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INTRODUCTION 

Graphical models such as Bayesian networks (BNs) 
(Pearl, 1988; Jensen & Nielsen, 2007) and decom-
posable Markov networks (DMNs) (Xiang, Wong., & 
Cercone, 1997) have been widely applied to proba-
bilistic reasoning in intelligent systems.  Knowledge 
representation using such models for a simple problem 
domain is illustrated in Figure 1: Virus can damage 
computer files and so can a power glitch. Power 
glitch also causes a VCR to reset.  Links and lack of 
them convey dependency and independency relations 
among these variables and the strength of each link is 
quantified by a probability distribution. The networks 
are useful for inferring whether the computer has virus 
after checking files and VCR.  This chapter considers 
how to discover them from data.

Discovery of graphical models (Neapolitan, 2004) 
by testing all alternatives is intractable. Hence, heuristic 
search are commonly applied (Cooper & Herskovits, 
1992; Spirtes, Glymour, & Scheines, 1993; Lam & 
Bacchus, 1994; Heckerman, Geiger, & Chickering, 
1995; Friedman, Geiger, & Goldszmidt, 1997; Xiang, 
Wong, & Cercone, 1997).  All heuristics make simpli-
fying assumptions about the unknown data-generating 
models. These assumptions preclude certain models to 
gain efficiency.  Often assumptions and models they 
exclude are not explicitly stated.  Users of such heuristics 
may suffer from such exclusion without even knowing.  
This chapter examines assumptions underlying common 

heuristics and their consequences to graphical model 
discovery.  A decision theoretic strategy for choosing 
heuristics is introduced that can take into account a full 
range of consequences (including efficiency in discov-
ery, efficiency in inference using the discovered model, 
and cost of inference with an incorrectly discovered 
model) and resolve the above issue.

BACKGROUND

A graphical model encodes probabilistic knowledge 
about a problem domain concisely (Pearl, 1988; Jen-
sen & Nielsen, 2007).   Figure 1 illustrates a BN in (a) 
and a DMN in (b).  Each node corresponds to a binary 
variable. The graph encodes dependence assumptions 
among these variables, e.g., that  f is directly dependent 
on v and p, but is independent of r once the value of p 
is observed.  Each node in the BN is assigned a condi-
tional probability distribution (CPD) conditioned on its 
parent nodes, e.g., P(f | v, p) to quantify the uncertain 
dependency.  The joint probability distribution (JPD) 
for the BN is uniquely defined by the product P(v, p, 
f, r) = P(f | v, p) P(r | p) P(v) P(p). The DMN has two 
groups of nodes that are maximally pairwise connected, 
called cliques.  Each is assigned a probability distribu-
tion, e.g., {v, p, f} is assigned P(v, p, f).  The JPD for 
the DMN is P(v, p, f) P(r, p) / P(p).   

When discovering such models from data, it is im-
portant that the dependence and independence relations 

Figure 1. (a) An example BN (b) A corresponding DMN
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P
expressed by the graph approximate true relations of 
the unknown data-generating model.   How accurately 
can a heuristics do so depends on its underlying as-
sumptions.

To analyze assumptions underlying common 
heuristics, we introduce key concepts for describing 
dependence relations among domain variables in this 
section.  Let V be a set of discrete variables {x1, … , 
xn}.   Each xi has a finite space Sxi = {xi,j | 1≤j≤Di}. When 
there is no confusion, we write xi,j as xij . The space of 
a set VX ⊆  of variables is the Cartesian product SX 
= ∏ ∈Xx i

i
S .  Each element in SX is a configuration 

of X, denoted by x = (x1, … , xn). A probability distri-
bution P(X) specifies the probability P(x) = P(x1, … , 
xn) for each x . P(V) is the JPD and P(X) ( VX ⊂ ) is 
a marginal distribution. A probabilistic domain model 
(PDM) over V defines P(X) for every VX ⊆ .  

