
CIS 3110 Operating Systems'

&

$

%

Brief tour of hardware

Only the basic aspects are covered here. The hardware is

divided into entities (“things”) and features (“actions” also

called “mechanisms”); the main distinction is that you can

see the former but not the latter.

The hardware entities covered are: CPU, MMU (main

memory controller), secondary memory controllers, timers,

buses and i/o devices.

The hardware features covered are: interrupts, protection

modes and privileged instructions.

1



CIS 3110 Operating Systems'

&

$

%

Processors

A processor is device that executes machine instructions

one after another, in a perpetual sequence.

The processor is made of an ALU which does the work and

a number of registers which act as local storage. These

registers include the Stack Pointer (SP), the Program

Counter (PC) and the Processor Status (PSW).

The execution of an instruction constitutes a machine cycle

which is made of a number of steps the last of which being

the triggering of interrupts if needed. Certain interrupts

(memory) can also be triggered at a middlepoint of the

machine cycle.

2



CIS 3110 Operating Systems'

&

$

%

Interrupts

When a hardware device wants to signal an exceptional

condition to the world, it triggers a CPU interrupt (devices

other than the CPU can also be interrupted in a similar

fashion).

An interrupt causes the CPU to stop doing whatever it is

doing and perform the following actions:

1. Store the current values of the PC and PSW registers in

memory (in a predefined location, usually relative to the

stack pointer).

2. Load new values of the PC and PSW registers from a

static table in memory (fixed location). The interrupt

number (or level) serves as index in this table, so that

different values of PC and PSW registers are loaded for

different interrupt types.

3. Start a machine cycle.

Step (2) must be atomic , i.e. not interruptible.

3



CIS 3110 Operating Systems'

&

$

%

Steps (1) and (2) are called a context switch ; a context

switch can be performed in several other contexts not

involving interrupts (a special machine instruction exists to

do it “in software”).

Step (3) executes the first machine instruction from a

different sequence, because the contents of the PC changed

(equivalent to a goto instruction).

Note that some interrupts can be masked which means that

the CPU can be told to refuse to accept them (an interrupt

mask in the PSW is used for this).

Hardware interrupts have nothing in common with software

interrupts known as signals .

4



CIS 3110 Operating Systems'

&

$

%

Processor and memory before an interrupt on line 2:

Memory

Interrupt
vector

SPSP

PCPC

PSW
PSW–1

PSW–2

In
te

rr
up

t
lin

es

CPU

5



CIS 3110 Operating Systems'

&

$

%

Processor and memory after step (1) of an interrupt:

Memory

PSW 1&2
PC

Interrupt
vector

CPU

SPSP

PCPC

PSW
PSW–1

PSW–2

line 2

6



CIS 3110 Operating Systems'

&

$

%

Processor and memory after step (2) of an interrupt:

Memory

PSW 1&2
PC

new PC and PSW

CPU

SPSP

PCPC

PSW
PSW–1

PSW–2

In
te

rr
up

t
lin

es

At this moment, the CPU resumes its normal operation and

executes the next instruction (the one pointed to by the PC).

Interested in more details? Try LDD3 or D.A. Rusling (old but

not incorrect).

7

http://lwn.net/images/pdf/LDD3/ch10.pdf
http://tldp.org/LDP/tlk/dd/interrupts.html


CIS 3110 Operating Systems'

&

$

%

Memory

Price vs. performance considerations resulted in a hierarchy

of storage devices. an additional factor–the address

length–plays an important role in the size of devices at each

level.

slow

fast

removable magnetic tape
removable optical disk

magnetic disk
solid state disk

main memory
CPU cache

CPU registers

The small–large ranking is similar, but the slowest two

memory types are not the largest; they are removable and

are used for backup (neither size nor speed are not essential

for this procedure).

8



CIS 3110 Operating Systems'

&

$

%

Main memory

This is a fast device designed to contain the data that the

processor needs. A specialised processor called the

Memory Management Unit (MMU) which serves as memory

controller. The MMU is a device handler that is implemented

in hardware because of the high speed requirements; it is

often placed on the CPU chip to enhance speed even further.

