
CIS 2460 Modelling of Computer Systems'

&

$

%

Modelling of Computer Systems

Computer systems include three basic types of entities:

Hardware

Software

Data

1

CIS 2460 Modelling of Computer Systems'

&

$

%

Hardware

• Continuous simulation is commonly used to check if the

synchronisation paradigms work between the hardware

components. It is not very useful because a simulator

must believe written specifications and the error, if any,

usually lies in the design.

• Both discrete and continuous simulation are used in

modelling the flow of data through hardware

components. The goal is to monitor the timing (and

errors caused by timing issues) as opposed to the

properties of the data being pumped around.

2

CIS 2460 Modelling of Computer Systems'

&

$

%

Clock issues

When modelling hardware it is tempting to assume that

1. All the devices access the same central clock.

2. The clock can be accessed with a delay of 0 (or at least

with a fixed delay for all the devices).

Both these assumptions are patently wrong.

3

CIS 2460 Modelling of Computer Systems'

&

$

%

Clocks

Each device has its own timing mechanism (“clock”). No

two clocks operate at exactly the same frequency hence no

two devices can be perfectly synchronised.

4

CIS 2460 Modelling of Computer Systems'

&

$

%

Data transfer with two clocks

One device (disk controller, NIC, etc.) sends bits down a

physical line. At the other end, another device receives

them. Each has its own clock.

The receiver uses its clock to sense the flow of bits. the

transmission rate is known to the receiver, so its clock ticks

an integer number of times per pulse (or bit). The most

common ticking rate is 32 ticks per bit. The problems:

• There is an unknown propagation delay between the

sender and the receiver, so it is impossible to

synchronise their clocks permanently. Hence, the

receiver must figure out when a bit starts.

• No two clocks have an identical ticking rate, at least

because of crystal impurities. Hence, the receiver must

continuously adjust the position of the tick that indicates

the start of a bit.

5

CIS 2460 Modelling of Computer Systems'

&

$

%

Non–Return–to–Zero

Two voltage levels are used (usually a positive and a

negative voltage).

Tx 1 0 0 1 1 1 0 1

Rx

1 0 0 1 1 1 0 1
Clock drift will result in incorrect decoding (occurs for any bit

sequence).

Tx 1 1 1 1 1 1 1 1

Rx

1 1 1 1 1 1 1 1 1
The receiver received 9 ones although only 8 were sent.

6

CIS 2460 Modelling of Computer Systems'

&

$

%

Manchester encoding

There is a transition in the middle of every bit. The transition

serves a mechanism for clock synchronisation; it also gives

the value of the bit:

• A low to high level transition means a “1” bit.

• A high to low level transition means a “0” bit.

Tx 1 0 0 1 1 1 0 1

Rx

1 0 0 1 1 1 0 1

7

CIS 2460 Modelling of Computer Systems'

&

$

%

Clock synchronisation

An ideal scenario with Manchester encoding and 16 ticks

per bit:

Tx

Rx

1 0

0 8 16

8

CIS 2460 Modelling of Computer Systems'

&

$

%

Clock synchronisation

A not so ideal scenario with Manchester encoding and 16

ticks per bit:

Tx

Rx

1 0

0 8 16

The transition part magnified:

Tx

Rx 8

–2 –1 0 +1 +2

9

CIS 2460 Modelling of Computer Systems'

&

$

%

Simulating clocks

The common method is the use of Universal Time, a

fictitious but useful concept.

• The simulator maintain one UT clock that ticks in

universal time units (UTU).

• Every clock in the model has its own ticking rate which is

expressed in UTUs; it is a value close to, but not equal, 1.

• All the time intervals in the simulators are converted into

UTUs for event handling purposes.

• The local clock rates are used in one place only inside

the simulator: in the function that converts time intervals

to UTUs.

10

CIS 2460 Modelling of Computer Systems'

&

$

%

Simulating errors

By tradition, computer components are supposed to break

down at a rate proportional to the time they are in use.

We distinguish several types of errors:

1. Permanent failures such as a disk head crash or a

power supply failure. These are described by a statistic

known as MTBF.

2. Stochastic errors, excluding external interference. The

most famous is the BER (bit error) associated with

transmission channels.

3. Transient errors, including errors induced by external

causes.

11

CIS 2460 Modelling of Computer Systems'

&

$

%

Mean Time Between Failures

Time Between Failures is a random variable describing the

interarrival times of failures (“failure” is a customer arriving to

a repair server).

The mean, called MTBF, is often defined as:

θ = lim
t→∞

t −
∑n

i=1
fi

n

where n is the number of failures in the time interval [0, t]

and fi the duration of the ith failure.

The above definition assumes falsely that a device is always

up or down.

If the Time Between Failures is an exponentially distributed

variable (firmly believed) with a mean of MTBF, the

probability that a device will fail before its MTBF is about

63%..

12

http://upload.wikimedia.org/wikipedia/commons/9/92/Time_between_failures.svg

CIS 2460 Modelling of Computer Systems'

&

$

%

More on MTBF

The general belief is that the failure rate of devices is not

constant, but generally goes through three phases over the

lifetime of a device. In the first phase the failure rate is

relatively high, but decreases over time – this is called the

”infant mortality” phase. In the second phase the failure rate

is low and essentially constant–this is the ”constant failure

rate” phase. In the third phase the failure rate begins

increasing again, often quite rapidly–this is the ”wearout”

phase (the graphic representation of failure rate as a

function of time gave name to “bathtub” or “bowl” curve)..

