
CIS 3110 Operating Systems'

&

$

%

When programming in C (or similar), you must include a

number of files such as these:

#include<stdlib.h>

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<sys/stat.h>

#include<sys/types.h>

#include<signal.h>

#include<string.h>

you may need more of these.

1

CIS 3110 Operating Systems'

&

$

%

Every process has its own unique identifier assigned to it by

the Operating System.

Processes form a tree, each process having a parent

process. Processes started interactively from a terminal

(window) have as parent the shell (click click click) process

controlling the window.

pid = getpid() ; // This is my process id

ppid = getppid() ; // This is my parent process id

pid and ppid are of type pid t which looks like an int to me.

2

http://www.tech-faq.com/unix-shell.shtml/

CIS 3110 Operating Systems'

&

$

%

Forking a process

The system call fork() (click click click) creates a child process. Any

process can create one or more child processes.

When fork() (click click click) is called, the process is duplicated into

two identical copies, each copy having exactly the same

values, the same files, etc. One copy is called the parent,

the other is called the child process.

They differ in one thing: the return value of the call itself:

rv = fork() ;

This call will return in two places: in each copy of the forking

process:

The parent will find the value of rv to be a positive integer

equal to the process id of the other copy (i.e. the child).

The child will find rv to be equal to 0.

Note that the processes are two distinct copies and do not

hold any shared variables.

3

http://www.opengroup.org/onlinepubs/000095399/functions/fork.html/
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node16.html

CIS 3110 Operating Systems'

&

$

%

A call to fork() is always followed by an if statement which

distinguishes between the parent and the child:

int makechild(int t)

{

pid t pid ;

if((pid = fork()) == 0) {

sleep(t) ;

fprintf(stderr , "\7\7Time is up\n") ;

exit(0) ;

} else

return pid ;

}

Where is the code of the child? The parent?

Make sure to understand why the if is needed and why one

part of the code is ended by an exit() while the other is a

return.

If you need more reading materials, try lupg.

If still more is needed you probably are tired and need to

click here or go there.

4

http://users.actcom.co.il/~choo/lupg/tutorials/multi-process/multi-process.html
http://en.wikipedia.org/wiki/Fork
http://www.forkrestaurant.com/

CIS 3110 Operating Systems'

&

$

%

A file as a lock

One can use the presence or absence of a file as an

imaginary lock. When the file exists, the lock is on;

otherwise, it is off.

int flock ;

int mode = S IREAD | S IWRITE ; // trust me

char lockfile[20] ;

sprintf(lockfile , "alertlock%d" , ppid) ;

while((flock = open(lockfile , O CREAT | O EXCL , mode

)) < 0)

sleep(1) ;

...

close(flock) ;

unlink(lockfile) ;

The flags O CREAT and O EXCL make open() fail if the

named file already exists.

It is necessary to release the lock in due time; this is

accomplished by the close() and unlink() sequence.

5

CIS 3110 Operating Systems'

&

$

%

Command–line arguments are received by a program in the

form of arguments to main(). Two argumants are normal, the

second (argv) being an array of pointers to strings and the

first (argc) giving the length of the array.

The first element of the array (argv[0]) is the name of the

program.

If you pass this invocation to the shell:

alert 3 5

argv will be an array of 3 strings equal to ”alert” , ”3” , ”5”

respectively.

int main(int argc , char ∗∗argv)

if(argc < 3) {

printf("Arguments?\n") ;

exit(0) ;

}

action = atoi(argv[1]) ;

t = atoi(argv[2]) ;

6

CIS 3110 Operating Systems'

&

$

%

You send a signal to a process through the grand–sounding

system call kill(). There are many signals, each with its own

official meaning. You can redefine the meaning of most

signals by catching them; however, some signals cannot be

caught.

kill(process , SIGUSR1) ;

kill(process , SIGBUS) ;

kill(process , SIGTERM) ;

A list of signals can be found click here.

7

http://www.tech-faq.com/unix-signals.shtml/

