
CIS 3110 Operating Systems'

&

$

%

Systems programming

A thorough knowledge of OS fundamentals is needed for

Systems Programming, i.e. programming focused on:

• Communication between processes (and between

processes and the OS) known as Interprocess

Communication (IPC). This includes special topics such

as threads.

• File input/output.

• Network communication (a form of IPC using network

protocols.

• Communication with slow devices.

1

CIS 3110 Operating Systems'

&

$

%

Interprocess Communication

The most important part of Systems Programming is IPC.

Three aspects of it are relevant:

1. Information exchange between processes.

2. Sharing without the possibility of (accidental/malicious)

damage.

3. Control the sequence of actions performed by several

processes.

The last two aspects form one topic sometimes called

process synchronisation .

2

CIS 3110 Operating Systems'

&

$

%

Information exchange

Processes share information by using:

Files : the oldest medium for IPC.

Shared memory : a block of main memory is part of the

address spaces of two (or more) processes. Information

put into this block by one process is visible by the other.

Message passing : a sequence of messages flow from one

process to another directly (as a pipe) or via a mailbox

(makes message passing by 3 or more processes

possible).

3

CIS 3110 Operating Systems'

&

$

%

Synchronisation

When two entities coexist (live concurrently), they may be

controlled by the same timing mechanism or they may have

separate timing mechanisms that are independent of each

other.

If they share the same timing mechanism, they are

synchronous because they perform everything according to

the same timing order.

If they have separate timing mechanisms, they are

asynchronous because their timing is not coordinated.

Note that asynchronous entities may choose to coordinate

their actions with other asynchronous entities; this act is

called synchronisation (only asynchronous entities need to

synchronise; synchronous entities are always synchronised

by definition).

4

CIS 3110 Operating Systems'

&

$

%

Consider two types of cars:

• Freight cars forming a train (railroad). These cars are

synchronous with the timing provided by the train engine

(whenever it moves, they all move).

• Motor cars (highway). Each car moves separately and

(to some extent) independently of other cars. Cars are

synchronised from time to time by external events such

as red lights. Asynchronous cars may choose to adopt

long–term synchronisation schemes, as in a truck

convoy.

5

CIS 3110 Operating Systems'

&

$

%

Processes are asynchronous

Processes run concurrently and are independent of other

processes; they are asynchronous entities.

They cooperate, however, and that requires that they

synchronise their actions with the actions of other processes.

There are two basic kinds of synchronisation:

Temporal synchronisation when two actions must be

performed in a preset order (first then second).

Spatial synchronisation when two actions cannot be

performed on the same resource (“space”) at the same

time, although these actions can be performed

simultaneously on different resources.

Parking in a single–booth prepaid parking lot requires both

types of synchronisation: a car must pay before parking

(temporal). As there is a single booth, two cars cannot pay

at the same time (spatial and not temporal because two cars

can pay in any order), nor can they drive into the same stall

at the same time (also spatial).

6

CIS 3110 Operating Systems'

&

$

%

When to synchronise

Two processes must coordinate their activities when they are

about to access shared resources (e.g. cars + intersection =

lights).

In the programming domain, synchronisation is needed

when a process needs to alter some common data or when

a process wants to inspect some common data:

Alter : no other process should be allowed to access the

shared data when it is being altered in a non–atomic way

(write+write is obvious; read+write can be harmful, too).

Inspect : two processes can inspect the same shared data

concurrently. However, they can only be allowed to

inspect existing shared data.

7

CIS 3110 Operating Systems'

&

$

%

Race condition

When two (or more) processes fail to follow a correct

protocol for accessing shared data, they may cause a

number of problems:

Deadlock : they may all end up waiting for something.

Race: they may all execute to the end but the result

depends on their relative speed.

Occasional deadlock : is a variant of a race in which the

processes sometimes end up waiting or finish, again,

depending on their relative speed.

These are serious errors and must be prevented. The worst

situation is when the outcome of the actions of the

processes depends on timing (race condition); in this case,

the result may be correct sometimes (even almost always)

but incorrect in some circumstances. Careless testing may

leave a race condition undetected.

8

CIS 3110 Operating Systems'

&

$

%

Critical section

When a process executes code that leads to a race

condition, the process is said to be in a critical section

(also called critical region). Synchronisation with other

processes is required before entering a critical section.

The basic idea is to make sure that when a process is in a

critical section related to a shared variable V , all other

processes must be prevented from entering their critical

sections related to the same variable V . This is called

mutual exclusion .

Note that other processes can still enter their critical

sections related to other shared variables.

9

CIS 3110 Operating Systems'

&

$

%

Mutual exclusion

Mutual exclusion has several different forms depending on

what the cooperating processes do inside their critical

sections.

The standard scenario is the readers–writers cooperation

when a number of processes create shared data (write)

while another set of processes inspect the data read).

Each writer must enforce strict mutual exclusion but the

readers can, in some situations, be allowed to access the

shared data concurrently, provided no writer is trying to alter

it.

10

CIS 3110 Operating Systems'

&

$

%

Date and time

A system utility called date returns the current date and time.

It can also be used to change the current time and date.

Any number of users can execute date concurrently to check

the current time. However, they will all have to be blocked if

another process is changing the current time.

Conversely, if a process is reading the current time, any

process that wants to change it must wait.

11

CIS 3110 Operating Systems'

&

$

%

Mutual exclusion

Many bad implementations of mutual exclusion are in use. In

order to provide a quality standard the following 4 properties

of mutual exclusion are required :

1. No two processes may be concurrently inside their

critical sections.