CPU MMU

Address

Data

signal lines

MMU Memory banks

9

http://en.wikipedia.org/wiki/Memory_management_unit


CIS 3110 Operating Systems'

&

$

%

The main design requirement for main memory is speed and

that limits its size. Hence most OSs create an artificial, very

large, virtual memory that satisfies the needs of

memory–hungry applications.

The size of virtual memory is much greater than the size of

real memory banks attached to the MMU. Consequently,

some memory requests originating from the CPU cannot be

satisfied by the MMU and result in memory faults (Page

faults or Segmentation faultsa) which are interrupts triggered

by the MMU when it has no direct access to a requested

memory location.

CPU MMU

Address

Data

interrupt

MMU Memory banks

x

x

x

x

aNot related to Segmentation violation interrupts.

10

http://www.cis.uoguelph.ca/~dobo/3110/figures/VIRT-MEM.gif


CIS 3110 Operating Systems'

&

$

%

Secondary memory

All the storage devices beyond main memory are considered

to be “secondary” memories. Their purpose is to provide

bulk storage, hence they all are block devices, i.e. data

transfers are done in large blocks as opposeda to words or

bytes. Most block devices are connected to a DMA busb

which allows transfers of data blocks between the device

and main memory (without involving the CPU).

The size of a block varies and is often software selectable.

Hard disks have block sizes (called sectors) of between

512B and 2048B.
aThis is becoming fuzzy as the size of memory–cache transfers in-

creases.
bISA, PCI, etc.

11

http://en.wikipedia.org/wiki/Block_(data_storage)


CIS 3110 Operating Systems'

&

$

%

Transfer rate

The transfer rate is a fundamental parameter describing the

performance of secondary storage devices. Hard drives

have a transfer rate varying from 50 MB/s to 300 MB/s

(SATA) and more (320 MB/s for Ultra–SCSI); other devices

are much slower (USB 2.0 has a transfer rate of 60 MB/s).

Note that these transfer rates are maximum rates; in real life

the actual rates may be much lower due to the speed of

interconnecting buses).

12

http://en.wikipedia.org/wiki/Serial_ATA


CIS 3110 Operating Systems'

&

$

%

Disk drives

For practical purposes, the secondary storage device of

relevance is a hard disk (magnetic or solid–state); other

types are used mainly for backup or for recreational use.

For the most common magnetic drives, the transfer rate is

not the most relevant parameter describing the disk

performance; more relevant is the access time which takes

into account the mechanic motions involved. The average

access time has not changed much in the last 30 years

(5–10 ms); the main change is in the disk capacities (from

10
8B in the 70s to more than 10

12B today).

While the access time to disk storage remained unchanged,

the access time to main memory went down by orders of

magnitude, making disk accesses a relative bottleneck in the

computer system’s performance. This led to several

innovations such as RAM disks, disk cache, and, at the OS

level, the buffer cache .

13



CIS 3110 Operating Systems'

&

$

%

Clocks and timers

No OS can function without a hardware timer also called

clock. The timer is needed to synchronise events within the

computer system; if there is no time–of–day clock on board,

a timer can be used to keep track of the current time.

A timer requires some source of periodic signal with a fixed

frequency. Originally the power supply was used, giving a

periodic signal with a frequency of 60Hz or 50Hz.

Nowadays, crystal oscillators are used (as in “quartz”

watches, but more accurate).

A properly prepared crystal emits a periodic signal with little

variability. This signal is fed into the clock hardware which

interrupts itself on every pulse (so that a 500MHz clock

interrupts every 2 ns). Every pulse causes the clock

hardware to subtract 1 from a special counter; when carry

occurs (the value was 0), the clock chip triggers a CPU

interrupt.

The timer has nothing to do with the CPU clock that drives

the instruction cycle.

14



CIS 3110 Operating Systems'

&

$

%

Timer interrupt

. . .