For disjoint subsets W, U and Z of V, W and U are 
conditionally independent given Z, if  P(w | u, z) = 
P(w | z) for all configurations such that P(u, z) > 0. 
The condition is also denoted P(W | U, Z) = P(W | Z). 
It allows modeling of dependency within ZUW   
through overlapping subsets ZW   and ZU  .  

W and U are marginally independent if P(W | U) = 
P(W) holds whenever P(U) > 0.  The condition allows 
dependency within UW   to be modeled over disjoint 
subsets. If each variable xi in a subset X is marginally 
independent of X\{ xi }, then variables in X are margin-
ally independent.

Variables in a subset X are generally dependent if 
P(Y | X \ Y) ≠ P(Y) for every XY ⊂ . For instance, X 
= {x1, x2, x3} is not generally dependent if P(x1, x2| x3) 
= P(x1, x2). It is generally dependent if  P(x1, x2| x3) ≠ 
P(x1, x2), P(x2, x3| x1) ≠ P(x2, x3) and P(x3, x1| x2) ≠ P(x3, 
x1). Dependency within X cannot be modeled over 
disjoint subsets but may through overlapping subsets, 
due to conditional independence in X.  

Variables in X are collectively dependent if, for each 
proper subset XY ⊂ , there exists no proper subset 

YXZ \⊂  that satisfies P(Y | X \ Y) = P(Y | Z). Collec-
tive dependence prevents modeling through overlapping 
subsets and is illustrated in the next section.

                             

MAIN THRUST OF THE CHAPTER

Pseudo-Independent (PI) Models

A pseudo-independent (PI) model is a PDM where 
proper subsets of a set of collectively dependent vari-
ables display marginal independence (Xiang, Wong., 
& Cercone, 1997).  Common heuristics often fail in 
learning a PI model (Xiang, Wong., & Cercone, 1996).  
Before analyzing how assumptions underlying common 
heuristics cause such failure, we introduce PI models 
below.  PI models can be classified into three types: 
full, partial, and embedded.  The basic PI model is a 
full PI model.

Definition 1. A PDM over a set V (|V| ≥ 3) of variables 
is a full PI model if the following hold:

(SI) Variables in each proper subset of V are marginally 
independent.

(SII) Variables in V are collectively dependent.

Example 1 Patient of a chronicle disease changes the 
health state (denoted by variable s) daily between stable 
(s = t) and unstable (s = u).  Patient suffers badly in an 
unstable day unless treated in the morning, at which 
time no indicator of the state is detectable.  However, 
if treated at the onset of a stable day, the day is spoiled 
due to side effect.  From historical data, patient’s states 
in four consecutive days observe the estimated distri-
bution in Table 1.

The state in each day is uniformly distributed, i.e., 
P(si = t) = 0.5 where 1≤ i≤ 4.  The state of each day 
is marginally independent of that of the previous day, 
i.e., P(si = t| si-1) = 0.5 where 2≤ i≤ 4.  It is marginally 
independent of that of the previous two days, i.e., P(si 
= t| si-1 , si-2) = 0.5 where 3≤ i≤ 4.  However, states of 
four days are collectively dependent, e.g., P(s4 = u| 
s3=u, s2=t, s1=t) = 1, which allows the state of the last 
day to be predicted from states of previous three days.  
Hence, the patient’s states form a full PI model.

By relaxing condition (SI), full PI models are 
generalized into partial PI models defined through 
marginally independent partition (Xiang, Hu, Cercone, 
& Hamilton, 2000):
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Definition 2. Let V (|V| ≥3) be a set of variables, and 
B = { B1, …, Bm

 } (m ≥2) be a partition of V.   B is a 
marginally independent partition if, for every subset

},...,1,|{ mkBxxX kk
i

k
i =∈= , variables in X are 

marginally independent. Each Bi is a marginally inde-
pendent block.