2. No assumptions may be made about the speeds or the

number of CPUs.

3. No process running outside its critical section may

prevent other processes from entering their critical

sections.

4. No process can be forced to wait forever trying to enter

its critical section.

Requirement 1 relates to mutual exclusion protecting one

shared variable.

12

CIS 3110 Operating Systems'

&

$

%

Busy wait

While the mutual exclusion rules say nothing about

efficiency, the programmer’s code of honour adds another

requirement:

Never enter a busy wait!

This implies that your implementation of mutual exclusion

must give the CPU away whenever you have to wait.

There is a notable exception to the ban on busy waiting: on

multi–core machines it is useful to enter a busy wait waiting

for a lock (spinning for a spinlock) hoping that another

processor will release that lock very soon (thus avoiding a

context switch).

13

CIS 3110 Operating Systems'

&

$

%

Implementing mutual exclusion

Mutual exclusion turns a critical section into an atomic

statement which cannot be interrupted before completion.

On single–processor machines, this can be enforced by

disabling interrupts for the execution of a critical section.

This approach is commonly used inside the kernel but never

at the level of user processes.

At the user process level, locks and flags are used. They

have a fundamental weakness: obeying them is voluntary

and a misbehaving (or malicious) process can destroy any

user–level synchronisation scheme. Mandatory locks solve

nothing: a malicious process can put a mandatory lock on a

shared resource and get into an infinite loop, eventually

blocking all the other processes.

14

CIS 3110 Operating Systems'

&

$

%

Moral

Correct synchronisation requires that all the processes are

well–behaved and are cooperating, i.e. following the rules.

Correct synchronisation requires careful design; it is the

most difficult part of software development.

15

CIS 3110 Operating Systems'

&

$

%

Avoid the pitfalls

While the main priority of IPC programming is correctness,

there are many potential problems that must be avoided:

Deadlock : a group of at least two processes that are

waiting for resources held by other processes belonging

to this group. Example: P1 holds r1 and waits for r2; P2

holds r2 and waits for r3; P3 holds r3 and waits for r1.

Livelock : A process does something all the time but makes

no headway (remain equally far from completion).

Starvation : a process is denied the right to use a resource,

even though that resource is not continuously held.

Unfairness : the synchronisation protocol gives an

advantage to some processes at the expense of others.

It depends on how fairness is defined.

Unfairness may be tolerated in some applications, the other

problems must be avoid.

16

CIS 3110 Operating Systems'

&

$

%

Files and IPC

A file has two characteristic attributes:

• It has contents that can be written and read by two (or

more) processes.

• Its name is a unique entry in the file system. This can be

used: the presence or absence of a file can act as a flag

indicating that a process is in its critical section.

No special functions are needed, although numerous utilities

are available (especially for locking parts of a file).

Many systems offer the option of opening a file for exclusive

access, which provides mutual exclusion for the file as a

shared variable.

17

CIS 3110 Operating Systems'

&

$

%

Shared memory

The most common method to communicate with another

process is through a shared block of memory. This is

particularly convenient for threads which share memory by

definition.

Shared memory requires a synchronisation tool and

semaphores are the tool used most often.

18

CIS 3110 Operating Systems'

&

$

%

Semaphores

A semaphore is a protected variable that acts as a lock. It is

protected in the sense that it can only be accessed through

trusted system calls.

The original concept, due to E.W. Dijkstra, consisted of 2

system calls:

V: void V(sem S) // also called signal

{

S++ ;

}

P: void P(sem S) // also called wait

{

while(S <= 0) ; // spin

S−− ;

}

The semaphore is assumed to be initialised to 1 (binary

semaphore).

The P operation provides mutual exclusion as only one

process can successfully execute it before a V is executed.

19

CIS 3110 Operating Systems'

&

$

%

A simple use of a semaphore to provide mutual exclusion for

a critical section (accessing shared memory):

P(0) ;

shmptr→confirmation = 2024561111 ;

shmptr→code = 2 ;

V(0) ;

Here, 0 is the semaphore number in the cluster acquired by

semget; its starting value must be 1.

20

CIS 3110 Operating Systems'

&

$

%

Counting semaphores

When several units of the shared resource are available, it is

convenient to use counting semaphores . They can take

any value (positive or negative). When the value of a

counting semaphore equals s, the interpretation is:

s > 0: s units of the shared resource are available.

s < 0: no units are available and −s processes are waiting

for the resource.

0: no units are available and no process is waiting.

21

CIS 3110 Operating Systems'

&

$

%

Producer–Consumer

One producer process continuously fills empty buffers while

one consumer process continuously empties full buffers.

The total number of buffers is n and they all start empty.

A classic solution uses one binary semaphore (mutex) and

two counting semaphores (full and empty).

22

CIS 3110 Operating Systems'

&

$

%

Producer

shared semaphore mutex , full , empty ;

shared buffer B[n] ;

private buffer T ;

full = 0 ;

empty = n ;

mutex = 1 ;

while(1) {

fill buffer T ;

P(empty) ;

P(mutex) ;

... copy T to an empty buffer ...

V(mutex) ;

V(full) ;

}

23

CIS 3110 Operating Systems'

&

$

%

Consumer

shared semaphore mutex , full , empty ;

shared buffer B[n] ;

private buffer T ;

while(1) {

P(full) ;

P(mutex) ;

... copy a full buffer to T ...

V(mutex) ;

V(empty) ;

... process T ...

}

24

