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Abstract

Several scoring metrics are used in different search procedures for
learning probabilistic networks. We study the properties of cross en-
tropy in learning a decomposable Markov network. Though entropy
and related scoring metrics were widely used, its ‘microscopic’ proper-
ties and asymptotic behavior in a search have not been analyzed. We
present such a ‘microscopic’ study of a minimum entropy search algo-
rithm, and show that it learns an I-map of the domain model when the
data size is large.

Search procedures that modify a network structure one link at a
time have been commonly used for efficiency. Our study indicates that
a class of domain models cannot be learned by such procedures. This
suggests that prior knowledge about the problem domain together with
a multi-link search strategy would provide an effective way to uncover
many domain models.

Keywords: Inductive learning, reasoning under uncertainty, knowl-
edge acquisition, Markov networks, probabilistic networks.

1 Introduction

A probabilistic network [35, 32, 18, 6] combines a qualitative graphic structure
which encodes domain dependencies, with a quantitative probability distribu-
tion which encodes the strength of the dependencies. The network structure
can be a directed or undirected graph. A Bayesian network (BN) structure is a
directed acyclic graph and a decomposable Markov network (DMN) structure
is an undirected chordal graph. As many effective probabilistic inference tech-
niques have been developed [34, 21, 28, 24, 45] and the applicability of proba-
bilistic networks have been amply demonstrated in many artificial intelligence
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domains [6], many researchers turn their attention to automatic learning of
such networks from data.

Chow and Liu [9] pioneered learning of probabilistic networks. They de-
veloped an algorithm to approximate a joint probability distribution (jpd) by
a tree-structured BN. Rebane and Pearl [36] extended their method to learn
a polytree-structured BN. However, many real world domain models cannot
be represented adequately with a tree-structured network. The following algo-
rithms are all applicable to learning a multiply connected network. Herskovits
and Cooper [22] developed the Kutato algorithm to learn a BN from a database
of cases by minimizing the entropy of the distribution defined by the BN. Their
method starts with an empty graph (no links) and adds one link at each pass
during search. Later, they proposed the K2 algorithm [10] that learns a BN
based on a Bayesian method which selects a BN with the highest posterior
probability given a database. A similar algorithm was independently devel-
oped by Buntine [3]. Recently, Heckerman et al [20] applied the Bayesian
method to learning a BN by combining prior knowledge and statistical data.
Spirtes and Glymour [39] developed the PC algorithm that learns a BN by
deleting links from a complete graph. Lam and Bacchus [27] applied a mini-
mal description length (MDL) method to learning a BN. A BN is evaluated as
the best if it has the minimal sum of its own encoding length and the encoding
length of the data given the BN. Instead of learning a BN, Fung and Crawford
[14] developed the Constructor algorithm that learns a DMN. Dawid and Lau-
ritzen [11] studies ‘hyper Markov laws’ in learning numerical parameters of a
DMN with a given decomposable graph. Madigan and Raftery [29] proposed
algorithms for learning a set of acceptable models expressed as BNs or DMNs.
A more extensive review of literature for learning probabilistic networks can
be found in [22, 10, 5, 19].

In this paper we consider learning a DMN from a database. Pearl [35]
showed that directionality makes BNs a richer language in expressing depen-
dencies. For instance, an induced dependence can be expressed by a BN but
not by a DMN. In general, fewer numerical parameters are required to specify
a BN than those required to specify a corresponding DMN. However, learning
of DMNs is useful for several reasons.

One important application of BNs is to compute posterior probabilities.
One efficient exact algorithm [24] for doing that in a sparse multiply con-
nected network uses a DMN, in terms of its junction tree (JT), as the run time
representation of a BN. The method can be extended to probabilistic inference
with multiply sectioned Bayesian networks in a single agent oriented system
[45, 44] as well as in a multi-agent distributed interpretation system [43]. The
run time representation is a set of DMNs (in terms of a set of JTs). It has
been shown [42, 40] that computation of posterior probabilities of a BN can
be performed using an extended relational database once the BN is converted
into its corresponding DMN. This implies that once a probabilistic model is
expressed in terms of a DMN, inference can be performed using standard re-
lational DBMSs. Most importantly, as BNs and DMNs are so closely related,
knowledge gained in learning one of them will benefit the learning of the other.
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It has been shown that learning probabilistic networks is NP-hard [2, 8].
Therefore, using heuristic methods in learning is justified. Many algorithms
developed use a scoring metric and a search procedure. The scoring met-
ric evaluates the goodness-of-fit of a structure to the data, and the search
procedure generates alternative structures and selects the best based on the
evaluation.

Out of many possible scoring metrics, Bayesian metrics1, description length
metrics and entropy metrics have been used and studied by several researchers
[22, 3, 10, 27, 29, 20, 2, 41]. In many common cases, a Bayesian metric can be
constructed that is equivalent to a description length metric, or at least ap-
proximately equal. See for instance [7, 38] for a more detailed discussion. Lam
and Bacchus [27] showed that, in their scheme for learning a BN based on the
MDL principle, the encoding length of the data is a monotonically increasing
function of the Kullback-Leibler cross entropy between the distribution defined
by the BN and the true distribution. It has also been shown [41] (see Section 3)
that the cross entropy of a DMN can be expressed as the difference between
the entropy of the distribution defined by the DMN and the entropy of the
true distribution which is a constant given a static domain. Entropy has also
been used as a means to test conditional independence in learning BNs [36].
Therefore, the maximization of the posterior probability of a network given a
database [10, 20], the minimization of description length [27], the minimization
of cross entropy between a network and the true model [27], the minimization
of entropy of a network [22, 41], and conditional independence tests are all
closely related. A better understanding of any of them will lead to a better
understanding of all of them.

In all the methods mentioned above, a heuristic method with a single-link
lookahead search is adopted in order to avoid the exponential complexity of
exhaustive comparison of all possible networks. However, as far as we know,
the interplay of the scoring metric and the search process has not been ana-
lyzed. Many questions have not been answered. For example, how does the
current score determine the next link (dependence) that will be selected? How
does the inclusion of a new link change the score and why? Is it possible that
once a superfluous link is added, the search may continue until a complete
graph structure is generated? We have already had a good ‘macroscopic’ per-
spective about which network(s) should be chosen if an exhaustive comparison
is possible according to a particular scoring metric. However, in viewing the
search process as a chain that connects the initial network to some learned
network, we do not seem to have a satisfactory ‘microscopic’ understanding
about what is occurring during the transition from one link to the next on the
chain. We do not seem to know how good or how bad the learned network is
relative to the global optimal. As pointed out by Spirtes and Glymour [39]
and acknowledged by Cooper and Herskovits [10], the “asymptotic reliability

1All Bayesian metrics of a model are defined as the posterior probability of the model
given the data. However, we have used the plural ‘metrics’ here since the posterior proba-
bility depends on the prior probability of the model, and there can be many possible priors
to encode the model learner’s a priori bias.
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of the procedure is unknown.”
In this paper we provide such a ‘microscopic’ study under the context of

learning a DMN from a database by using an entropy scoring metric and a
minimum entropy search procedure. The ‘microscopic’ understanding leads
to the identification of drawbacks of a single-link lookahead search which is
commonly used in learning probabilistic networks.

It is well known that parity functions cause failure of many decision tree
learning algorithms (see [33, 25] for example). We show that a class of proba-
bilistic domain models, that forms a generalization of parity functions, cannot
be learned by a single-link lookahead search procedure.2 Although our obser-
vation is based on the entropy scoring metric, because of the close relationship
between the entropy metric and other metrics described above, the results
we obtain are valid for other algorithms as well. We demonstrate that these
domain models cannot be learned by many learning algorithms [22, 39, 27].
We therefore propose a multi-link lookahead learning algorithm. We will ana-
lyze the computational complexity of this algorithm and suggest solutions to
alleviate the problem.

This ‘microscopic’ study also establishes the ‘asymptotic’ behavior of the
minimum entropy search algorithm. We will show that, when the number of
cases in a database becomes very large, the algorithm will halt and return an
I-map of the domain model.

