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Modelling input

This is the first step in any simulation project. The input to

the actual system is only partially known, therefore it has to

be modelled with care.

The definition of “input” is simple: it is made of data

independent of the behaviour of the system itself.

Customer arrivals are a typical example of input data.
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System vs. model

System

Model

???

3



CIS 2460 Modelling of Computer Systems'

&

$

%

Data collection

This is real art with few algorithmic steps to follow.

The purpose is to sift through existing data in order to guess

a pdf that will model adequately the behaviour of some input

parameter.

In many cases it is easy–or at least looks easy. If we need to

model the flow of customers into a new store being

designed, we might be tempted to take actual data from an

existing store. Not a good idea, though.
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In the rare cases when existing data can be used to model

an input parameter, one should be careful to do a thorough

job.

An excellent example is provided by Banks et al.:

the modelling of the time needed to get through a

metal detector.
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• An observer was placed near a metal detector and

recorded 1000 durations of time needed by people to

get through a metal detector.

• These 1000 samples had a sample mean of 30 seconds

and a sample deviation of 30 seconds, strongly

suggesting the use of exponential distribution.

• A shrewd analyst noted that 30 seconds are far more

than the time needed to pass through and a more

detailed analysis was done.

• It turned out that the sample consisted of two distinct

subsets: those who passed without problems (764

people) and those who had to try a second time (236

people).
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An additional twist was added when it was discovered that 9

people passed through the metal detector in negative time.

The existence of negative service times puts in doubt the

value of all the other measurements; unfortunately this is a

very common situation.

7



CIS 2460 Modelling of Computer Systems'

&

$

%

Random sampling

If we do not know the pdf of a random variable X , we might

try to guess it. By taking several measurements

(observations) of the random variates (values of X observed

in specific experiments), we get a random sample partially

describing X .

This sample is random only if the experiments are not

correlated, i.e. are independent. If they are independent, we

call these experiments replications .

Note that the set of values obtained by sampling X is not a

random variable, even though each replication may yield a

random variate.
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Sample

A random sample is characterized by measures similar, but

not identical, to those of random variables:

Central tendency is the equivalent of the mean.

X =
1

n

n∑

i=1

xi

Dispersion is the equivalent of the standard deviation.

S2 =

∑n

i=1
x2

i − nX 2

n − 1

The size of the sample influences the correlation between

these measures and the values of µ and σ of the actual

random variable from which the sample was drawn.
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Fitting experimental data

A random sample allows us to guess the pdf of the random

variable that the sample was taken from. In some sense thie

process is a reverse simulation; one should expect all the

potential difficulties caused bt stochastic effects (which do or

do not appear in the sample).

The simplest approach is to check if the sample looks similar

to a sample generated from a known distribution (this is a

crude method, but not totally useless).

Note that while guessing the pdf of a random variable, we

can neither assume that it is continuous if the sample

contains non–integer values nor assume that it is discrete if

it contains integers only.

10



CIS 2460 Modelling of Computer Systems'

&

$

%

Consider a random sample made of 10 values, X10, shown

sorted for convenience (when sampling, the order in which

variates are measured should not matter, unless it does, of

course). Clearly, the sample is too small. X10 has a central

tendency X10 = 12.8499 and a dispersion

S10 = 28.1791.

Our goal is to find the pdf of the random variable X from

which X10 was taken. One reasonable guess is that the pdf

is exponential and that the value of the dispersion (which

should be close to the central tendency) is a fluke due to the

occurrence of 92.6205 (the stochastic effect of a black swan

in a small sample).