A marginally independent partition groups vari-
ables into m blocks. If a subset X is formed by taking 
one element from each block, then variables in X are 
marginally independent. Partial PI models are defined 
by replacing marginally independent subsets with the 
marginally independent partition.

Definition 3. A PDM over a set V (|V| ≥ 3) of variables 
is a partial PI model if the following hold:

(SI’) V can be partitioned into marginally independent 
blocks.

(SII) Variables in V are collectively dependent.

Table 2 shows the JPD of a partial PI model over V = 
{x1, x2, x3} where x1 and x2 are ternary.  The marginal 
probabilities are

P(x1,0) = 0.3, P(x1,1) = 0.2, P(x1.2) = 0.5, 
P(x2.0) = 0.3, P(x2.1) = 0.4, P(x2.2) = 0.3, 
P(x3.0) = 0.4, P(x3.1) = 0.6.

The marginally independent partition is {{ x1}, {x2, x3}}. 
Variable x1 is marginally independent of each variable 
in the other block, e.g., P(x1, x2.0) = P(x1,1) P(x2.0) = 0.06.  
However, variables in block {x2, x3} are dependent, e.g., 
P(x2.0, x3.1) = 0.1 ≠ P(x2.0) P( x3.1) = 0.18.  The three 
variables are collectively dependent, e.g., P(x1,1| x2.0, 
x3.1 ) = 0.1 and P(x1,1| x2.0) = P(x1,1| x3.1) = 0.2.   

A partial PI model may involve only a proper subset 
of V and remaining variables show normal dependency. 
The subset is an embedded PI submodel. A PDM can 
embed multiple submodels.

Definition 4. Let a PDM be over a set V of generally 
dependent variables. A proper subset VV ⊂'  (|V’| ≥ 
3) of variables forms an embedded PI submodel if the 
following hold:

(SIII)  V’ forms a partial PI model. 

(SIV) The marginal independent partition  B = { B1, 
…, Bm

 } of V’ extends into V. That is, V partitions into 
{X1,…,Xm} such that ),...,1(, miXB ii =⊆  and, for 
each iXx ∈  and jXy ∈  )( ji ≠ , x and y are margin-
ally independent.

Table 3 shows the JPD of a PDM with an embedded 
PI submodel over x1, x2 and x3.  The marginal probabili-
ties are P(x1,0) = 0.3, P(x2,0) = 0.6, P(x3,0) = 0.3, P(x4,0) 
= 0.34, P(x5,0) = 0.59.

The marginally independent partition of the sub-
model is {B1 = { x1}, B2 = {x2., x3}}.

Table 1. Estimated distribution of patient health state

(s1,s2,s3,s4) P(.) (s1,s2,s3,s4) P(.)

(t, t, t, t) 1/8 (u, t, t, t) 0

(t, t, t, u) 0 (u, t, t, u) 1/8

(t, t, u, t) 0 (u, t, u, t) 1/8

(t, t, u, u) 1/8 (u, t, u, u) 0

(t, u, t, t) 0 (u, u, t, t) 1/8

(t, u, t, u) 1/8 (u, u, t, u) 0

(t, u, u, t) 1/8 (u, u, u, t) 0

(t, u, u, u) 0 (u, u, u, u) 1/8

Table 2. A partial PI model where v = (x1, x2, x3 )

v P(.) v P(.) v P(.) v P(.) v P(.) v P(.)

(0,0,0) 0.05 (0,1,1) 0.11 (1,0,0) 0.05 (1,1,1) 0.08 (2,0,0) 0.10 (2,1,1) 0.11

(0,0,1) 0.04 (0,2,0) 0.06 (1,0,1) 0.01 (1,2,0) 0.03 (2,0,1) 0.05 (2,2,0) 0.01

(0,1,0) 0.01 (0,2,1) 0.03 (1,1,0) 0 (1,2,1) 0.03 (2,1,0) 0.09 (2,2,1) 0.14
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Outside the submodel, B1 extends to include x4 and 
B2 extends to include x5. Each variable in one block is 
marginally independent of each variable in the other 
block, e.g.,

P(x1,1, x5,0)= P(x1,1) P(x5,0) = 0.413.