In practice, learning is performed on a database of a finite size. A finite
database may contain false dependencies that do not exist among the domain
variables.3 They cause the learning algorithms to generate superfluous links.
These links and their associated numerical probability values tend to encode
’noise’ and bias the jpd of the learned networks. Even when the database is
very large and contains no false dependencies, learning using heuristic search
may generate superfluous links that do not reflect the true domain dependen-
cies. These superfluous links tend to make the inference using the resultant
network unnecessarily more complex. Fortunately, after we classify superfluous
links generated under different conditions, it is revealed that the entropy met-
ric has the built-in resistance to adding some superfluous links. Thus, learning
a trivial I-map is unlikely.

Section 2 provides the background and terminology. We present in Sec-
tion 3 the rational of the minimum entropy approach. In Section 4, we study
the ‘microscopic’ mechanism of the minimum entropy search in learning a de-
composable Markov network as an I-map of a domain model. We will also
discuss the built-in partial resistance of the entropy metric to adding superflu-
ous links. In Section 5, we demonstrate the limitation of a single-link lookahead
search. We present in Section 6 a multi-link lookahead algorithm based on the
minimum entropy search. Experimental results are presented in Section 7,

2However, other methods such as stochastic search [30, 17] may not have this problem.
3We consider learning processes that infer dependencies contained in the domain model.

As we have no direct access of the model, we must infer dependencies from the data generated
by the model. Put differently, we must infer true dependencies from those dependencies that
are ‘contained’ in the data.
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followed by a concluding discussion.

2 Background and Terminology

2.1 Graph related terminology

A chord in an undirected graph is a link that connects two nonadjacent nodes.
A graph is chordal if every cycle of length > 3 has a chord. The undirected
graph G1 in Figure 1 is not chordal since the cycle a, (a, b), b, (b, d), d, (d, c),
c, (c, a), a of length 4 has a pair of nonadjacent nodes b and c that are uncon-
nected. If we add the chord (b, c) to G1, it becomes G2 which is chordal. A
clique of a graph is a maximal set of nodes pairwise linked. G2 has four cliques
{a, b, c}, {b, c, d},{c, e} and {c, f}. A component of a graph is a maximal sub-
graph that is connected. In Figure 1, G2 has a single component and G3 has
two components. An undirected graph G of a set N of nodes is collapsible onto
Z ⊂ N if every component of N \ Z has complete boundary in G. We shall
refer to Z as a core. In Figure 1, {b, c, f} is a core of G3, and so is φ.
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Figure 1: G1: a non-chordal graph. G2: a chordal graph with a single compo-
nent. G3: a chordal graph with two components. T2: a junction tree of G2,
where nodes are drawn as ovals and sepsets are drawn as boxes. F3: a junction
forest of G3.

Let G be a connected chordal graph. A junction tree (JT) T of G is a tree
whose nodes are labeled by cliques of G such that for each pair of nodes of
T , their intersection is contained in every node on the unique path between
them. A connected graph has a JT iff (if and only if) the graph is chordal
[16]. In Figure 1, T2 is a JT of G2. Without confusion, we sometimes refer to
a node C in T as a clique when the nodes of G contained in C are of interest.
For instance, we may say that T2 has a clique {a, b, c}. The intersection of two
adjacent cliques in T is called the sepset of the two cliques. In general, G may
not be connected. A junction forest (JF) F of G is a set of JTs each of which
is a JT of one component of G. In Figure 1, F3 is a JF of G3 and F3 consists
of two JTs. T2 is a (trivial) JF of G2. Extending the relation between chordal
graphs and JTs to JFs, we have that a graph has a JF iff it is chordal. Due
to the equivalence relation, we shall switch freely between the two graphical
representations (chordal graphs and JFs) at convenience.

Let X, Y and Z be three subsets of nodes in a graph. We use < X|Z|Y >
to mean that nodes in Z intercept all paths between nodes of X and nodes of
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Y . In G2 of Figure 1, we have < {a}|{b, c}|{d} >. In a JF, we use < X|Z|Y >
to mean that Z is a sepset or a clique or the union of a set of cliques which
intercept the unique path between the clique that contains X and the clique
that contains Y . For example, < {a}|{b, c}|{d} > and < {e}|{b, c, d}|{f} >
are true in T2 and < {a, b, c}|φ|{ef} > is true in T3.

2.2 Dependency graphs

Let N be a set of discrete variables in a problem domain and X ⊆ N . A
configuration x of X is an assignment of values to every variable in X. A
probabilistic model (PM) over N is an encoding of probabilistic information
that determines the probability of every configuration of X for every X ⊆ N .
A PM over N can be specified by a jpd over N . The entropy of X defined by
a probability distribution P over X is H(X) = −∑

x P (x) log P (x).
We will denote a PM by M. Our task is to learn a probabilistic network

from the data generated by M. In practice, we usually have less data than
what is necessary to reliably estimate the jpd over N . However, we may be
able to estimate reliably the marginal distribution over X ⊂ N if |X| is small.
Therefore, the jpd over N is mainly used in this paper as a conceptual entity.

Let X, Y and Z be three subsets of N . X and Y are conditionally in-
dependent given Z, denoted Ind(X,Z, Y ), iff P (x|y z) = P (x|z) whenever
P (y z) > 0.

Since we use graphs to represent independence relations among variables,
we will use nodes and variables interchangeably. An undirected graph G is an
independence map (I-map) of M over N if there is an one-to-one correspon-
dence between nodes of G and variables in N such that for all disjoint subsets
X, Y and Z of N , we have < X|Z|Y > ⇒ Ind(X,Z, Y ). That is, in an
I-map, variables that are graphically separated are independent. Variables not
graphically separated, however, are not necessarily dependent. See Pearl [35]
for more details on graphical representation of dependence models.

Let G = (N,E) be a chordal graph, F be a JF of G, and M be a PM over
N . Let C be a clique of F and S be a sepset of F . Let PM(C) and PM(S) be
the marginal distributions over C and S, respectively, defined by M. The jpd

P (v) = (
∏

C

PM(c))/(
∏

S

PM(s)) whenever P (v) > 0

is called the projected distribution of M on G (or on F ), where v is a config-
uration of N , c is the projection of v to C, and s is the projection of v to S.
Note that since the structure of a DMN is chordal, positivity is not required
[18, 11]. The pair (G,P ) is the decomposable Markov network (DMN) obtained
by projecting M to G, where G is the structure of the DMN and P is the dis-
tribution of the DMN4. For simplicity, we shall call (G,P ) the DMN from M.

4What we call a decomposable Markov network has been termed differently in the liter-
ature. It is called simply Markov network in [14, 41] and Markov graph in [10]. The term
decomposable Markov network is implicitly used in [35] to mean the similar thing as defined
above. However, there the term Markov network is restricted to a minimal I-map of a given
dependence model. We do not require the structure of a DMN to be an I-map.
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In practice, PM(C) is estimated from the data generated by M. Note that
(G,P ) defines a PM which may or may not be equivalent to M. The entropy
of N defined by P can be shown [41] to be

H(N) =
∑

C

H(C)−
∑

S

H(S). (1)

Whenever < X|Z|Y > holds in G (or F ), Ind(X,Z, Y ) must hold in P . There-
fore, we say that Ind(X,Z, Y ) is implied by G (or F ).

3 The Rational of the Minimum Entropy Ap-

proach

This section briefly reviews the rational behind the minimum entropy approach
originally presented in [41].

Given a probabilistic model M over a set N of variables, we would like
to learn a DMN (G,P ) that is an approximation of M. To measure the
closeness of (G,P ) to M, we adopt the Kullback-Leibler cross entropy [26],
K(PM, P ) =

∑
v PM(v) log(PM(v)/P (v)), where PM is the true jpd defined by

M and v is a configuration of N . A DMN that minimizes K(PM, P ) will be
considered as the best approximation of M. It has been shown [41] that

K(PM, P ) = H(N) −HM(N), (2)

where H(N) is the entropy of N defined by P and HM(N) is defined by M.
We include the proof here to make the paper self-contained.