-1

pulse
every 2 ns

ca
rr

y

The chip interrupts the CPU when the carry bit is set.

all ones
were all zeroes before the -1

-1

pulse

ca
rr

y

1C
P

U
in

te
rr

up
t

The timer interrupt also forces the chip to reload the counter

with a new initial value taken from a special register.

ca
rr

y

0C
P

U
in

te
rr

up
t

15



CIS 3110 Operating Systems'

&

$

%

Soft timers

As timer hardware is cheap, it is normal to find several

hardware “clocks” in a contemporary computer.

Even when several hardware timers are available, an OS will

occasionally resort to soft timers which are virtual timers

implemented totally in software.

This is done for two reasons:

1. Not enough hardware timers are available.

2. The overhead in handling a timer interrupt may be

unacceptable for some applications.

The second case deserves some attention. Handling an

interrupt takes some time (2 context switches), especially in

systems with an MMU, a TLB or an instruction pipeline. If a

hardware device triggers interrupts very frequently, it ends

up reducing the system performance with no tangible

benefits.

These interrupts can be replaced by a less accurate but less

time–consuming mechanism. When a soft interrupt is

needed at time ts, the value ts is simply stored in memory.

16



CIS 3110 Operating Systems'

&

$

%

Whenever the OS is about to exit kernel mode, it checks the

hardware time to see if the current time is greater than ts. If

it is, the OS performs whatever action necessary to serve

the interrupt without having to go through a context switch.

A typical example is Gigabit Ethernet. At 1Gb/s, the

maximum size (1500B) Ethernet frame is sent in 12µs.

If the NIC interrupts every time it finishes a transmission it

will chew up 5–10% of the CPU just on signalling. Replacing

the hardware “device ready” interrupt with a soft timer will

avoid it completely at a moderate cost (the Ethernet

transmitter may be kept idle from time to time).

17



CIS 3110 Operating Systems'

&

$

%

I/O devices

A large variety of Input/Output devices can be attached to

the various buses in a computer system. From an OS

perspective these devices are all similar with the exception

that some may be faster than others.

The devices are connected to device controllers which are,

in turn, connected to a bus. The OS talks to a controller and

the details of the device (behind the controller) is often

unknown to the OS.

18



CIS 3110 Operating Systems'

&

$

%

Buses

Several buses coexist in a computer system, as shown in the

figure depicting an old Pentium system. The key bus is a PCI

bus.

PCI–X 133 MHz (8 bytes per cycle, with a maximum transfer

rate of 1014 MB/s as there is some signalling overhead).

PCI–X 2.0 266 MHz (or even 533 MHz).

PCI–E (E = Express) version 1.1 has a capacity of up to 8

GB/s (more likely 4 GB/s in reality).

PCI–E 2.0 has a transfer rate of up to 16 GB/s.

PCI–E 3.0 will have a transfer rate of up to 32 GB/s.

USB 2.0 has a transfer rate of 60 MB/s although a rate of

more than 30 MB/s is seldom possible because the USB

uses the host processor and not its own controller for

some activities.

USB 3.0 will have a transfer rate of 600 MB/s.

1394a up to 50 MB/s.

1394b 393.16 MB/s.

19

http://www.cis.uoguelph.ca/~dobo/3110/figures/pentium.pdf


CIS 3110 Operating Systems'

&

$

%

Kernel mode

A CPU operates in one of two distinct modes:

Kernel mode in which the CPU can execute any machine

instruction and access any location in memory. Kernel

mode has synonyms: “supervisor mode” or “system

mode” or “privileged mode.”

User mode in which only untrusted instructions can be

executed and full memory protection is in place.

20



CIS 3110 Operating Systems'

&

$

%

Hardware details

From an Operating Systems perspective it is important what

the hardware does, not how it does it.

Therefore such details as the memory type (e.g. DDR3) or

processor architecture (i7) are not relevant.