Variables in the same block are pairwise dependent, 
e.g.,

P(x2,1, x3,0)= 0.1 ≠ P(x2,1) P(x3,0) = 0.12.

Variables in the submodel are collectively dependent, 
e.g.,

P(x1,1 | x2,0, x3,1) = 0.55, P(x1,1 | x2,0) = P(x1,1 | x3,1) = 
0.7.

However, x5 is independent of other variables given x3, 
displaying conditional independence, e.g.,

P(x5,1 | x2,0, x3,0, x4,0) = P(x5,1 |  x3,0) =0.9.

PDMs with embedded PI submodels are the most 
general PI models.

Heuristics for Model Discovery

Given a data set over n variables, the number of pos-
sible network structures is super-exponential (Cooper 
& Herskovits, 1992). To make discovery tractable, a 
number of heuristics are commonly applied.  The most 
common is the Naive Bayes heuristic (Zhang, 2004).  
It restricts potential models to Naive Bayes models 
whose graph consists of a single root (the hypothesis) 

and its observable child nodes (the attributes).  Since 
the hypothesis is given, discovery focuses on finding 
the CPD at each node and is very efficient.

Another heuristic is the TAN heuristic, that restricts 
potential models to tree augmented Naive Bayes models 
(Friedman, Geiger, & Goldszmidt, 1997).  Its graph also 
has a single root (the hypothesis).  However, attributes 
themselves form a tree (see Figure 2).  Each attribute 
has the hypothesis and at most one other attribute as 
its parent nodes.

The above heuristics limit the model space. Heu-
ristics below limit the search procedure. One common 
heuristic is the single-link lookahead (Cooper & Her-
skovits, 1992;  Heckerman, Geiger & Chickering, 1995; 
Lam & Bacchus, 1994). Learning starts with an initial 
graph. Successive graphical structures, representing dif-
ferent sets of independence assumptions, are adopted. 
Each adopted structure differs from its predecessor by 
a single link and improves a score metric optimally.

An alternative is the bounded multi-link lookahead 
(Hu & Xiang, 1997) where an adopted structure differs 
from its predecessor by up to k > 1 links.  The algorithm 
applies single-link lookahead and low-order (small k) 
multi-link lookahead as much as possible, and uses 
high-order (large k) multi-link lookahead only when 
necessary.

Underlying Assumptions and 
their Implications

Knowledge discovery starts with a dataset generated by 
an unknown PDM M.  The goal is to uncover a graphi-
cal model that approximates M.  The best outcome is 
often known as the minimal I-map (Pearl, 1988).   It 
is a graph G whose nodes correspond to variables in 

v P(.) v P(.) v P(.) v P(.)

(0,0,0,0,0) 0 (0,1,0,0,0) .0018 (1,0,0,0,0) .0080 (1,1,0,0,0) .0004

(0,0,0,0,1) 0 (0,1,0,0,1) .0162 (1,0,0,0,1) .0720 (1,1,0,0,1) .0036

(0,0,0,1,0) 0 (0,1,0,1,0) .0072 (1,0,0,1,0) .0120 (1,1,0,1,0) .0006

(0,0,0,1,1) 0 (0,1,0,1,1) .0648 (1,0,0,1,1) .1080 (1,1,0,1,1) .0054

(0,0,1,0,0) .0288 (0,1,1,0,0) .0048 (1,0,1,0,0) .0704 (1,1,1,0,0) .0864

(0,0,1,0,1) .0072 (0,1,1,0,1) .0012 (1,0,1,0,1) .0176 (1,1,1,0,1) .0216

(0,0,1,1,0) .1152 (0,1,1,1,0) .0192 (1,0,1,1,0) .1056 (1,1,1,1,0) .1296

(0,0,1,1,0) .0288 (0,1,1,1,1) .0048 (1,0,1,1,1) .0264 (1,1,1,1,1) .0324

Table 3. A PDM with an embedded PI submodel where v ={x1, x2, x3, x4, x5 }
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M and whose links are as fewer as possible such that 
graphical separation among nodes in G implies condi-
tional independence in M. The assumption underlying 
a heuristic determines its ability to discover minimal 
I-maps for various PDMs. The following are assump-
tions underlying Naïve Bayes and TAN.