Since K(PM, P ) = −∑
v PM(v) log P (v) − HM(N), it suffices to show

−∑
v PM(v) log P (v) = H(N). From the definition of P (N), we obtain

−
∑

v

PM(v) logP (v) = −
∑

v

PM(v)(
∑

C

log PM(c) −
∑

S

log PM(s))

= −
∑

C

∑

v

PM(v) log PM(c) +
∑

S

∑

v

PM(v) log PM(s)

= −
∑

C

∑

c

PM(c) log PM(c) +
∑

S

∑

s

PM(s) log PM(s)

=
∑

C

H(C) −
∑

S

H(S).

where c (s) is the projection of x to C (S). The result follows from (1).
According to (2), minimizing K(PM, P ) can be achieved by simply mini-

mizing H(N). We call this the minimum entropy approach.
In Section 4.1, we will show that a DMN that minimizes K(PM, P ) is

actually an I-map of M. Thus, the best DMN is a minimal I-map, i.e., an
I-map that contains no superfluous links. The problem of learning a minimal I-
map is NP-hard [2]. Therefore, using heuristic methods in learning is justified.
We can design a learning algorithm by combining the entropy metric with a
single-link lookahead search strategy. We will refer to such an algorithm as
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learning by minimum entropy search. One such algorithm [41] starts with an
empty graph. At each pass, it searches all possible links and adds to the current
graph the link that minimizes the entropy. It terminates when no additional
link can decrease the entropy significantly. In Section 5, we identify a class of
PMs that cannot be learned by such a single-link lookahead search. A multi-
link lookahead search is required to discover the dependencies in these PMs.
In the following discussion, we will assume a more general search procedure
with the single-link lookahead as a special case.

4 The Minimum Entropy Search

In this section, we analyze how the dependence relations in a DMN are derived
in the minimum entropy search.

Recall that the pair (G,P ) is a DMN from M. That is, P is defined by
the marginals of PM on cliques of G. In practice, we can only estimate these
marginals from a database of cases, e.g., using the maximum-likelihood esti-
mator (the relative frequencies) or the Bayes’s estimator [10]. According to the
law of large numbers, the relative frequency of each configuration approaches
its true probability as the size of the database approaches infinity. Since our
objective here is to analyze the ‘microscopic’ mechanism of the minimum en-
tropy search and its asymptotic behavior, one may assume that P is obtained
directly from the projection of PM. As we move from the theoretical analysis
to practical implementation in Section 6, we will discuss the related issues.

Let us outline the theorems to be presented in this section. Theorem 2
establishes the relationship between the entropy of a DMN and its I-mapness.
Theorem 3 identifies a false independence relation in a DMN if its entropy
is not the minimum. Theorem 5 says that if the inclusion of one or more
links can remove a false independence relation, the entropy of the DMN will
decrease. Together, Theorems 3 and 5 state that the process of decreases in
entropy closely parallels the process of removal of false independence relations
contained in the intermediate DMNs. Theorem 6 summerizes Theorems 2, 3
and 5. It asserts that the minimum entropy search algorithm will produce an
I-map.

4.1 Characterization of the search space

Let us first show that the entropy of a DMN cannot be smaller than that of the
underlying M. This means that the search space of DMNs is lower-bounded
in terms of the entropy scoring metric as indicated by the following corollary.

Corollary 1 Let M be a probabilistic model over a set N of variables. Let
(G,P ) be a decomposable Markov network from M. Let HM(N) be the entropy
of N defined by M and H(N) be the entropy of N defined by P . Then H(N) ≥
HM(N).

Proof:
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Let PM be the jpd defined by M. The cross entropy K(PM, P ) ≥ 0
[26]. Since K(PM, P ) = H(N) − HM(N) by (2), we obtain H(N) ≥ HM(N).
2

The following theorem says that the lower bound of the search space can
only be reached by a DMN that is an I-map of M. Therefore, it shows clearly
that the minimum entropy search targets an I-map.

Theorem 2 Let M be a probabilistic model over a set N of variables. Let
(G,P ) be a decomposable Markov network from M. Let HM(N) be the entropy
of N defined by M and H(N) be the entropy of N defined by P . Then H(N) =
HM(N) iff G is an I-map of M.

Proof:
The cross entropy K(PM, P ) = 0 iff P = PM [26]. According to (2),

H(N) = HM(N) is equivalent to P = PM. Since (G,P ) is a DMN, we form a
JF of G and have P =

∏
C PM(C)/

∏
S PM(S) = PM. This means that every

independence relation implied by G is true in M, namely, G is an I-map of
M. 2

4.2 Construction of an I-map

Theorem 2 implies that if the entropy of a DMN is not the minimum, it must
contain a false independence relation. The next theorem describes such a false
independence relation more specifically in terms of its topological features.

Theorem 3 Let M be a probabilistic model over a set N of variables. Let
(G,P ) be a decomposable Markov network from M. Let HM(N) be the entropy
of N defined by M and H(N) be the entropy of N defined by P .

Then H(N) > HM(N) iff there exists a core X ∪ Y ∪ Z in G such that
Ind(X,Z, Y ) holds in P but not in M, where X, Y and Z are disjoint subsets
of N , X 6= φ, Y 6= φ, and Z is also a core in G.

Proof:
The sufficiency is an immediate result of Theorem 2. We prove the neces-

sity by contraposition. Since (G,P ) is a DMN from M, G implies a set of
independence relations of the form Ind(X,Z, Y ) where X, Z and Y are defined
as in the theorem. Note that < X|Z|Y > in G follows from the condition that
Z and X ∪ Y ∪Z are cores in G. If every such Ind(X,Z, Y ) holds in M, then
we have

P =
∏

C

PM(C)/
∏

S

PM(S) = PM,

namely, H(N) = HM(N). 2

Proposition 4 provides a method to augment the structure of a DMN such
that a false independence relation as identified in Theorem 3 can be removed,
and the resultant graph is chordal.
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Proposition 4 Let G be a chordal graph of a set N of nodes. Let X ∪ Y ∪ Z
be a core in G such that < X|Z|Y > holds in G, where X, Y and Z are
disjoint subsets of N , X 6= φ, Y 6= φ, and Z is also a core in G. Let G′ be a
graph obtained from G by completing Z ∪{x, y}, where x and y are selected as
follows: If there exist x ∈ X and z ∈ Z such that x and z are connected in G,
then select x. Otherwise select x ∈ X arbitrarily. Select y ∈ Y similarly.

Then G′ is chordal and < X|Z|Y > is false in G′.

Proof:
When Z = φ, X and Y are in different components. The proposition is

trivially true in this case. We consider Z 6= φ (X, Y and Z are in the same
component) below.

To show G′ is chordal, we first modify G into G1 by completing Z if Z is
not already complete. Since G is chordal and Z is a core, it follows that G1 is
chordal.

w

Generate a new one

Join two into one

Enlarge the smaller

z1,z21,z22,w

x,z21,z22,w y,z1,z21

x,z1,z21,z22,w
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Figure 2: Three cases of completing Z ∪ {x}. In each box, the upper-left is a
chordal graph where < x|Z|y > holds. The lower-left is a JT of the chordal
graph. The upper right is the chordal graph obtained by adding the dashed
link to the upper left graph such that Z ∪ {x} is completed. The lower-right
is a JT of the augmented graph where the modified or newly created clique is
shown in dashed oval. Top box: two cliques are joined into one. Middle box:
the smaller clique of the two involved is enlarged. Bottom box: a new clique
is created.
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Next, we modify G1 into G2 (F1 into F2) by completing Z ∪ {x} if they
are not already complete. Since x and Z are connected but not complete,
there exists a JF F1 of G1 in which x is in a clique adjacent to the clique that
contains Z. The three exhaustive and exclusive consequences of completing
Z ∪ {x} are (1) the two adjacent cliques are joined into one (e.g., Figure 2,
top), (2) the smaller of the two is enlarged (e.g., Figure 2, middle), and (3) a
new clique is generated on the path between the two (e.g., Figure 2, bottom).
Which one of them occurs depends on the composition of the two cliques. In
all cases, the junction forest property is unchanged and hence F2 is a JF, which
implies that G2 is chordal.

Using a similar argument to completing Z ∪ {x, y}, we conclude that G′ is
chordal. 2

Now we want to show that if a DMN is augmented such that a false inde-
pendence relation is removed, then the augmentation will decease the entropy.
This implies that the minimum entropy search is precisely a process of removal
of false independence relations.

