
CIS 3110 Operating Systems'

&

$

%

Signals

A signal is a software interrupt delivered to a process. The

operating system uses signals to report exceptional

situations to an executing program. Some signals report

errors such as references to invalid memory addresses;

others report asynchronous events, such as disconnection

of a phone line.

POSIX defines a variety of signal types, each for a particular

kind of event. Some kinds of events make it inadvisable or

impossible for the program to proceed as usual, and the

corresponding signals normally abort the program. Other

kinds of signals that report harmless events are ignored by

default.

1

CIS 3110 Operating Systems'

&

$

%

signal handler

If you anticipate an event that causes signals, you can define

a handler function and tell the operating system to run it

when that particular type of signal arrives.

Finally, one process can send a signal to another related

process; this allows a process to terminate another, or two

processes to communicate. Such processes must be

related, i.e. share the same gid.

2

CIS 3110 Operating Systems'

&

$

%

Types of Signals

A signal reports the occurrence of an exceptional event.

These are some of the events that can cause (or generate,

or raise) a signal:

• The OS reports an exceptional condition that might

interest the process such as input/output completion or

arrival of input from the network.

• A program error such as dividing by zero or issuing an

address outside the valid range.

• A user request to interrupt or terminate the program.

Most environments are set up to let a user suspend the

program by typing C-z, or terminate it with C-c.

• The termination of a child process.

• Expiration of a timer or alarm.

• A call to kill or raise by the same process.

• A signal from another process. Signals are a limited but

useful form of interprocess communication.

3

CIS 3110 Operating Systems'

&

$

%

If you want to do something when a signal is delivered to

your process, you have to set up a signal handler.

This is the simplest handler:

static void catch(int sig)

{

fprintf(stderr , "%d ... %d\n" , getpid() , sig) ;

exit(0) ;

}

the static keyword is optional.

Two default signal handlers are predefined: SIG IGN and

SIG DFL (the latter restores the default).

4

CIS 3110 Operating Systems'

&

$

%

A signal handler must be installed in order to be used. This

is done by calling function sigaction.

int makechild(int t)

{

pid t pid ;

struct sigaction SA ;

if((pid = fork()) == 0) {

SA.sa handler = catch ;

SA.sa flags = 0 ;

sigaction(SIGINT , &SA , NULL) ;

sleep(t) ;

fprintf(stderr , "%d ... %d\n" , getpid() , t) ;

exit(0) ;

} else

return pid ;

}

Note that sigaction will fail (and return a -1) if an attempt is

made to install a handler for a signal that cannot be caught

(such as SIGKILL).

5

CIS 3110 Operating Systems'

&

$

%

POSIX defines signals and signal handling as a portable

standard. Various operating systems implement the

standard in their own ways, so that only the basic elements

are truly portable.

As an example, take SIGTERM a signal calling for a process

to terminate. Some systems block it (they should not)

making it useless in the simplest circumstances.

6

CIS 3110 Operating Systems'

&

$

%

If multiple signals of the same type are delivered to your

process before your signal handler has a chance to be

invoked at all, the handler may only be invoked once, as if

only a single signal had arrived. In effect, the signals merge

into one.

This situation can arise when the signal is blocked, or in a

multiprogramming environment where the system is busy

running some other processes while the signals are

delivered. This means, for example, that you cannot reliably

use a signal handler to count signals. The only distinction

you can reliably make is whether at least one signal has

arrived since a given time in the past.

7

CIS 3110 Operating Systems'

&

$

%

Interrupts cause problems

Interrupts (and signals) sneak some code in the middle of

some other code. If a process is doing something when a

signal comes, the signal handler’s actions will be performed

right then, in the middle of the work of the process.

This is sufficiently dangerous when a process is in the

middle of copying a file when it receives a SIGKILL. The file

will be copied only partially.

More subtle problems can be caused by signals arriving at

an unexpected moment. To avoid these problems, one

should write code that is atomic where it matters.

First an example, then a partial solution.