21



CIS 3110 Operating Systems'

&

$

%

Privileged instructions

Quoted from Microsoft Help and Support

The Intel architecture defines ”privileged” instructions and

”sensitive” instructions. The privileged instructions may only

be executed when the Current Privilege Level is zero (CPL =

0). Attempting to execute a privileged instruction when CPL

6= 0 will generate a general protection (GP) exception.

Windows traps GP exceptions caused by executing

privileged instructions and usually generates an application

error.

The sensitive instructions (also called IOPL-sensitive) may

only be executed when CPL ≤ IOPL (I/O Privilege Level).

Attempting to execute a sensitive instruction when CPL >

IOPL will generate a GP exception. This should usually not

cause a fatal error. The Windows Virtual Machine Manager

(VMM) traps GP exceptions caused by executing sensitive

instructions and (depending on the instruction) either

simulates the instruction’s behavior in the VM in which the

instruction was executed, or dispatches it to a virtual device

driver, which simulates the instruction’s behavior.

22



CIS 3110 Operating Systems'

&

$

%

The privileged instructions include:

CLTS - Clear Task-Switched Flag LMSW - Load Machine Status

HLT - Halt Processor LTR - Load Task Register

LGDT - Load Global DT Register MOV CRn - Move Control Register

LIDT - Load Interrupt DT Register MOV DRn - Move Debug Register

LLDT - Load Local DT Register MOV TRn - Move Test Register

The sensitive instructions in protected mode include:

IN - Input OUTS - Output String

INS - Input String CLI - Clear Interrupt-Enable Flag (IF)

OUT - Output STI - Set IF

23



CIS 3110 Operating Systems'

&

$

%

Software entities

The OS is a collection of software modules united by two

peculiar properties:

1. An OS module has no owner other than possibly the OS

itself.

2. An OS module has no final goal to achieve; hence it

lives forever never reaching a termination point.

The boundary of an OS is not well-defined, as illustrated by

the utility cron , which is called by the kernel but probably

should not be classified as part of it.

The software modules forming the OS are either processes

or handlers . Application software consists of processes

only.

24



CIS 3110 Operating Systems'

&

$

%

Process

The key concept in OS is that of a complete program in

execution called a process .

the relationship between a program and a process is the

same as between a class and an object in OO

programming languages:

Program or class is a blueprint describing the behaviour of

its instances (processes or objects). It holds no

resources and does not have the ability to perform

anything.

Process or object is an instantiation of the above executing

the code defined in the blueprint and holding the

resources as described by the blueprint. Several

processes/objects can exist concurrently for the same

program/class.

25



CIS 3110 Operating Systems'

&

$

%

Process resources

When a program is invoked (instantiated) by a shell or a

process, a new process is created. This new process

inherits some resources from its parent; it acquires

additional resources during startup and execution.

The process holds:

Memory which is traditionally divided into 3 parts: the static

part (fixed size and location), the stack (dynamic with a

fixed starting point and a LIFO architecture) and a heap

(dynamic with a fixed starting point and a semi–random

architecture).

Files that the process opened (or created) including

possibly devices masquerading as files (in Unix, all

devices are pretending to be special files as much as

possible, e.g. /dev/tty).

Environment descriptor containing several entries

describing the impact of the environment on the process,

including a list of pending signals, the working directory,

the owner id (uid ), the id of the process itself (pid ), of the

parent (ppid ), of the process group (gid ), etc.

26



CIS 3110 Operating Systems'

&

$

%

Handler

A handler is a piece of code that is not an independent entity

but plays a role similar to that of a function within the code of

the OS. Similarly to functions, handlers are entered, in this

case through an interrupta which is a hardware equivalent of

a function call, and exit through a return, in this case called

return from interrupt.

Examples:

Alarm handler entered when a suitable timer triggers an

alarm. it does its job (passes the alarm to the processes

that care) and returns to wherever the CPU was before

the interrupt.

Mouse handler (or driver ) entered when a mouse button is

pressed. It passes the information on and disappears.

aOther possibilities exist and will be described at a later time.

27