Theorem 5 Let M be a probabilistic model over a set N of variables. Let
(G0, P0) and (G1, P1) be two decomposable Markov networks of M where G0

is a subgraph of G1. Let Hi(N) (i = 0, 1) be the entropy defined by Pi.
Then H1(N) < H0(N) iff there exist three disjoint subsets X 6= φ, Y 6= φ

and Z of N such that Ind(X,Z, Y ) is implied by G0 but not by G1 and M.

Proof:
First, we show H1(N) ≤ H0(N). Note that (G1, P1) defines a PM and

therefore (G0, P0) is a DMN of (G1, P1) since G0 is a subgraph of G1. From
Corollary 1, H1(N) ≤ H0(N). The equality holds iff G0 is an I-map of (G1, P1)
due to Theorem 2. That is, every independence relation implied by G0 must
be implied by G1, otherwise the relation must hold in M. 2

Theorem 6 says that, started with an arbitrary DMN, if the entropy of
the current DMN is not the minimum, a sequence of DMNs can be found
which monotonically decreases the entropy to its minimum. This therefore
establishes the asymptotic behavior of the minimum entropy search.

Theorem 6 Let M be a probabilistic model over a set N of variables. Let
(G,P ) be a decomposable Markov network from M. Let H(N) be the entropy
of N defined by P , and HM(N) defined by M. If H(N) > HM(N), there exists
a sequence (G,P ) = (G0, P0), . . . , (Gk, Pk) of decomposable Markov networks5

from M with the corresponding sequence of entropies H(N) = H0(N) > . . . >
Hk(N) = HM(N), where Gi (i = 1, . . . , k) is constructed by adding links to
Gi−1, and the last graph Gk is an I-map of M.

5Frydenberg and Lauritzen [13] (p553) proved that, given two chordal graphs with one
being the subgraph of the other, there is an increasing sequence of chordal graphs between
them that differ by exactly one link. DMNs differing by one link are not sufficient to decrease
entropy as will be shown in Section 5. Our result here involves a sequence of chordal graphs
that differ by more than one links and fix some false independence relations.
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Proof:
Suppose H(N) > HM(N). By Theorem 3, an independence relation

Ind(X,Z, Y ) that holds in P but not in M can be found, where X 6= φ,
Y 6= φ and Z are disjoint, Z is a core in G and so is X ∪ Y ∪ Z.

By Proposition 4, a chordal graph G1 can be obtained by augmenting G
such that Ind(X,Z, Y ) is false in G1.

Projecting PM to G1, we obtain a new DMN (G1, P1). Since Ind(X,Z, Y )
is implied by G but not by G1 (a supergraph of G) and M, according to
Theorem 5, (G1, P1) satisfies H1(N) < H0(N). If H1(N) > HM(N), the above
arguments lead to (G2, P2) that satisfies H2(N) < H1(N). Since only a finite
number of links can be added to G and the entropy of a DMN with a complete
graph is equal to HM(N), the sequence (G0, P0), . . . , (Gk, Pk) of DMNs does
exist. By Theorem 2, Gk is an I-map of M. 2

Theorem 6 illustrates the ‘microscopic’ working mechanism of the mini-
mum entropy search. The entropy acts as a motor that drives the search for
identifying a false independence relation. The removal of the false indepen-
dence moves the current state forward in a chain leading the starting DMN to
the goal I-map.

4.3 Superfluous links

Theorem 6 ensures that the minimum entropy search halts and produces an
I-map. It does not, however, eliminate the possibility of producing a trivial
I-map. Now we want to show that in practice halting at a trivial I-map rarely
occurs. We identify two types of superfluous links that may be added. In
fact, the entropy scoring metric has some built-in resistance to adding these
two types of superfluous links. However, the entropy scoring metric has no
resistance to adding a third type of superfluous links. We discuss this third
type in Section 6.

We start the search with an empty DMN. At each pass, links are added to
correct a false independence relation and thus the entropy is reduced. Even-
tually we will obtain an I-map of M. To examine the possibility of halting at
a trivial I-map, we ask the following two questions:

1. Will those links that do not correct a false independence reduce the
entropy?

2. Can the entropy scoring metric distinguish a direct dependence from an
indirect dependence?

The first question concerns the possibility of adding what we refer to as
uncalled-for links. For example, suppose the graph in the left of Figure 3 is the
minimal I-map of a PM. Assume that the current learned structure is the graph
in the right with the links (c, e) and (d, f) missing. If the link (a, c) is added
next, it is an uncalled-for link since it does not correct any false independence
in the current structure. The answer to the first question is definitely no,
which is a direct result of Theorem 5.
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Figure 3: Left: A minimal I-map of a PM. Right: An intermediate structure
during learning.

The second question concerns the inclusion of what we refer to as redun-
dant links. Redundant links repair a false independence but not in the most
direct way. In Figure 3 (right), since e is disconnected from the rest of the
graph, it implies that e is independent of every other variable. This is a false
independence since e is connected to every other variable in the minimal I-map
(left). In Figure 3 (right), if the link (a, e) is added next, it is a redundant
link. It repairs the false independence between a and e. Since it does not
repair the false independence between c and e, the link (c, e) must eventually
be included, rendering (a, e) redundant.

Note that the classification of a particular superfluous link into uncalled-for
versus redundant depends on the current structure. If the current structure
already contains (c, e), the link (a, e) would be classified as uncalled-for rather
than redundant.

An intermediate structure may imply many false independence relations.
In order not to include too many redundant links, we must not correct just any
false relation. Proposition 7 shows that the number of redundant links can be
reduced if we choose to correct the false relation that maximizes the decrement
of entropy. It says that, given three subsets A, B and C of variables, if A and B
are dependent, and A and C are either marginally independent or conditionally
independent given B, then including links between A and B reduces entropy
more than including links between A and C. This result formally justifies the
use of a greedy search and provides a partial answer to the second question.

Proposition 7 Let M be a probabilistic model over a set N of variables. Let
G = (N,E) be a chordal graph, A, B and C be three distinct cliques of G and
A be disconnected from B and C. Let G1 be a chordal graph formed by only
adding links to G such that A∪B becomes a clique. Let G2 be a chordal graph
formed by only adding links to G such that A∪C becomes a clique. Let H1(N)
and H2(N) be entropies defined by decomposable Markov networks from M
with structures G1 and G2, respectively.

Then H1(N) < H2(N) if (1) Ind(A,φ,B) does not hold in M and (2)
either Ind(A,φ,C) holds in M, or Ind(A,B,C) holds in M but Ind(A,C,B)
does not.

Proof:
In G1, a new clique AB replaces cliques A and B. Hence, we have H1(N) =

H(N)+HM(AB)−HM(A)−HM(B), where H(N) is the entropy of the DMN
with the structure G, and HM(AB) is the entropy of the new clique defined
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by M. Similarly, H2(N) = H(N) + HM(AC)−HM(A)−HM(C). Therefore,
we have

H2(N ) − H1(N ) = HM(AC) − HM(C) − HM(AB) + HM(B).

Using the well known average mutual information between two sets U and V
of variables,

I(U ; V ) =
∑

UV

P (UV ) log
P (UV )

P (U )P (V )

we obtain

H2(N ) − H1(N )
= [HM(A) + HM(C) − IM(A; C)]− HM(C) − [HM(A) + HM(B) − IM(A; B)] + HM(B)
= IM(A; B) − IM(A; C).

If Ind(A,φ,C) holds in M, then IM(A;C) = 0. Since Ind(A,φ,B) does
not hold in M, we have H2(N) − H1(N) = IM(A;B) > 0.

On the other hand, if Ind(A,B,C) holds in M, then IM(A;B) = IM(A;C)+
IM(A;B|C) [15] (equation 2.3.18), where I(A;B|C) is the average conditional
mutual information between A and B given C,

I(A; B|C) =
∑

ACB

P (ACB) log
P (A|CB)
P (A|C)

.

Hence, IM(A;B)−IM(A;C) = IM(A;B|C) ≥ 0, with equality iff Ind(A,C,B)
holds in M. Since Ind(A,C,B) does not hold by assumption, IM(A;B) −
IM(A;C) > 0. 2

Proposition 7 answers the second question partially. It only asserts that
redundant links will never be added under certain conditions, but it does not
guarantee the total avoidance of such links. Since finding the minimal I-map
is NP-hard, it is unlikely that any heuristic search using any scoring metric
would be able to eliminate all redundant links.