Proposition 1. In a Naïve Bayes model, every two 
attributes are conditionally independent given the 
hypothesis.

Proposition 2.  In a TAN model, every two non-adja-
cent attributes are conditionally independent given the 
parent of one of them and the hypothesis.

The general assumption underlying the single-link loo-
kahead is unclear.  Known results are based on particular 
algorithms using the heuristic and are centered around 
faithfulness.  A PDM M is faithful if there exists some 
graph G such that conditional independence among 
variables in M implies graphical separation among 
corresponding nodes in G, and vice versa. Spirtes, 
Glymour and Scheines (1993) present a sufficient 
condition: If M is faithful, the algorithm in question 
can discover a minimal I-map of M.  Xiang, Wong and 
Cercone (1996) present a necessary condition: If M is 
unfaithful, the output of the algorithm in question will 
not be an I-map.  Hence, faithfulness will be regarded 
as the primary assumption underlying the single-link 
lookahead heuristic.

The bounded multi-link lookahead heuristic does 
not make any of the above assumptions and is the most 
general among heuristics mentioned above.   Implica-
tions of these assumptions to discovery of PI models 
are summarized below (Xiang, 2007).

Theorem 1. Let Λ be the set of all Naive Bayes models 
and Λ’ be the set of all PI models over V. Then Λ ∩ 
Λ’ = ∅.

Theorem 2.  Let Λ be the set of all TAN models over 
V. Let Λ’ be the set of all PI models over V such that 
each PI model in Λ’ contains at least one embedded 
PI submodel over 4 or more variables. Then Λ ∩ Λ’ 
= ∅.

Theorem 3. A PI model is unfaithful.

Theorems 1 and 3 say that Naive Bayes and single-link 
lookahead heuristics cannot discover a minimal I-map 
if the unknown PDM is PI. Theorem 2 says that if the 
unknown PDM is beyond the simplest PI model (with 
exactly 3 variables), then the TAN heuristic cannot 
discover a minimal I-map.   

Suppose that these three heuristics (coupled with 
known algorithms) are applied to the data in Example 
1 in order to find the best strategy for patient treatment.  
They will be mislead by the marginal independence 
and return an empty graph (four nodes without links).   
This is equivalent to say that there is no way that the 
patient can be helped (either untreated and possibly 
suffering from the disease, or treated and possibly 
suffering from the side effect).

On the other hand, if a bounded 6-link lookahead 
heuristic is applied, the correct minimal I-map will 
be returned.   This is due to the ability of multi-link 
lookahead to identify collective dependence.  Although 
in this small example, the minimal I-map is a complete 
graph, the bounded 6-link lookahead can still discover 
a minimal I-map when the PI model is embedded in 
a much large PDM.   From this discovered model, a 
targeted treatment strategy can be developed by predict-

Figure 2. Graph structure of a TAN model where h is the hypothesis
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ing the patient’s state from states of  the last three days.   
Discovery of a PI model from social survey data and 
experimental result on its performance can be found 
in (Xiang, Hu, Cercone, & Hamilton, 2000).  

