CIS 2460 Modelling of Computer Systems

Gamma distribution '

The extremely general (and thus not very useful) Gamma

distribution has two parameters : (3 called shape and 6

called scale.

The probability density function is:
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When 3 = 1, the Gamma distribution becomes an
exponential distribution with mean %. (0 plays the same role

as A\ in the Poisson process).
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Erlang distribution I

For any integer value of (3, Gamma turns into Erlang

distribution.

0.5

Erlangwith = 1and 8 = 1, 2, 3, 5, 10, 15.
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The Erlang distribution models the behaviour of a sequence

of (3 servers put in a pipeline, each server having an
exponentially distributed service time. The model

additionally requires that only one customer be present in

the system pipeline:

Allows next customer in

_)l|_) _L

Exit

Y
Y

An Erlang queue with 3 servers.

Erlang distribution was devised to model the setup of
long—distance telephone calls. Nowadays it is widely used to
model the behaviour of the process of establishing a

“session” (1SO layer 5) or “circuit” in wide—area computer

networks.
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Generating Erlang variates I

It is not easy to generate Gamma variates in the general
case. However, when (3 is integer (i.e. when Gamma

becomes Erlang), it is easy:

Erlang((,0) Z E:z:p

This is not surprising, considering the strong connection

between Erlang and a series of exponential servers.
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Standard Normal distribution '

A standard Normal distribution has u = 0,0 = 1. Its pdf

IS:
H(O) = e 2 o< (<o

V2T

¢ is symmetric around 0: ¢(—() = ¢(() for all (.

)\1

R

-3 -2.5 -2 -1.5 -1 -0.5 0 0.

From ¢ we get the cdf: ®(() = ffoo o (t)dt

1 15 2 2.5 3

® is available in tabulated form.
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Non—standard Normal '

When we have a normal distribution with a mean of ;& and

standard deviation o we can use the transformation:

F(z) = ®(-—)

This allows to shift the centre and the shape of the Bell

curve of the Normal distribution.
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‘ Empirical distributions I

Suppose that we collected data about 100 cases of repairing

a particular type of machine and we know that its repair

takes less than 0.5 hour in 15% of cases, etc., as shown:

Time Number | Cumulative
interval of cases | frequency
0.0<t<0.5 15 0.15
0.5 <t <1.0 20 0.35
1.0<t<1.5 10 0.45
1.o<t<2.0 25 0.70
20<t <25 5 0.75
20 <t <35 15 0.9
3.0 <t<4.0 5 0.95
40<t<45 5 1.00
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We can plot the data points and connect them by straight
lines (aka “linear approximation”). If someone wants to be

fancy, a nonlinear approximation could be used.
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Generating variates I

Variates can be generated from the table or from the plot. In
either case, we start by generating a U (0, 1) variate; let it
be R (in calculations, we will take R = 0.71).

The method is shown for continuous distributions, but it can
be applied to discrete distributions without any change (with

no need to interpolate when table lookup is used).
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From the table '

1. Using the cumulative frequency, we find the interval in
which R lies (for 0.71, it is the 2.0-2.5 interval).

2. We interpolate within the interval. Assuming the interval

is t;, t ), we calculate:

R—F(t)
F(ty) — F(t)

5:(th—tl)><

In the example R = 0.71:

0.71 —0.70

= 0.1
0.75 —0.70 0

§ = (2.5 —2.0) x

3. The resulting variate is equal to t; + 0. In the case of

the example, the variate is 0.21.
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‘ From the plot I
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