5 When Will a Single-Link Search Fail?

Theorem 6 states that as long as the current DMN is not yet an I-map, a
set of links can always be added such that the new DMN is closer to an I-
map. No upper bound is given for the number of links that must be added
each time. If we use a greedy algorithm as suggested by Proposition 7, a
single-link lookahead search needs only to explore O(|N |2) links before one
link is added. The number of links to be explored increases to O(|N |2i) for
an i-link lookahead (see Section 6). The single-link lookahead search has been
adopted by several learning algorithms [22, 10, 3, 39, 27, 41] for computational
efficiency. However, an important question is unanswered: What might be
compromised by using a single-link lookahead search?

With the understanding of the minimum entropy search, we answer the
above question in this section. Theorem 8 shows the existence of a class of
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PMs that displays a special pattern of dependence relations. Theorem 9 shows
that a single-link lookahead search is unable to learn the I-map for this class
of PMs.

Theorem 8 For any integer η ≥ 3, there exists a collection C of probabilistic
domain models over a set N of η binary variables such that the following holds
for each M ∈ C.

(S1) For each Y ∈ N , PM(N \ {Y }) =
∏

X∈N,X 6=Y PM(X).

(S2) For each pair X,Y ∈ N and X 6= Y , Ind({X}, N \ {X,Y }, {Y }) does
not hold in M.

We shall refer to each M as a pseudo-independent (PI) model.

Before proving the theorem, we intuitively describe the dependency pattern
displayed by the PI models. S2 implies that no pair of variables of N are
independent given all other variables. Therefore, in any I-map GM of M,
there must be a direct line between each pair of them, i.e., GM is a complete
graph. We say that variables in such PMs are collectively dependent. On the
other hand, S1 implies that variables in any subset of N of size η − 1 are
pairwise marginally independent.

Proof:
It is sufficient to construct a parameterized jpd given η such that both S1

and S2 hold and the parameter can take on infinite possible values.
Let X1, . . . ,Xη denote η binary variables in N and P (Xi,0) = P (Xi,1) = 0.5

(i = 1, . . . , η) where Xi,0 and Xi,1 are the two outcomes of Xi. There are exactly
η distinct subsets of N of size η − 1. For each subset {Xi1 , . . . ,Xiη−1} where
1 ≤ ij ≤ η, S1 is equivalent to

P (Xi1 , . . . ,Xiη−1) = 0.5η−1.

We have omitted the second index because the particular configuration does
not affect the probability value. Models that satisfy S1 do exist. A jpd
P ∗(N) = P (X1, . . . ,Xη) = 0.5η is one example. However, P ∗(N) does not
satisfy S2. We will construct a jpd of M which satisfies both S1 and S2.

We can view the above condition, which is equivalent to S1, as a constraint

P (Xi1 , . . . ,Xiη−1) = P (Xi1 , . . . ,Xiη−1 ,Xiη ,0)+P (Xi1 , . . . ,Xiη−1 ,Xiη ,1) = 0.5η−1

on the subset {Xi1 , . . . ,Xiη−1}. We therefore have η constraints, one for each
such subset.

To construct a desired jpd, we assign a probability value to each of the
2η configurations, each of which is denoted by a binary η-tuple. For example,
the configuration (X1,0, . . . ,Xη,0) is denoted (0, . . . , 0). We group the tuples
according to the number of 1’s contained in each tuple and index the groups
as GP0, . . . , GPη. For example, GP0 has a single tuple (0, . . . , 0), GP1 has η
tuples (0, . . . , 0, 1), (0, . . . , 0, 1, 0), ..., and (1, 0, . . . , 0).
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We assign probability values to the configurations group by group in as-
cending order of the group index. To make a new assignment, we check the
configurations whose probability values have been assigned, determine how
many of the η constraints are involved in the assignment, and ensure that the
new assignment conforms to the constraints.

We start by assigning the single configuration in GP0: P (0, . . . , 0) =
0.5η−1q, where q ∈ [0, 1] and q 6= 0.5. This assignment does not violate any
constraints. We then assign a configuration in GP1:

P (0, . . . , 0, 1) = P (X1,0, . . . ,Xη−1,0)−P (X1,0, . . . ,Xη−1,0,Xη,0) = 0.5η−1(1−q).

Note that this assignment involves only one constraint and involves the only
configuration whose value has been assigned. We will say that the assignment
of probability value to configuration (0, . . . , 0, 1) involves the constraint relative
to the configuration (0, . . . , 0, 0).

We make the following observation: If c1 is a configuration whose proba-
bility has been assigned and c2 is a configuration whose probability is to be
assigned, then the assignment involves a constraint relative to c1 if and only if
c1 and c2 differ by exactly one attribute.

This observation leads to two implications. First, the assignment of c2 can-
not involve a constraint relative to another configuration in the same group,
since configurations in the same group differ by at least two attributes. For ex-
ample, (0, . . . , 0, 1) and (0, . . . , 1, 0) in GP1, and (0, . . . , 0, 1, 1) and (0, . . . , 1, 0, 1)
in GP2.

Second, if c2 ∈ GPi, the assignment of c2 can only involve a constraint
relative to configurations in GPi−1. This is because configurations in GPj

(j ≤ i− 2) differ from c2 by at least two 1’s. Therefore, when we assign a con-
figuration, we have only to check configurations in the very last group assigned.
Note that the assignment may still involve multiple constraints each relative
to a distinct configuration. For example, the assignment of (0, . . . , 0, 1, 1, 1)
in GP3 involves three constraints relative to (0, . . . , 0, 1, 1), (0, . . . , 0, 1, 1, 0)
and (0, . . . , 0, 1, 0, 1) in GP2, respectively. We show that all of the constraints
involved can be satisfied simultaneously.

Each configuration in GP1 involves a single constraint relative to the single
configuration (0, . . . , 0) in GP0. To satisfy each constraint, we assign the con-
figuration 0.5η−1(1 − q) as we did in the second assignment above. Hence all
configurations in GP1 have the same probability value, since all distributions
of η − 1 order have the same value 0.5η−1. Therefore, for each configuration
c ∈ GP2, even though it involves two constraints, each relative to a different
configuration in GP1, the assignment P (c) = 0.5η−1q satisfies both simultane-
ously.

Thus, by following this procedure, we can construct a jpd for M by al-
ternating the assignment of 0.5η−1q and 0.5η−1(1 − q) to configurations in
successive groups. The resultant jpd clearly satisfies S1.

To show that the jpd also satisfies S2, we need to show, for an arbitrary
pair Xi,Xj (i 6= j) and W = N \ {Xi,Xj}, that P (Xi|Xj,W ) 6= P (Xi|W ),
or equivalently, P (Xi,Xj ,W ) 6= P (Xi|W )P (Xj ,W ). Since P (Xi|W ) = 0.5
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and P (Xj ,W ) = 0.5η−1 by S1, we have P (Xi|W )P (Xj ,W ) = 0.5η. However,
P (Xi,Xj,W ) has the value 0.5η−1q or 0.5η−1(1 − q), where q 6= 0.5.

We have now constructed a jpd that satisfies both S1 and S2, and has a
parameter q. Since q can take any value in the intervals [0, 0.5) and (0.5, 1],
the theorem is proven. 2

Consider the following example of a PI model. Suppose we have a digital
gate with three inputs Xi (i = 1, 2, 3) and an output X4. The output X4 = 1
whenever any two inputs are 0 and a third input is 1, or all inputs are 1.
Suppose the three inputs are independent to each other and each of them has
equal chance to be 0 or 1. Table 1 shows the jpd of these four variables. It
can be easily verified that (1) the marginal distribution of each variable is 0.5,
(2) any subset of two or three variables are mutually independent, and (3) the
jpd is not 0.54 = 0.0625.

(X1, X2, X3, X4) P (X1, X2, X3, X4) (X1, X2, X3, X4) P (X1, X2, X3, X4)
(0, 0, 0, 0) 0.125 (1, 0, 0, 0) 0
(0, 0, 0, 1) 0 (1, 0, 0, 1) 0.125
(0, 0, 1, 0) 0 (1, 0, 1, 0) 0.125
(0, 0, 1, 1) 0.125 (1, 0, 1, 1) 0
(0, 1, 0, 0) 0 (1, 1, 0, 0) 0.125
(0, 1, 0, 1) 0.125 (1, 1, 0, 1) 0
(0, 1, 1, 0) 0.125 (1, 1, 1, 0) 0
(0, 1, 1, 1) 0 (1, 1, 1, 1) 0.125

Table 1: A PI model.