FUTURE TRENDS

Decision Theoretic Strategy

Heuristics such as Naïve Bayes, TAN and single-link 
lookahead are attractive to data mining practitioners due 
to mostly two reasons: First, they are more efficient. 
Second, PDMs that violate their underlying assump-
tions are less likely.  For instance, unfaithful PDMs are 
considered much less likely than faithful ones (Spirtes, 
Glymour and Scheines, 1993).  Although efficiency 
in discovery and prior probability of potential model 
are important factors, an additional factor, the cost 
of suboptimal decision (such as that according to the 
discovered empty graph for Example 1) has not been 
paid sufficient attention. A decision theoretic strategy 
(Xiang, 2007) that integrates all these factors is out-
lined below, where faithfulness is used as an example 
assumption.

Let A and A’ be alternative discovery algorithms, 
where A assumes faithfulness and A’ does not. Costs 
of discovery computation are Cdisc(A) = d and Cdisc(A’) 
= d’, where d < d’.  The unknown PDM M has a small 
probability ε to be unfaithful.  Choosing A, if M is faith-
ful, the discovered model supports optimal actions.  If 
M is unfaithful, the discovered model causes suboptimal 
actions. Choosing A’, no matter M is faithful or not, 
the discovered model supports optimal actions. Let 
the action cost of a correct model (a minimal I-map) 
be Copt = 0 and that of an incorrect model be Csub = ω 
> 0.  The expected cost of choosing A is 

Cdisc(A) + (1-ε) Copt + ε Csub = d + ε ω

and that of choosing A’ is Cdisc(A’) + Copt = d’.    Ac-
cording to decision theory, A’ is a better choice if and 
only if 

ω > (d’ - d)/ε .

In other words, for mission critical applications, where 
the above inequation often holds, the less efficient but 
more open-minded algorithm A’ should be preferred.

CONCLUSION

Heuristics must be used to render discovery of graphi-
cal models computationally tractable. They gain ef-
ficiency through underlying assumptions. Naive 
Bayes makes the strongest assumption, followed by 
TAN, followed by single-link lookahead, followed by 
bounded multi-link lookahead, while their complexi-
ties are reversely ordered.  These assumptions are not 
subject to verification in the discovery process.  The 
stronger the assumption made, the more likely that the 
discovered model is not the minimal I-map and, as a 
result, the model does not support the optimal decision.  
A decision-theoretic strategy chooses heuristic based 
on discovery efficiency, likelihood of discovering an 
incorrect model, as well as consequence in applying 
an incorrectly discovered model in decision making.  
For mission critical applications, a more open-minded 
heuristic should be preferred even though the compu-
tational cost of discovery may be higher.
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KEY TERMS

Bounded Multi-Link Lookahead Heuristic: It 
differs from the single-link lookahead in that each 
adopted graph is selected from candidates that dif-
fer from its successor by up to k>1 links.  It requires 
higher but bounded computational cost, makes the 
weakest assumption, and can discover PDMs that are 
not discoverable by the single-link lookahead such as 
PI models.

Embedded PI Submodel: An embedded PI sub-
model is a full or partial PI model over a proper subset 
of domain variables. The most general PI models 
are those that embed PI submodels in large problem 
domains.

Full PI Model: A full PI model is a PDM where 
every proper subset of variables is marginally indepen-
dent but the entire set is collectively dependent. They 
are the most basic PI models.

Naïve Bayes Heuristic: It assumes that the model 
graph consists of a single root (the hypothesis) and its 
observable child nodes (the attributes).  It makes the 
strongest independence assumption and is the most 
efficient.

Partial PI Model: A partial PI model is otherwise 
the same as a full PI model except that some subsets 
of variables may not be marginally independent. A full 
PI model is also a partial PI model. Hence, partial PI 
models are more general.

Single-Link Lookahead Heuristic: The discovery 
process using this heuristic consists of a sequence of 
adopted graphs such that each is selected from candi-
dates that differ from its successor by exactly one link.   
Models discoverable with this heuristic are usually 
faithful PDMs.

TAN Heuristic: It assumes the same as Naïve 
Bayes plus that each attribute may have at most one 
other attribute as the additional parent.  




