
CIS 2460 Modelling of Computer Systems'

&

$

%

Customers arriving

An important event is the arrival of a customer to a server.

A “customer” may, in fact, be anything:

• A delivery van with a “fresh” load of hamburgers for the

burger stand.

• A weekend or holiday that makes the servers stop

working.

• A car door in an assembly line.

• A murder in Los Angeles prompting the attention

(“service”) of the LAPD.

1

CIS 2460 Modelling of Computer Systems'

&

$

%

In this case the basic property of an arrival is its relation to

time. The flow of customers can be represented in two

different ways:

• as a continuous random variable describing the time

periods separating successive customer arrivals.

• as a discrete random variable giving the average

number of arrivals per unit of time.

The simplest and most commonly used arrival model is

called the Poisson process and is made of two distributions:

Exponential and Poisson.

2

CIS 2460 Modelling of Computer Systems'

&

$

%

Continuous flow

Exponential distribution

Exponential distribution: any x ∈ R+ is a legal value and

the pdf is:

f(x) =

λe−λx x ≥ 0

0 otherwise

E(X) = µ =
∫

∞

−∞
xf(x)dx =

∫

∞

0
xλe−λxdx

= 1

λ
e−λx |∞0 = 1

λ

The variance:

V (X) =

∫

∞

0

x2f(x)dx =

∫

∞

0

x2λe−λxdx =
1

λ2

It so happens that σ = µ = 1

λ
.

3

CIS 2460 Modelling of Computer Systems'

&

$

%

To generate an exponentially distributed variate with mean µ

the following formula is most useful:

e = −µ ln(U(0, 1))

Here U(0, 1) is the uniform distribution in the range of (0,1).

Note that the variates are positive because the logarithm of

a number less than 1 is negative.

Note also that some uniform random number generators

occasionally return 0; that would blow up the above formula,

hence a safer alternative is recommended:

e = −µ ln(1 − U(0, 1))

4

CIS 2460 Modelling of Computer Systems'

&

$

%

Discrete flow

Poisson distribution

The probability that n customers will arrive during a unit of

time is:

p(X = n) =
e−λλn

n!
The cdf is

F (X ≤ n) = e−λ

n
∑

i=0

λi

i!

A convenient equality holds:
∑

∞

n=0
λ

n

n!
= eλ. This allows

to discover an amazing result: µ = σ = λ.

5

CIS 2460 Modelling of Computer Systems'

&

$

%

Poisson process

Consider a system in which a server process (could be

made of many parallel servers) handles events (we call

these events “arrivals” but they may represent something

else, e.g. local telephone calls). The operation of this

process is influenced by the sequence of arrival events; let

this sequence be denoted by Et1
1 , · · · , Eti

i
, · · ·. We

assume that the sequence is ordered, i.e. that ∀iti ≤ ti+1.

Let N(t) be the number of these events that occurred in the

time interval [0, t] (mathematically speaking:

N(t) = i | ti ≤ t, ti+1).

This process is a Poisson process if

P (N(t) = n) =
e−λt(λt)n

n!

Here, λ is called the mean arrival rate .

E[N(t)] = V [N(t)] = λt

6

CIS 2460 Modelling of Computer Systems'

&

$

%

Comparing the pdf of N(t)

P (N(t) = n) =
e−λt(λt)n

n!

with the pdf of the Poisson distribution:

p(X = n) =
e−λλn

n!

we note that the Poisson distribution is just a special case of

the Poisson process in which we consider the arrival rate per

unit of time (i.e. t = 1).

In a Poisson process with a mean rate λ, the distribution of

interarrival times is exponential with a mean of 1

λ
, not a

surprising result.

7

CIS 2460 Modelling of Computer Systems'

&

$

%

Pooling and splitting

When two Poisson processes with rates λ1 and λ2 are

combined into one, the resulting process is a Poisson

process with rate λ1 + λ2.

When a Poisson process with rate λ is split into two

processes with arrivals going to one of them with probability

p, the resulting processes are Poisson with rates λp and

λ(1 − p).

8

CIS 2460 Modelling of Computer Systems'

&

$

%

Poisson variates

int Poisson(double lambda)

{

int N ;

double T = 0 ;

for(N = 0 ; T <= 1 ; N++)

T += Exponential(1/lambda) ;

return N − 1 ;

}

int Poisson(double lambda)

{

int N ;

double P = exp(−lambda) ;

double T = 1 ;

for(N = 0 ; T >= P ; N++)

T ∗= drand48() ;

return N − 1 ;

}

9