In the PI models constructed in the proof of Theorem 8, the marginal
of each variable is equal to 0.5. However, PI models are not restricted to
0.5 marginals. Table 2 provides a jpd of three variables that have different
marginals, in which (1) the marginals are P (X1,0) = 0.6, P (X2,0) = 0.4 and
P (X3,0) = 0.2, (2) any two variables are marginally independent, and (3) the
jpd is not equal to the product P (X1)P (X2)P (X3).

(X1, X2, X3) P (X1, X2, X3) (X1, X2, X3) P (X1, X2, X3)
(0, 0, 0) 0.024 (1, 0, 0) 0.056
(0, 0, 1) 0.216 (1, 0, 1) 0.104
(0, 1, 0) 0.096 (1, 1, 0) 0.024
(0, 1, 1) 0.264 (1, 1, 1) 0.216

Table 2: A PI model where variables have different marginals.

Among all the PMs, PI models represent one extreme. The other extreme is
represented by models which display a totally different pattern of dependence
relations. In the I-map of those models, no pair of variables connected by a
link displays marginal independence. Between these two extremes, a whole
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spectrum of PI models exist, in which variables are collectively dependent,
marginally independent in some pairs and not marginally independent in other
pairs. To classify these models, we shall refer to the models in Theorem 8 as
full PI models and the models between the two extremes as partial PI models.
Table 3 depicts such a partial PI model of three variables. The marginal for
each variable is 0.5. Any pair of variables are dependent given the third.
However, X1 and X2 are marginally independent (P (X1,X2) = P (X1)P (X2)),
so are X1 and X3, but X2 and X3 are not marginally independent, namely,
P (X2,X3) 6= P (X2)P (X3).

(X1, X2, X3) P (X1, X2, X3) (X1, X2, X3) P (X1, X2, X3)
(0, 0, 0) 0.225 (1, 0, 0) 0.20
(0, 0, 1) 0.025 (1, 0, 1) 0.05
(0, 1, 0) 0.025 (1, 1, 0) 0.05
(0, 1, 1) 0.225 (1, 1, 1) 0.20

Table 3: A partial PI model.

(X1, X2, X3, X4) P (X1, X2, X3, X4) (X1, X2, X3, X4) P (X1, X2, X3, X4)
(0, 0, 0, 0) 0.0225 (1, 0, 0, 0) 0.02
(0, 0, 0, 1) 0.2025 (1, 0, 0, 1) 0.18
(0, 0, 1, 0) 0.005 (1, 0, 1, 0) 0.01
(0, 0, 1, 1) 0.02 (1, 0, 1, 1) 0.04
(0, 1, 0, 0) 0.0175 (1, 1, 0, 0) 0.035
(0, 1, 0, 1) 0.0075 (1, 1, 0, 1) 0.015
(0, 1, 1, 0) 0.135 (1, 1, 1, 0) 0.12
(0, 1, 1, 1) 0.09 (1, 1, 1, 1) 0.08

Table 4: An embedded PI model.

The PI models presented thus far are defined based on the entire domain
of variables. In general, a PI model can be embedded as a submodel. Table 4
shows a PM with four variables Xi (i = 1, 2, 3, 4). It contains an embedded
submodel identical to the partial PI model (of X1, X2 and X3) given in Table 3.
The marginal for each variable is 0.5 except P (X4 = 0) = 0.365. The marginal
for the subset {X1,X2,X3} is identical to that of Table 3, so the dependency
relations among the three variables remain the same. But for variables X2, X3

and X4, they are both collectively and pairwise dependent. The undirected
minimal I-map of the PM has each pair of variables connected except X1 and
X4.

Theorem 9 shows that the single-link lookahead search cannot learn the PI
models.

Theorem 9 Let GM be the minimal I-map of a full pseudo-independent model
M over a set X of η variables. Let G0 be an initial chordal graph from which
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the learning starts and let the number of links of G0 be L ≤ (η(η − 1)/2) − 2.
Then GM cannot be recovered by the single-link lookahead minimum entropy
search.

Proof:
Since M is a full PI model, GM is a complete graph and has M = η(η−1)/2

links. Let (G0, P0) be the initial DMN with L ≤ M − 2 links. Then G0 cannot
have two cliques of size η− 1. Otherwise, G0 will differ from a complete graph
by a single link, i.e., L = M − 1.

Since only a single link can be added each time and the resultant graph
must be chordal, at each pass of the search, either a clique of size 2 is formed
by joining two nodes in disconnected components or a clique of size k > 2 is
formed by joining two cliques of size k− 1 with their intersection of size k − 2.
In Figure 4, the clique {b, c} (k = 2) is formed by adding the dotted link (b, c),
the clique {a, b, d} (k = 3) is formed by adding the dotted link (a, d), and the
clique {d, e, f, g} (k = 4) is formed by adding the dotted link (d, g).

g

a
b

c

d e
f

h

Figure 4: Clique formation by single-link addition.

Let (G1, P1) be a candidate DMN such that G1 is augmented from G0 by
adding a single link (a, b). Denote the new clique formed by W ∪ {a, b}. The
entropy difference between the two DMNs is

H1(N) − H0(N) = HM(Wab) − (HM(Wa) + HM(Wb)− HM(W )).

According to S1 in Theorem 8, variables in any subset of size η−1 are pairwise
marginally independent. Since the largest two cliques of an equal size in G0

have a size η−2, we have |Wab| ≤ η−1. Hence Ind(Wa,φ, b) and Ind(W,φ, b)
hold in M, which implies H1(N) − H0(N) = 0. Therefore no (G1, P1) will be
selected and no link will be added to G0. 2

Although Theorem 9 involves learning only full PI models, the conclusion
can be generalized to learning partial and embedded PI models as well. For
example, if the single-link lookahead search is applied to the model in Table 3,
it will only find the dependence between x2 and x3 and will output a structure
with a single link. A two-link lookahead search after the single-link lookahead
search will identify the collective dependence among the three variables.

The existence of PI models poses a challenge to learning probabilistic net-
works as approximate I-maps. Suppose we have no prior knowledge about the
possible size of an embedded PI model. Then Theorem 8 dictates that search
of potential cliques up to the size of the entire domain by multi-link looka-
head is necessary in general. Since such a search is infeasible, prior knowledge
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should be used for restricting the number of links required for the search. We
will discuss this problem in more detail in Section 6.

We have shown that the single-link lookahead search combined with the
entropy scoring metric is unable to learn PI models. In fact, the same con-
clusion can be drawn in learning probabilistic networks (including DMNs and
BNs) with other scoring metrics. We now show this is indeed the case in some
well-known algorithms.

Pseudo-independent models cannot be learned by Kutato [22]. The algo-
rithm starts with an empty graph and uses a single-link lookahead search to
learn a BN with an entropy scoring metric. Suppose the data-generating PM
has a full PI submodel embedded (i.e., a subset of variables forms a full PI
model). Since variables in the submodel are pairwise marginally independent,
no link between any pair will decrease the entropy and hence no dependence
can be discovered.

Likewise, PI models cannot be learned by the algorithm suggested by Lam
and Bacchus [27], which uses the MDL principle to learn a BN. Let us first
briefly describe their algorithm. It first computes the mutual information
between each pair of nodes (corresponding to a link). It then places all links in
a list in descending order of mutual information between the end nodes. The
candidate BNs are generated by starting with an empty graph and including
one link at a time from the beginning of the link list and down the list. It
allocates equal amount of computational resources to explore candidate BNs of
identical number of links (having the same complexity). After each complexity
class has exhausted its resources, the best candidate BN according to the cross
entropy scoring metric is chosen. The BN that has the minimal description
length across classes will be the final output. If the data-generating model has
a full PI submodel embedded, links between each pair of nodes in the submodel
has zero mutual information. These links will be placed at the end of the link
list and will be the last to be included in any candidate BNs. If these BNs are
ever considered, the algorithm must have exhausted almost all possible BNs,
which has an exponential complexity. Therefore, in practice, these BNs would
have no chance to be tested and selected as the final output.

