
CIS 3110 Operating Systems'

&

$

%

File system

• Non–volatile long–term storage is needed.

• A computer system must have a semi–infinite storage

capacity.

• Concurrent access to long–term storage is a must.

• The data stored in long–term storage must be

identifiable in some mnemonic fashion. It must be

possible to group data stored in long–term storage

according to some grouping rules (by project, by owner,

by date, etc.).

• Data kept in long–term storage must be reasonably

protected from malicious damage (accidental damage is

a different thing).

Anyone who agrees with most of the above will see a need

for the file system as an integral part of any OS.

1

CIS 3110 Operating Systems'

&

$

%

File

The basic unit of data kept in long–term storage is a file .

The set of all the files plus the utilities provided for file

manipulation form the file system .

An OS may have one or (more likely) more than one file

system. File systems that coexist inside one OS usually are

incompatible and reside on different storage media. What

makes them file systems is that they allow to treat their

components as files (examples: /dev , /cdrom, nfs).

The main property of a file is its name which must be unique

in any specific context.

2

CIS 3110 Operating Systems'

&

$

%

Naming

A file name is not defined in exactly the same term by every

OS:

Extension : Microsoft systems consider the file extension to

be meaningful. A specific program is associated with

each “registered” extension and only that program will

touch a file with the extension. By contrast, UNIX treats

the extension as a user convention which has no binding

meaning (it has a lot to do with the point–and–click vs.

command–line interfaces).

Special characters : systems differ in the range of allowed

characters in a file name. Some go to extreme (NTFS

allows any Unicode character in a name) while other

limit the name to letters (ignoring the case).

Version : some systems performed an implicit backup by

keeping obsoleted versions of files, so a file could be

identified by its name and version (always relative to the

current version #1).

3

CIS 3110 Operating Systems'

&

$

%

File structure

While a file is an indivisible entity for file management

purposes, it is made of smaller sub–units, which could be:

Fixed–length records : a file is made of blocks that are

identified by a sequence number.

Variable–length records : a file is made of blocks that are

identified by a key or, in more elaborate cases, a

combination of keys.

A structure of records such as a tree where

variable–length records are linked together by pointers

representing some relevant relationship, such as

parent–child–sibling.

Underneath every structure comes a raw representation of a

file as a stream of bytes (could be viewed as fixed–size

records of size 1). We will ignore all file types other than

byte streams .

4

CIS 3110 Operating Systems'

&

$

%

The file system

The original purpose of a file system was to provide a utility

for manipulating data stored in files.

This utility gave the ability to:

• Create/delete a file including giving the file a unique

name and subsequently changing it.

• Protect a file from unsolicited use.

• Reading/writing/repositioning/truncating a file.

• Grouping files by theme (the origin of directories).

Clever programmers quickly saw the potential of using the

file system for other purposes, mainly as a registry for unique

names and for incorporating the never ending procession of

new devices into an existing OS. As a result, a contemporary

file system is much more than what the name implies.

5

CIS 3110 Operating Systems'

&

$

%

File types

Files can represent a large variety of different objects

disguised as files for the purpose of naming.

Regular file : is exactly that.

Directory file : is a table containing information about files

(of any type).

Symbolic link : is a alternative entry for another file in the

file system.

Character special files : slow devices pretending to be

files so that a programmer can use standard i/o

operations to access them.

Block special files : fast devices pretending to be files.

Sockets : pseudo–files for network communication.

Swap file : a disk partition used for virtual memory support.

Other possibilities : consider /dev/random

6

CIS 3110 Operating Systems'

&

$

%

Character device files

Originally there was a terminal made of a keyboard and a

24x80 alphanumeric screen. Reading and writing was not

buffered (although the

n character played a special role).

The slow devices are typically pretending to be character

special (device) files. This allows to use character–oriented

system calls (getchar(), putchar(), etc.) to be used.

The devices do not have to be slow, but this type of interface

triggers an interrupt for every character (or for every

end–of–line) or mouse click (etc.), so the overhead of

character–oriented i/o is enormous.

7

CIS 3110 Operating Systems'

&

$

%

Block device files

When fast input–output operations are needed, data transfer

has to be done in (large) chunks of data, called blocks .

An interrupt is triggered when the transfer of a whole block is

finished, reducing the system overhead proportionally to the

size of a block.

Different devices have different block sizes, with 512B to

8192B being the norm. while actual input–output operations

moved whole blocks of data, this is normally hidden from the

applications by buffering . Character i/o can thus be used,

albeit it could make an application horribly inefficient.

8

CIS 3110 Operating Systems'

&

$

%

File contents

Files can be text files or binary files. This distinction means

little in practice, since text is just a pre–agreed upon binary

representation of something.

The main reason for the text/binary label is to distinguish

between two kinds of file contents:

• Free–format files made of lines or paragraphs (forms of

records). They could be plain text in ASCII or fairly

complex files, such as .html or .doc Word files.

• Fixed–format files made of units which correspond to

imaginary objects of an imaginary class (say, integers

are stored as 4–byte quantities, not sequences of digits).

It is important to realise that block devices treat everything

they handle as binary .

