
CIS 2460 Modelling of Computer Systems'

&

$

%

Aerial duel

consider a “dog fight” between a red fighter and a blue fighter (here, fighter =

combat aircraft).

If the probability of red fighter winning a 1:1 duel is p, what is the average number

of blue aircraft shot down before the red is shot down?

In a series of 1:1 duels, it is:

p + p
2

+ p
3

+ ... =
p

1 − p

which will be 1 for p = 1

2
, 2 for p = 2

3
, etc.

1

CIS 2460 Modelling of Computer Systems'

&

$

%

What about n:m fights?

If n fighters fight against m fighters, the result is more complicated.

This is not a series of 1:1 combats, because all the fighters are engaged at the

same time. consider a 1:2 combat. The average number of blue aircraft shot

down before the (single) red fighter is shot is not p

1−p
anymore.

2

CIS 2460 Modelling of Computer Systems'

&

$

%

How to capture the fight?

One way is to divide it into rounds. In each round each side shoots at the other,

destroying aircraft if a hit is scored (every hit is fatal).

The rounds continue until one side is wiped out (there is no point to model partial

fights, because they may be seen as fights that will resume in the future).

To make it realistic, we must assume that the probability of a hit is small in each

round (say ∆p and ∆(1-p) for the two sides (∆ could be 0.01).

3

CIS 2460 Modelling of Computer Systems'

&

$

%

bool Step(int &blue , int &red)

{

for(int i = 0 ; i < blue && red > 0 ; i++) {

if(red > i)

if(drand48() < p ∗ Delta)

blue−− ;

if(blue > i)

if(drand48() < (1−p) ∗ Delta)

red−− ;

}

return blue ! = 0 && red ! = 0 ;

}

Note the slight advantage given to red (shooting first).

4

CIS 2460 Modelling of Computer Systems'

&

$

%

for(int i = 0 ; i < N ; i++) {

int red = Reds , blue = Blues ;

for(int j = 0 ; Step(blue , red) ; j++) ;

redvic[blue]++ ;

}

int down = 0 ;

for(int i = 0 ; i < Blues ; i++)

down += redvic[i] ∗ (Blues − i) ;

cout ≪ (double)down/N ≪ " scores\n" ;

}

5

CIS 2460 Modelling of Computer Systems'

&

$

%

Average yield per plane

Quality Original odds in each combat

1:1 1:2 2:4 4:8 1:3 2:6 1:4

1

2
1 0.607 0.463 0.373 0.392 0.279 0.283

2

3
2 1.262 1.041 0.879 0.851 0.620 0.607

New odds after day of combat

Quality Original odds in each combat

1:1 1:2 2:4 4:8 1:3 2:6 1:4

1

2
1 0.112 0.034 0.006 0.015 0.0016 0.0023

2

3
2 0.289 0.166 0.077 0.059 0.015 0.0128

6

CIS 2460 Modelling of Computer Systems'

&

$

%

Discrete simulator

The following are needed:

• A real variable representing the current time: Now . It is

not an integer and is not advanced by 1 tick, as a clock

would.

• A class Event which contains the description of an

event. It has to be general enough to represent any type

of event.

• A queue data structure of future events.

7

CIS 2460 Modelling of Computer Systems'

&

$

%

Occurrence of events

The events that occur during simulation fall into 3 groups:

• They already occurred (were processed) and the current

state of the system reflects their occurrence.

• Will occur in the future at a time and place already

known to the simulator.

• Will occur in the future, but the simulator does not know

it yet.

The descriptions (objects of class Event) of known future

events are stored in a data structure typically called event

queue .

8

CIS 2460 Modelling of Computer Systems'

&

$

%

Event queue

An event queue can be implemented as any data structure

of sufficient size, such as a sorted (or unsorted) array of

pointers, a sorted/unsorted linked list, etc.

Data structures that efficiently insert events and delete the

minimum event (the earliest of future events) are

recommended.

Only two operations are needed:

void Insert(Event *) ;

Event * Deletemin() ;

9

CIS 2460 Modelling of Computer Systems'

&

$

%

Event–driven simulator

Every event–driven simulator looks almost the same:

EventQueue EQ ; // Creates an empty queue

EQ.Insert(The first event) ;

while((E = EQ.Deletemin()) ! = NULL) {

Now = E→Time ;

switch(E→Type) {

...

...

}

}

In this case, simulation ends when all the events are

processed.

10

CIS 2460 Modelling of Computer Systems'

&

$

%

Event–driven simulator

A slight variation:

EventQueue EQ ;

EQ.Insert(The first event) ;

EQ.Insert(END) ;

while((E = EQ.Deletemin()) ! = END) {

Now = E→Time ;

switch(E→Type) {

...

...

}

}

In this case, simulation ends when Now reaches a

predetermined time (which is represented by a special event

called END).

11

CIS 2460 Modelling of Computer Systems'

&

$

%

Shoeshine boys

We simulate a multi–server shoe–shine stand.

• There are several servers serving customers lined in a

single queue.

• Service times are variates from a triangular distribution

(between 80 and 150 seconds).

• Customer interarrival times are exponentially distributed

with a mean of 22o seconds.

the code shown does not include a proper termination of the

working day.

12

CIS 2460 Modelling of Computer Systems'

&

$

%

EQ.Insert(NextCustomer(Now , waiting)) ;

while((E = EQ.Deletemin()) ! = NULL) {

Now = E→time ;

if(E→Type == DONE) {

if(waiting > 0) {

waiting−− ;

EQ.Insert(Finish(Now)) ;

} else

idle++ ;

} else if(E→Type == ARRIVAL) {

if(idle > 0) {

idle−− ;

EQ.Insert(Finish(Now)) ;

} else

waiting++ ;

EQ.Insert(NextCustomer(Now)) ;

} else ; // trouble

}

13

CIS 2460 Modelling of Computer Systems'

&

$

%

Time Triangular()

{

double x = drand48() ;

return (MAX − MIN) ∗ (x + drand48()) / 2.0 + MIN ;

}

Time Exponential()

{

return −MEAN ∗ log(drand48()) ;

}

Event ∗Finish(time t)

{

return new Event(t + Triangular() , DONE) ;

}

Event ∗NextCustomer(Time t)

{

return new Event(t + Exponential() , ARRIVAL) ;

}

14

CIS 2460 Modelling of Computer Systems'

&

$

%

typedef double Time ;

#define EQSize 100

#define MEAN (220)

#define MIN (90)

#define MAX (150)

#define OPEN 0

#define CLOSED 10000000

#define ARRIVAL 1

#define DONE 2

15

CIS 2460 Modelling of Computer Systems'

&

$

%

class Event {

public:

Event(Time T , int t) { time = T ; Type = t ; }

Time time ;

int Type ;

} ;

class EventQueue {

public:

EventQueue() { last = −1 ; }

void Insert(Event ∗) ;

Event ∗ Deletemin() ;

Event ∗EP[EQSize] ;

int last ;

} ;

16

CIS 2460 Modelling of Computer Systems'

&

$

%

void EventQueue::Insert(Event ∗E)

{

if(E→time <= CLOSED) {

if(last+1 == EQSize) Overflow() ;

EP[++last] = E ;

}

}

Event ∗ EventQueue::Deletemin()

{

if(last == −1)

return NULL ;

int min = last ;

for(int i = 0 ; i < last ; i++)

if(EP[i]→time < EP[min]→time)

min = i ;

Event ∗ret = EP[min] ;

EP[min] = EP[last−−] ;

return ret ;

}

17