The previous two algorithms start with an empty graph. In contrast, the
algorithm PC [39] learns a BN by starting from a complete graph. In the first
pass, the algorithm removes each link if the end nodes of the link are marginally
independent. In the second pass, it removes each link if the end nodes of the
link are independent conditioned on a third node. In each of the following
passes, it removes each link if the end points of the link are independent con-
ditioned on a subset of nodes of higher order until a stopping condition is met.
If the data-generating PM has a partial PI submodel embedded, then some
pairs of nodes in the submodel are marginally independent. The links between
each pair of them will be deleted in the first pass of the search. Therefore the
collective dependence of the submodel will not be reflected in the final learned
BN.

It can be shown that this limitation also applies to K2 [10] which uses a
Bayesian scoring metric to learn a BN. A detailed discussion on this is beyond
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the scope of this paper.
It is well known that parity functions cause failure of many decision tree

learning algorithms (see [33, 25] for example). It should perhaps be emphasized
here that PI models are a generalization of parity functions. The PI model in
Table 1 is a parity function, but those in Tables 2, 3 and 4 are not.

6 A Multi-link Lookahead Learning Algorithm

The existence of pseudo-independent PMs and the inability of single-link looka-
head search to learn such models suggest the adoption of more general learning
algorithms when prior knowledge about the problem domain cannot eliminate
the possible existence of such a model. In this section and the section to fol-
low, we present one such algorithm and discuss related issues. As we are now
moving from the theoretical analysis of the minimum entropy search to its
practical implementation, we make some assumptions on the context in which
the proposed algorithm is to be applied.

Assumption 1 The database variables are discrete.

We have assumed a discrete problem domain throughout the paper as in-
dicated in the beginning of Section 2.2. This assumption simply restates it in
terms of the feature of the database.

Assumption 2 No cases in the database have missing variables.

The above two assumptions are seen in most algorithms for learning prob-
abilistic networks [10, 19]. To reduce the complexity of a multi-link lookahead
search, we make the following sparseness assumption.

Assumption 3 Let η be the size of the largest collectively dependent submodel
in the problem domain. The higher the value of η, the less likely that a submodel
of size η exists in the problem domain.

A submodel of size η forms a clique of that size. Given the total number of
variables in a problem domain, the larger a given clique is, the less number of
alternative chordal graphs there are. Assumption 3 allows us to lookahead a
small number of links such that we will not miss many embedded PI models.
In the case where the number of variables involved in an embedded PI model is
actually large, we probably will not be able to estimate its distribution reliably
from the available data anyway. Even if the database is very large and such
estimation is possible, the inference computation using such models will be very
expensive, making them much less useful. In addition, if the set of evidence
and query variables covers only a proper subset of the variables in an embedded
PI model, then the posterior probability computed from an independent model
will be identical to that from a PI model. Note that Assumption 3 does not
differentiate between PI and non-PI submodels. Based on this assumption,
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Algorithm 1

Input:A database D over a set N of variables, a maximum size η of clique, a
maximum number κ ≤ η(η − 1)/2 of lookahead links, and a threshold δh.

begin
initialize an empty graph G = (N,E);
G′ := G;
for i = 1 to κ, do % search by levels

repeat % search by passes
initialize the entropy decrement dh′ := 0;
for each set L of i links (L ∩ E = φ), do % search by steps

if G∗ = (N,E ∪ L) is chordal and L is implied by a single
clique of size ≤ η, then
compute the entropy decrement dh* locally;
if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then G := G′,done := false; else done := true;
until done = true;

return G and the projected distribution P of the database on G;
end

the search is bounded in Algorithm 1 with two parameters κ and η specified
by the user. The size of cliques is bounded by η. The size of PI submodels is
bounded, by κ ≤ m(m− 1)/2, to m ≤ η.

The search is structured into levels and each level is a search with the
identical number of lookahead links. Each level consists of multiple passes and
each pass is composed of multiple steps. Each pass at the same level tries to
add the same number (i) of links. For instance, level one search adds a single
link in each pass, level two search adds two links, and so on. Search at each
pass selects i links after testing all distinct and legal combinations, one at each
search step, of i links. The i links that decrease the entropy maximally are
selected. If the corresponding entropy decrement is significant enough, the i
links will be adopted and search continues at the same level. Otherwise the
next higher level of search starts. Note that each intermediate graph is chordal
as indicated by the if statement in the inner-most loop.

The entropy decrement dh∗ is computed locally using a core as illustrated
in Figure 5 with the JF representation. The subgraph F (corresponding to a
core) contains two groups of cliques whose unions are X∪Z∪A and Y ∪Z∪B.
After i links are added, the subgraph becomes F ∗ which contains two cliques
X ∪ Z ∪ A ∪ B and Y ∪ Z ∪ A ∪ B. Since the entropy contribution from the
rest of the DMN does not change, dh∗ can be computed using F and F ∗ only.

In Section 4, we showed that an I-map of a PM can be learned by the min-
imum entropy search when marginal distributions of cliques can be obtained
accurately. This is equivalent to a database of infinite size, which contains
only true dependencies. In Section 4.3, we classified two types (uncalled-for
and redundant) of superfluous links that may be generated even when learning
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Figure 5: Illustration of local computation in Algorithm 1.

is performed using such databases. Hence, their generation is due to the use
of a heuristic search. These links are undesirable because they unnecessarily
increase the complexity of inference computation.

In practice, we must learn from a finite database. Such a database may
contain false dependencies that do not exist in the underlying problem domain.
They cause the generation of a third type of superfluous link which we refer
to as false links. False links have a different undesirable effect apart from the
complexity increase shared by the other two types of superfluous links. The
probability values associated with false links tend to encode noise contained
in the database. The encoded noise biases the jpd of the learned network and
causes inference errors.

We have shown in Section 4.3 that the entropy metric has total resistance
to the generation of uncalled-for links and partial resistance to the generation
of redundant links. However, it has no resistance to the generation of false
links at all. Without additional controls, the minimum entropy search tends
to encode all false dependencies contained in the database. The threshold δh
used in Algorithm 1 is aimed at reducing false links as well as redundant links.
It works similarly as the encoding length of a model in a MDL approach to
penalize a complex model, and also similarly as a prior biased towards a simpler
structure in a Bayesian approach. It is supplied by the user for specifying to
what extent (s)he is willing to trade complexity of the generated network with
fitness of data. The necessity of such balance is discussed in [38, 27]. As
the value of δh decreases, both the complexity of the network and the degree
of fitness to data increase. As will be demonstrated in Section 7, the use of
δh helps the learning algorithm to approximate its asymptotic behavior even
though the size of the database is far from being ‘infinite’.

We analyze the worst case time complexity of the algorithm. Testing the
chordality of G∗ can be performed in O(|N |) time [16].

A JT can be computed by a maximal spanning tree algorithm [23]. A
maximal spanning tree of a graph with v nodes and e links can be computed
in O((v+e) log v) time [31]. Since a complete graph has O(v2) links, a maximal
spanning tree can be computed in O(v2 log v) time. Equivalently, computation
of a JT of a chordal graph with k nodes and v cliques takes O(v2 log v) time.
Since v ≤ k, computation of a JT of a chordal graph with k nodes takes
O(k2 log k) time. In computing dh∗, we need to compute F and F ∗ from the
corresponding chordal subgraphs. Each of them contains no more than 2η
variables, where η is the maximum allowable size of a clique. Therefore, we
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can compute F and F ∗ in O(η2 log η) time.
Let n be the number of cases in the database. We can extract the distribu-

tion P ′ on the 2η variables from the database directly in O(n) time. The pro-
jected distribution on F and F ∗ can be computed by marginalizing P ′ to cliques
and multipling clique distributions, which takes O(η 2η) time. The computa-
tion of dh∗ from the projected distributions can be performed in O(2η) time.
The complexity of each step is then O(|N |+n+η (η log η+2η)). Since n is much
larger than |N |, the complexity of each search step is O(n + η (η log η + 2η)).