To check the hypothesis, we generate a 10–variate sample

from the exponential distribution with a mean µ = X10 and

compare the samples.
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Sample X10 Sample

from exp(X10)

0.780191 1.0678

0.81452 1.55077

1.81128 1.70147

2.37752 2.62435

3.11818 2.70093

4.4289 7.20934

5.19915 8.12043

7.63543 8.51629

9.71337 21.4475

92.6205 32.9842

The exponential sample has a central tendency of 8.79231

and a dispersion of 10.4667, which emphasises the obvious

fact that the sample size is way too small .
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The trust in the validity of the sample increases as the

sample is bigger. However, the bigger the sample, the more

effort is needed to collect it, an obvious tradeoff.

A large amount of research was done to study the limits on

the error that could be made as a function of the size of the

sample. Well-known statistical methods allow to calculate

the smallest sample size giving a satisfactory level of

confidence.

We will compare larger samples (they all are subsets of the

same sample, so the sample of size 10 is made of the first

10 values from a sample of 10,000).
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0 1 2 3 4 5 6 7 8 9 10

Actual data N=100

10-

20-

11 12 13 14 15 16 17 18 19

X100 = 4.65482 S100 = 9.49841
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0 1 2 3 4 5 6 7 8 9 10

Exponential variates, µ = 4.65482, N=100

10-

20-

11 12 13 14 15 16 17 18 19

Central tendency: 5.75857 Dispersion: 5.89394

15



CIS 2460 Modelling of Computer Systems'

&

$

%
0 1 2 3 4 5 6 7 8 9 10

Actual data N=1000

50-

100-

200-

11 12 13 14 15 16 17 18 19 20 21 22 23

C.t. X1000 = 3.63967 Dispersion = 4.19736
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0 1 2 3 4 5 6 7 8 9 10

Exponential data µ = 3.63967, N=1000

50-

100-

200-

11 12 13 14 15 16 17 18 19 20 21 22 23

Central tendency: 3.74801 Dispersion: 3.77764
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0 1 2 3 4 5 6 7 8 9 10

Actual data N=100,000

50-

100-

200-

11 12 13 14 15 16 17 18 19 20 21 22 23 24

X100K = 3.50928 Dispersion = 3.0451
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0 1 2 3 4 5 6 7 8 9 10

Exponential data µ = 3.50928, N=100K

5K-

10K-

20K-

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Central tendency: 3.51309 Dispersion: 3.50344
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Parameter estimation

When we have a sample X and firmly believe that it comes

from a specific distribution X , we can estimate the

parameters of X using data computed from the sample. A

value derived from a sample that can be used to estimate a

distribution parameter is called an estimator .

We can always compute two values from the sample: x and

S (corresponding to the mean and standard deviation).
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Here are some estimators:

Distribution Parameter(s) Estimator

Poisson λ λ̂ = X

Exponential µ µ̂ = 1

X

Geometric p p̂ = 1

X

Uniform µ, σ µ̂ = X

σ̂ = S

Gamma β, θ β̂ from table

θ̂ = 1

X

Normal µ, σ2 µ̂ = X

σ̂ = S

Note that for the uniform distribution, estimating µ and σ

allows to estimate the interval ends a and b.
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Fitting

When we try to match a sample X to a random variable (i.e.

distribution) X , we start with a hypothesis called “h null”:

H0: X was drawn from X
Obviously, this H0 is true or it is false, but we don’t know

which.

Statistics offers a way out: to make a “probabilistic”

statement about H0 such as:

I claim that H0 is true with probability 0.95

Statistics offer methods of proving a claim like this; such

“proof” does not make H0 true or false.
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The possibility of making a mistake is expressed in terms of

the significance level α:

α = P (reject H0 | H0 is true)

The confidence in our claim that H0 is true clearly is 1−α.

Note that a confidence level of 0.5 implies no confidence at

all (probability of making a mistake being 50%).

A confidence level below 50% implies some degree of

confidence that H0 is false. In that case, the opposite

hypothesis, H1 appears to be likely to be true. H1 is

defined as:

H1: X was not drawn from X
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χ
2 test

The most popular test for assessing the significance level of

an H0 hypothesis is the χ2 test.