8

CIS 3110 Operating Systems'

&

$

%

struct two words { int a, b; } memory;

void handler(int signum)

{

printf ("%d,%d\n" , memory.a, memory.b);

alarm (1); // Note this trick

}

int main (void)

{

static struct two words zeros = { 0, 0 }, ones = { 1, 1 };

signal (SIGALRM, handler);

memory = zeros;

alarm (1);

while (1) {

memory = zeros;

memory = ones;

}

}

9

CIS 3110 Operating Systems'

&

$

%

This program fills memory with zeros, ones, zeros, ones,

alternating forever; meanwhile, once per second, the alarm

signal handler prints the current contents.

Clearly, this program can print a pair of zeros or a pair of

ones. But that’s not all it can do! On most machines, it takes

several instructions to store a new value in memory, and the

value is stored one word at a time.

If the signal is delivered in between these instructions, the

handler might find that memory.a is zero and memory.b is

one (or vice versa).

10

CIS 3110 Operating Systems'

&

$

%

To avoid uncertainty about interrupting access to a variable,

you can use an integer data type for which access is always

atomic:

sig atomic t

Reading and writing this data type is guaranteed to happen

in a single instruction, so there’s no way for a handler to run

”in the middle” of an access.

The type sig atomic t is always an int data type, but how

many bits it contains will vary from machine to machine. You

can also assume that pointer types are atomic; that is very

convenient. Both of these are true on all POSIX systems.

However, larger types (including objects) are not atomic and

no declaration will turn them into atomic entities; the only,

very partial, solution is to block signals when they are not

welcome.

11

CIS 3110 Operating Systems'

&

$

%

Blocking a signal means telling the operating system to hold

it and deliver it later. Generally, a program does not block

signals indefinitely–it might as well ignore them by setting

their actions to SIG IGN. But it is useful to block signals

briefly, to prevent them from interrupting sensitive

operations. For instance:

• You can use the sigprocmask function to block signals

while you modify global variables that are also modified

by the handlers for these signals.

• You can set sa mask in your sigaction call to block

certain signals while a particular signal handler runs.

This way, the signal handler can run without being

interrupted itself by signals.

12

CIS 3110 Operating Systems'

&

$

%

User–defined signals

// When a SIGUSR1 signal arrives, set this variable.

volatile sig atomic t usr interrupt = 0;

void synch signal (int sig)

{

usr interrupt = 1;

}

int main (void)

{

struct sigaction usr action;

usr action.sa handler = synch signal;

usr action.sa flags = 0;

sigaction (SIGUSR1, &usr action, NULL);

continued on the next slide

13

CIS 3110 Operating Systems'

&

$

%

if(fork () == 0) { // Child’s code

// Perform initialization here

...

// Let parent know you’re ready to work.

kill (getppid (), SIGUSR1);

// Continue with execution then finish

puts ("Bye, now....");

exit (0);

} else { // the parent’s code

// Wait for the child to send a signal.

while (!usr interrupt) usleep(100) ;

// Now continue execution then finish

puts ("That's all, folks!");

return 0;

}

14

CIS 3110 Operating Systems'

&

$

%

In the previous example only the parent needed the signal

handler and it would seem natural to put the invocation of

the handler inside the red code.

But this would be an error because the handler must be in

place when the fork() splits the process in two–we must be

prepared that the child process will execute its code before

the parent executes its code (and that is the way it is on

most systems).

15

CIS 3110 Operating Systems'

&

$

%

References

There are many more details that a good programmer

should know about signals.

Here are some links:

• This presentation was largely based on the

GNU C Manual

• Slides from Germany

• IBM manual (excellent! Make sure to follow to the next

sections using the next topic link at the end of each

section).

• Finally, you may try the terse opengroup’s manual.

• If the given references are not sufficient, your interests

must be unbounded. My recommendation is to brighten

your horizons by reading more about signals.

• If everything else fails, please consider raising the Victor

signal (but don’t ask for a Zulu).

16

http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-0.02/library_toc.html#SEC332
http://www-crypto.htw-saarland.de/weber/teaching/08_ss_sysi/sysi-2008_05_29.pdf
http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=/com.ibm.ztpf-ztpfdf.doc_put.cur/gtpc2/cpp_sigaction.html
http://www.opengroup.org/onlinepubs/009695399/functions/sigaction.html
http://www.jproc.ca/rrp/
http://www.navy.mil/navydata/communications/flags/flags.html