TBF is the inverse of the failure rate in the constant failure

rate phase. MTBF is, therefore an excellent characteristic for

determining how many spare hard drives are needed to

support 1000 PC’s, but a poor characteristic for guiding you

on when you should change your hard drive to avoid a crash.

13

CIS 2460 Modelling of Computer Systems'

&

$

%

Modelling TBF

There are many studies of TBF distributions (for various

devices). Their common property is that they show MTBFs

that are much higher than those “experienced” by the

general public (note that the scientific term for “experienced”

is either “anecdotical” or “hearsay” when described politely).

• Tests are conducted in “correct” environment by skilled

people.

• In real life a mistreatment of a device will very often

shorten its lifetime but not result in a failure in the

immediate future.

• Ignorant folks confuse MTBF with Mean Time To Fail.

14

CIS 2460 Modelling of Computer Systems'

&

$

%

Stochastic errors

When a device fails, it is not operational anymore (until fixed

or replaced). This differs from a device operating but giving

an erroneous output (faulty part or corrupted packet).

The two kinds of stochastic errors differ in their probability

distributions:

Channel error rate is an inherent property of the channel

(caused by its imperfection) and has a “nice” probability

distribution. Many distributions are considered; the most

common approach is to use the Bernoulli process in

discrete cases and the Poisson process in continuous

cases.

Transient errors are totally unpredictable and occur at truly

“random” moments. Surprisingly the distribution that

describes such phenomena is well–known: it is the

15

CIS 2460 Modelling of Computer Systems'

&

$

%

How to model?

Failures: this is a common topic in modelling of

manufacturing systems.

BER type errors: use exponential arrivals or a Bernoulli

process for every bit.

Transient errors: the key issue is to guess the upper bound

of the interarrival time interval (the lower is 0).

16

CIS 2460 Modelling of Computer Systems'

&

$

%

Modelling software

We are talking about models of software products, not

software products for modelling anything else.

There is a lot of literature on this subject under the label of

“Software Engineering ” (consider UML, Extreme

Programming, etc.).

Additionally, we have Quality assurance and its models.

This has nothing to do with modelling and simulation.

17

CIS 2460 Modelling of Computer Systems'

&

$

%

Simulation of software behaviour

• Software runs in an emulator provided by the kernel of

the O.S. Incorrect behaviour is trapped and diagnosed.

• A debugger is a typical software emulator.

• The notion of virtual machine has been around since

1964.

18

CIS 2460 Modelling of Computer Systems'

&

$

%

Modelling software performance

Given two pieces of software it is natural to compare their

performance, usually expressed as the volume of system

resources needed to complete a task.

This is most often applied to algorithms. Two methods of

comparing algorithms stand out:

Asymptotic analysis giving the algorithm’s resource

requirements as a function of the problem size.

Timing which gives the CPU time used by an algorithm to

solve a particular instance of a problem.

19

CIS 2460 Modelling of Computer Systems'

&

$

%

Asymptotic analysis

Asymptotic analysis gives the complexity of an algorithm as

a function of the problem size. It is defined only for problems

of sizes approaching infinity and has a limited usefulness in

practice.

Algorithm complexity

Average Worst Best

Qsort O(n log n) O(n2) O(n log n)

Hsort O(n log n) O(n log n) O(n log n)

DPS O(n) O(n log n) O(n)

Insertion O(n2) O(n2) O(n)

20

CIS 2460 Modelling of Computer Systems'

&

$

%

Timing

I found this jewel in an old publication:

Table 1. Average execution times (uniform distribution)

Sequence length LP MLI DP Q H

1000 60 93 85 113 220

2000 61 89 86 124 240

3000 62 96 87 132 260

4000 62 94 88 140 280

5000 63 99 89 142 285

Table 3. Average execution times (parabolic distribution)

Sequence length LP MLI DP Insertion

200 700 426 167 717

400 1513 841 173 1402

600 2330 1266 178 2045

800 3117 1756 179 2751

1000 3930 2326 183 3431

21

CIS 2460 Modelling of Computer Systems'

&

$

%

Standard deviations?

Sequence length LP MLI DP Q H

Uniform distribution

1000 100 80 45 90 30

Parabolic distribution

1000 12000 2600 80

Confidence intervals with α = 0.01

LP 60 ± 26

MLI 93 ± 21

DP 85 ± 12

H 220 ± 7.3

22

CIS 2460 Modelling of Computer Systems'

&

$

%

Modelling data

There is no general theory of modelling data. The basic

recipe is well known:

1. Gather a sample as large as possible.

2. Use a χ2 or similar test to select a distribution that

cannot be rejected.

3. Use thie selected distribution.

As an example, let us look at a paper by L. Breslau et al.

This paper uses a distribution called Zipf’s distribution which

gives the probability of access to the ith most popular object

in a set of n objects.

The Zipf’s distribution has a pdf:

f(i) =
1

i

1

Hn

where Hn =
∑

n

i=1

1

i
.

23