At the beginning we have a sample X made of n

observations xi, i = 1, ..., n and a hypothesis:

H0: X was drawn from X
Before starting, we need to determine s, the number of

parameters of X that we can estimate using the sample X.

Some simple examples: for the uniform distribution, the

mean and the variance can be estimated (or, with same

result, a and b), hence s = 2. On the other hand, for the

exponential distribution, s = 1 (this distribution has only 1

parameter to begin with).
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The χ2 test consists of several steps. Their description will

be matched by the following example:

Sample X

0.3 0.15 0.9 0.55

0.44 0.77 0.81 0.21

0.78 0.65 0.4 0.13

0.57 0.33 0.75 0.61

0.95 0.19 0.53 0.1

The sample is clearly too small; a much larger should be

used in practice.

Our hypothesis is:

H0: X was drawn from U(0,1)
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1. X is sorted, so that ∀i<n xi ≤ xi+1

Sorted sample X

0.1 0.13 0.15 0.19 0.21

0.3 0.33 0.4 0.44 0.53

0.55 0.57 0.61 0.65 0.75

0.77 0.78 0.81 0.9 0.95

2. The sample is divided into k groups of adjacent values,

each group Oi consisting of at least 5 observations.

Each group is made of adjacent values, so it defines an

interval (not necessarily unique) which can then be

marked on the x–axis of the cdf curve of X .
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In the example, there is no choice but to divide X into 4

intervals with 5 observations in each.

4 intervals

i Oi low high

1 5 0.1 0.21

2 5 0.3 0.53

3 5 0.55 0.75

4 5 0.77 0.95
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The interval ends are extended to cover the x–axis of

the cdf of U(0, 1):

4 intervals

i Oi low high

1 5 0.0 0.25

2 5 0.25 0.54

3 5 0.54 0.76

4 5 0.76 1.0

The intervals are so

“perfect” only by acci-

dent.
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3. Now that we have the observed number of values in

each interval, we compute the expected number of

values in the same interval.

For example if interval #2 is made of values lying in the

interval (l2, h2) then the expected number of values in

that interval will be:

n × (F (h2) − F (l2))

where F is the cdf of X . This gives the values Ei for

i = 1, .., k.

In the example, F (x) = x

i Oi low high Ei

1 5 0.0 0.25 5

2 5 0.25 0.54 6

3 5 0.54 0.76 4

4 5 0.76 1.0 5

4. Compute the value:

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
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Note that the denominator is Ei, so that the value of χ2

is unbounded.

0

5
+

1

6
+

1

4
+

0

5
=

5

12
= 0.42

5. Check in the χ2 table the value of χ2
α,k−s−1

. If

χ2 > χ2
α,k−s−1

the hypothesis H0 can be rejected

with a probability of making an error no greater than α.

In the example, k − s − 1 = 4 − 2 − 1 = 1.

χ2
0.005,1 = 7.88 and H0 cannot be rejected with

significance 0.005, hence we accept H0 as true.
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Comments on χ
2

The main purpose of the χ2 test is to reject hypotheses that

are not sufficiently likely. Hence several different variations

of χ2 exist. Some variations:

• Always use s = 1 (Knuth). This actually reduces the

ability to reject H0.

• Instead of insisting that all Oi ≥ 5, insist that all

Ei ≥ 5. This method avoids rejecting H0 because of a

division by 0; it is not clear if this is good or bad.

• Variation of the previous method: insist that all Ei are

equal. Very convenient for the uniform distribution, not

so for many other.
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The recommended value of k and a function of the sample

size n.

1. Never use χ2 for n < 25.

2. For n ≥ 25 use
√

n ≤ k ≤ n/5.

Finally, goodness–to–fit tests may be approached from

another angle. Similarly to α, called “Type I error” and

defined as:

α = P (reject H0 | H0 is true)

we define a “Type II error” β as

β = P (fail to reject H0 | H0 is false)
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