
CIS3110 Operating Systems CIS3110

Assignment 1
Due January 26th 2009

Interprocess communication, signals, process creation

The problem

Your task is to implement a simple system utility called
alert

which will send a wakeup message to the screen at the time given as argu-
ment.

The utility consists of a program called alert will be invoked (i.e. started
from the very beginning) every time a command is issued to it. This is an
example of a script that could be used to test your program:

gcc -o alert alert.c
./alert wakeup 12
./alert wakeup 2
./alert cancel 77

It is probable that your implementation of alert will spawn new processes
from inside alert using fork().

alert will accept the following arguments from the command line:

alert wakeup time asks for a message to be displayed on standard error in
time seconds.

alert cancel time cancels a previous request to wakeup after time seconds.
Note that the time argument identifies a wakeup request made earlier.

alert change time1 time2

the third case is just a combination of the first 2.

Some rules

1. All the times are in seconds; for simplicity these times are not absolute,
but relative to the current time.



CIS3110 Operating Systems Winter 2009 2

2. Incorrect arguments are ignored without any ado.

3. There is one alert per shell (i.e., terminal window, for the purpose of this
assignment).

4. There may be more than one copy of alert in action at any given time,
provided they are created in different shells. These copies may have the
same current directory, etc.

5. There may be more than one request for a wakeup with the same time
argument; each cancel cancels only one request (not all).

6. You cannot use any system facility (such as cron);

7. The only system calls allowed are: file manipulation calls (open(), close(),
write(), lseek(), etc.) plus fork(), kill(), sleep(), alarm(), wait(), getpid(),
getppid(), etc.

8. While the kill() call can be used freely, all signals sent must be caught
by the receiver. Consequently, you cannot use SIGKILL.

Example

Make sure to look at this example before you start programming.
The time is: alert is called this happens:

with these arguments:
0 wakeup 5 do it in 5 seconds
4 wakeup 6 do it in 6 seconds
5 wakeup 5 is heard
7 cancel 6 cancels the request

made 3 seconds earlier
12 blah blah ignored
17 change 7 4 ignored
19 wakeup 2
21 wakeup 2 is heard
24 cancel 2 ignored
28 wakeup 9
30 wakeup 9 different starting points
31 cancel 9 refers to the first wakeup 9

(made at time 28)
33 change 9 12 deletes the request made at time 30

and asks for a wakeup in 12 seconds
45 wakeup 12 is heard



CIS3110 Operating Systems Winter 2009 3

Hints

• This assignment is hard to implement without a fork() although it could
be done.

• The simplest ways to have a program do something at a given moment
are: (a) sleep() and usleep() (b) alarm() (c) select().

• There are many ways of organising your program. Two seem the easiest:

– Keep a database (file) with the descriptions of the wakeup requests
that are pending. Fork a separate process for each request; then
use the file to identify the process that needs to be killed in case of
a cancellation. If you use a database, make sure to use a lock to
guarantee mutual exclusion.

– Have a dæmon (a never–ending process) which handles all the re-
quests. This approach requires some advanced knowledge of inter–
process communication. If you use a dormant dæmon, make sure
that each invocation of alert is able to identify its own dæmon by
checking its ppid (in case more than one shell is running alert).

Useful links:

• Beej (see sections 2 and 3)

• forking code

• use of signals

Assignment requirements

Your solution must satisfy these requirements:

1. A message appears on standard error when the wakeup call is due.

2. When a process receives a signal, it must send a message to standard
error saying that it received it (this requirement is needed for testing
purposes). The message gives the pid of the process and the signal name.
This requirement cannot be circumvented by having the process sending
the signal issue the message; it must be the receiving process.

http://beej.us/guide/bgipc/output/html/multipage/
http://docs.linux.cz/programming/c/unix_examples/fork.html
http://fluid.stanford.edu/~fringer/teaching/operating_systems_03/downloads/killtest.c


CIS3110 Operating Systems Winter 2009 4

3. The processes implementing alert must delete all the files that they cre-
ated and that are no longer needed. If the example above is used to test
your software, there should be no files left slightly after time +45 (e.g.
at time +46).

Submission rules

Submission rules are posted. They must be followed.

Grading

The assignment is worth 10 marks which are distributed as follows:

action marks
1 alert exits without waiting 1
2 Wakeup message appears at the right time 1
3 Wakeup appears on stderr 1
4 Cancel does cancel 2
5 Cancel message appears on stderr 2
6 Cancel removes oldest Wakeup 1
7 lock properly set and removed 2
8 no files left if not needed 2

Steps 1–7 form the basic assignment; if done perfectly, they are worth 10
points. Step 8 is a bit more difficult and should be treated as an optional
bonus.