The algorithm repeats for O(κ) levels. Each level contains O(|N |2) passes.
Each pass has C(C(|N |, 2), κ) = O(|N |2κ) steps. Hence, the algorithm has
O(κ |N |2κ) search steps. The overall complexity of the algorithm is then
O(κ |N |2κ (n + η (η log η + 2η))).

The computation is feasible if κ and η are small. This suggests the use
of prior knowledge about the problem domain to further constrain the search.
By exploring the prior knowledge of the problem domain, if we can partition
the problem domain N into β equal subdomains and assert that there is no
embedded PI models that crosses subdomain boundaries, then we can safely
only perform the single-link lookahead search in the entire problem domain,
but restrict the multi-link lookahead search to individual subdomains. We then
have O(|N |2 + κ |N |2κ

β2κ ) search steps, which amounts to a complexity reduction

of β2κ times. For example, suppose |N | = 48, κ = 5 and η = 5. The number
of search steps is on the order of 3.2 × 1017. If we can restrict the multi-link
lookahead search to three subdomains of no more than 16 variables each, the
number of search steps can be reduced to the order of 5.5 × 1012.

Another useful heuristic is to apply single-link lookahead search first. If a
disconnected network is generated and we have prior knowledge that it should
be connected, then we can focus the multi-link lookahead search based on the
resultant network. We leave such an investigation to future work. Related
work on beam search can be found in Buntine [4].

7 Experimental Results

Algorithm 1 was implemented and a set of experiments were performed to (1)
test if an I-map reasonably close to a control model can be learned given a
reasonably large database generated from the control model; (2) provide a sense
when the algorithm will behave significantly differently from the asymptotic
behavior as the size of database becomes smaller; and (3) test if the multi-link
lookahead is necessary and effective to learn an embedded PI submodel.

The algorithm was first run with the data on six probable risk factors for
coronary thrombosis [37]. With κ = 2 and δh = 0.004, the DMN structure
in Figure 6 was obtained. Our result is consistent with the models learned by
other methods [12, 29].

We then tested the algorithm using the ALARM model [1] with 37 vari-
ables. A database of 30000 cases, generated from the BN, was used in the
learning. A control DMN was obtained by converting the original BN with
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Figure 6: A DMN structure learned from a database of 1841 cases on coronary
thrombosis. Variables are defined as follows: A, smoking; B, strenuous mental
work; C, strenuous physical work; D, systolic blood pressure; E, ratio of β and
α lipoproteins; F, family anamnesis of coronary heart disease.

the method used in a junction tree inference algorithm [24]. In Figure 7, the
learned DMN (with κ = 1 and δh = 0.003) is compared with such a control
DMN. The control DMN has 68 links out of which 60 links (solid) are contained
in the learned DMN. The learned DMN contains 6 additional links (dotted)
and 8 missing links (dashed). It was found that 7 missing links in the control
DMN are due to a single weak link from node 24 to node 6. In the original BN,
node 6 has parents 5, 7, 36 and 24. During conversion, links among these par-
ents were added (including missing links (5, 24), (7, 24) and (36, 24)). During
triangulation, missing links (9, 24), (26, 24) and (9, 11) were filled in. Since the
dependence between node 24 and node 6 is very weak (out of 18 combinations
of the other three parents of node 6, in only four combinations the value of
node 24 affects the distribution of node 6 significantly), the algorithm did not
learn the link (6, 24) and consequently missed all the other six links as well.

This result is comparable with the published results on learning ALARM
as a BN (with 46 (directed) arcs). For example, Kutato [22] learned ALARM
with two missing arcs and two additional arcs.6 K2 [10] had one arc missing
and one arc added. The result by Heckerman et al. [20] had two missing arcs
and one reversed arc. A database of 10000 cases were used in all three cases.
A total variable ordering consistent with the control model was supplied to
Kutato and K2 in addition to the data, and a prior network structure was
supplied in [20].

As our formal analysis is performed under the condition of accurate esti-
mation of clique marginals, our next experiment provides a sense when the
algorithm will practically deviate from its asymptotic behavior. We used a
submodel of ALARM with 17 variables (including nodes 0,. . . ,5, 13,. . . ,23)
with the size of the joint probability space 26 × 311 ≈ 107. Four databases of
10000, 5000, 2000 and 1000 cases were generated from the submodel BN. Using
the database of 10000 cases, the DMN structure in Figure 8 (left) was obtained
with κ = 1 and δh = 0.002, which contains two addition links (dotted) and no
missing links. The identical result was obtained with the databases of 5000 and
2000 cases with δh being 0.003 and 0.006, respectively. The value of δh used
was increased as the size of database was decreased in order to exclude super-

6Note that when an arc from node Y to node X is added in a BN, several links will
be added in the corresponding DMN to complete the parent set of X and to render the
structure chordal. A similar effect occurs when an arc is missing.
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Figure 7: Comparison of the control DMN converted from ALARM BN with
the learned DMN.

fluous links. As the size of database was further reduced to 1000, the structure
in Figure 8 (middle) was obtained with δh = 0.02. Four links ((5, 23), (2, 15),
(0, 15) and (1, 2)) were missing relative to the structure in the left. However,
further reducing δh to 0.01 (right), we obtained the two additional links (2, 19)
and (2, 21) before any of the missing links were learned. Therefore, we can con-
clude that for this model, as the size of databases drops below 1000 cases, the
algorithm no longer behaves approximately to its asymptotic behavior. This
experiment demonstrates how δh can be used to help the learning algorithm
to approximate its asymptotic behavior even though the size of the database
is far from being ‘infinite’.
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Figure 8: DMN structures learned from databases generated by a submodal
of ALARM. Left: The databases have sizes from 10000 to 2000. Middle and
right: The database has a size 1000 and δh is 0.02 and 0.01, respectively.

The last experiment demonstrates the effect of using multi-link lookahead
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search in learning PI submodels. We randomly generates a BN such that a PI
submodel is embedded. The generator randomly selected the number of par-
ents and number of children of each node subject to the corresponding upper
bounds specified by the user. Once the structure was generated, conditional
probability distributions of each node was then randomly generated. The gen-
erator can also embed a PI submodel of up to 5 variables. The distribution
of the PI submodel was created as in the proof of Theorem 8. Figure 9 (a)
shows a generated BN and (b) is its converted DMN. All variables are binary.
Nodes 5, 6 and 9 form an embedded PI submodel. A database of 500 cases
was generated. With κ = 1 and δh = 0.03, the structure in (c) was learned.
With κ = 2, the structure in (d) was learned. Using smaller δh with either κ
value, additional links were obtained before the missing links. Clearly, single
and double-link lookahead failed to discover the PI submodel. With κ = 3 and
δh = 0.03, the structure in (b) was learned. Note that even though an embed-
ded PI submodel was used, the experimental result is also applicable to the
case of a ‘nearly’ PI submodel. This is because there is no difference between
a database generated by a PI model and the one generated by a ‘nearly’ PI
model as long as the database is small.
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Figure 9: (a) The structure of a control BN. (b) Control DMN converted from
(a). (c) The structure learned with single-link lookahead. (d) The structure
learned with double-link lookahead.

8 Discussion

In this paper, we studied learning a decomposable Markov network from a
database using the entropy scoring metric and a heuristic search. Our analysis
has revealed the ‘microscopic’ mechanism of a minimum entropy search and
its asymptotic behavior. We showed that the process to decrease the entropy
parallels the process to remove false independence relations in the intermediate
networks. The decreasing entropy drives the search forward until an I-map of
the domain model is learned when the size of the database is large.

The understanding of this mechanism uncovers that the I-map of a prob-
abilistic model cannot be fully recovered unless some false independence rela-
tions (equivalently, a true dependence not yet encoded) can be identified at
each search pass. We showed that there exists a class of pseudo-independent
models whose dependences can only be detected with a lookahead of multiple
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links. These models form a generalization of the well known parity functions.
As a single-link lookahead search has been adopted in many learning algo-
rithms for efficiency reasons, our analysis indicates that results obtained by
these methods will be compromised if the problem domain contains pseudo-
independent submodels.

To uncover the PI models, we have proposed an algorithm that uses the
multi-link lookahead search. Although we have suggested some simple ways in
which prior knowledge can be applied to reduce the complexity of the multi-
link lookahead search, clearly more research is needed in this direction.
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