions of Combinatorial Mathematics,’’¨
Wissenschafts, 1989.

16. M. Lothaire, ‘‘Combinatorics on Words,’’ Cambridge Univ. Press, Cambridge, UK, 1983.
17. A. Proskurowski, F. Ruskey, and M. Smith, Analysis of algorithms for listing equivalence

Ž .classes of k-ary strings induced by simple group actions, SIAM J. Discrete Math. 11 1998 ,
94�109.

18. C. Reutenauer, ‘‘Free Lie Algebras,’’ Clarendon Press, Oxford, 1993.
19. F. Ruskey, Combinatorial generation, manuscript, course notes for CSC 528, Univ.

Victoria, 1995.
Ž .20. F. Ruskey, C. D. Savage, and T. Wang, Generating necklaces, J. Algorithms 13 1992 ,

414�430.
21. F. Ruskey and J. Sawada, An efficient algorithm for generating necklaces with fixed

Ž .density, SIAM J. Comput. 29 1999 , 671�684.
22. F. Ruskey and J. Sawada, Generating necklaces and strings with forbidden substrings, in

Ž .‘‘Proc. 6th Annual International Combinatorics and Computing Conference CO-COON ,
Sydney, Australia, July 2000,’’ Lecture Notes in Computer Science, to appear, Springer-
Verlag, Berlin�New York.

23. J. Sawada, Generating bracelets in constant amortized time, manuscript, 1999.
24. J. von zur Gathen and J. Gerhard, Arithmetic and factorization of polynomials over F ,2

in ‘‘Proc. ISSAC 96,’’ pp. 1�9, Assoc. Comput. Mach, New York, 1996.

	1. INTRODUCTION
	2. GENERATING NECKLACES
	TABLE I

	3. GENERATING UNLABELLED BINARY NECKLACES
	ACKNOWLEDGMENTS
	REFERENCES