9

CIS 3110 Operating Systems'

&

$

%

An exec file (a.out)

Header

Text

Data

Relocation

Symbol table

0

Magic number

Text size

Data size

BSS size

ST size

Entry point

Rest (flags?)

Symbol Table contains the global sym-

bolic names defined in this module.

Relocation list is used when combining

multiple files.

BSS is for globals initialised to 0.

Data contains initialised globals.

Text machine instructions in relocatable

form.

10

CIS 3110 Operating Systems'

&

$

%

A simple block copy

int id = open(argv[1] , O RDONLY) ;

int od = creat(argv[2] , 0600) ;

if(id < 0 || od < 0)

exit(id+od) ;

while((rc = read(id , Buf , BSize)) > 0)

if((wc = write(od , , Buf , rc)) ! = rc) {

printf("write %d bytes short\n" , rc−wc) ;

close(id) ;

close(od) ;

exit(rc) ;

11

CIS 3110 Operating Systems'

&

$

%

The file system

A typical OS divides a disk into partitions . A partition is

usually created statically (using fdisk) and is perceived by

the OS as a separate storage device.

A file system occupies one partition. It is normal that a

system has more than one partition, hence more than one

file system and that each file system is different from the

other.

A file system may look like this:

boot
block

group 0 group 1 group 2 •••

Each block group is a sequence of disk blocks and looks

more or less like this:

super
block

group
descriptor

I–node
table data blocks

12

CIS 3110 Operating Systems'

&

$

%

I–node

A file is made of a number of disk blocks. The locations of

these blocks are stored in a table called index . The index

can be viewed as an array:

0:
1:
2: 1234567890

Assuming a 1024B disk block,

the correct entry for byte b of

a file is the table entry

⌊b/1024⌋

and b is byte

b % 1024

in the block given in the entry.

The disk block which contains the 2500th byte of the file

described by the index above is block 1234567890 (and it is

byte 452 of the block).

13

CIS 3110 Operating Systems'

&

$

%

I–node

It is possible to store a complete index for each file but not

easy to implement if files grow (they must, since every file

starts empty).

An I–node (index node is one way to store the index of a file.

There is exactly one I–node per file; it is an entry in the

I–node table residing in a block group. An I–node must have

a fixed format; traditionally, this format used to be:

• A header.

• An index of the first 12 blocks of the file.

• The disk address of a block containing more disk

addresses (single indirect).

• The disk address of a block containing addresses of

blocks containing disk addresses (double indirect).

• The disk address of a block containing addresses of

blocks containing addresses of blocks containing disk

addresses (triple indirect).

14

CIS 3110 Operating Systems'

&

$

%

I–node in detail

stat
struct

12 disk
addr.

disk
block

single
double
triple

256

disk

addr.

256

disk

addr.

256

disk

addr.

disk

block

256

disk

addr.

disk

block

256

disk

addr.

256

disk

addr.

How many disk addresses fit into a disk block depends on

the size of an address and on the amount of additional

information stored. The number shown, 256 is a common

case.

15

CIS 3110 Operating Systems'

&

$

%

The format of a block group and I–node shown are for the

standard linux file system ext2 (also used in ext3).

The format of an I–node is undergoing changes as file

systems move from 32–bit disk addresses (good for up to

2TB) to 64–bit disk addresses.

16

CIS 3110 Operating Systems'

&

$

%

Open files

Processes do not have the ability to access files using disk

addresses. They have to use the kernel as intermediary; the

kernel also facilitates concurrent access—when several

processes access the same file.

The kernel keeps one global table of open files storing in it

the information needed for concurrent access. It also keeps

a table of file descriptors for each process.

P1

P2

Open files I–node

I–node

The current seek position is stored in the per–process file

descriptor table.

17

CIS 3110 Operating Systems'

&

$

%

Directory

A directory is a file that has no contents other than the description of other

files–the files residing inside this directory.

I–
no

de

I–node

R 8 backup.c

I–
no

de

I–node

D 4 subd

I–
no

de

I–node

R 5 marks

After the directory subd is deleted:

I–
no

de

I–node

R 8 backup.c

I–
no

de

I–node

R 5 marks

18

CIS 3110 Operating Systems'

&

$

%

Regular files

Although contiguous allocation still is used here and there,

the accepted approach to storing files is that they are stored

on a disk in a way similar to pages in physical memory: the

blocks forming a file are scattered across the whole partition

(but within one parition only).

The hierarchical approach to storing the file index has its

merits (no memory wasted for short files and the file size

limit is very generous), but it makes the append operation

very slow for large files (this is particularly true if a process

adds a character at a time to a file that is many megabytes

long).

19

CIS 3110 Operating Systems'

&

$

%

The inefficiency of working with large files is partially solved

by using two mechanisms:

Buffer cache : all disk operations are performed on copies

of disk blocks (stored in main memory) and not on the

directly on the blocks. Periodicaly, the copies are written

out to make the disk contents up to date. mamin

memory

Journaling : the i/o operations are not performed but just

recorded. They are physically performed only when

needed or at some point in time.

These two mechanisms result in having two versions of each

file: a and up–to–date version stored in main memory and

an outdated version stored on disk. The volatile nature of

main memory requires that these two versions be

synchronised from time to time. This is done by the kernel

(and by savvy users) by issuing the sync command.

20

