
CIS 3110 Operating Systems'

&

$

%

IPC

Two processes will use shared memory to communicate and

some mechanism for synchronise their actions. This is

necessary because shared memory does not come with any

synchronisation tools: if you can access it at all, you can

access it anytime regardless of the other process.

Semaphores were chosen for synchronisation (out of several

options).

Note that there is a much simpler way to implement a

solution to the producer–consumer (with confirmations)

problem: two message queues.

1

CIS 3110 Operating Systems'

&

$

%

References

• Beej’s guide to shared memory

• Beej’s guide to semaphores

• Linux guide (sketchy)

• Marshall’s guide to shared memory

• Marshall’s guide to semaphores

• Another attempt to explain shared memory

2

http://beej.us/guide/bgipc/output/html/multipage/shm.html
http://beej.us/guide/bgipc/output/html/multipage/semaphores.html
http://www.linuxhq.com/guides/TLK/ipc/ipc.html
http://www.cs.cf.ac.uk/Dave/C/node27.html
http://http://www.cs.cf.ac.uk/Dave/C/node26.html
http://www.kohala.com/start/unpv22e/unpv22e.chap12.pdf

CIS 3110 Operating Systems'

&

$

%

IPC identifier

Each IPC object is identified by two labels:

key: which is an external identifier. All the processes that

want a given object must produce the one and only key

that allows access to it.

identifier : once a key was accepted, a process will refer to

an IPC object by an internal id (an object will have a

different id in each process using it).

A key identifies uniquely an object in a particular IPC domain

but can be used simultaneously in several domains.

3

CIS 3110 Operating Systems'

&

$

%

There are two ways of getting a key:

Invent one

Pick any number such as 4561111 and use it. As long as

nobody picks the same number, you are fine (the number

above should be avoided: it is the telephone of the White

House).

Get one from the system

A special system call ftok() exists solely to give you a unique

key based on two arguments:

key = ftok(char ∗ , char) ;

where the first argument is the path of any existing (and

accessible) file in the system and the second argument is a

number between 0 and 255 (every character has this

property). domains.

4

CIS 3110 Operating Systems'

&

$

%

Acquiring some shared memory

You already have your favourite key and you want a shared

memory area of size bytes with access rights shmflg. A

call like this will create one:

if ((shmid = shmget (key, size, shmflg)) == −1) {

perror("shmget failed");

exit(−1);

}

The access rights could be: 0666 (anybody can do anything)

plus create or fail:

shmflg = 0666 | IPC CREAT | IPC EXCL ;

It could also be: 0640 (the owner can do anything, group

members may read) plus create or fail:

shmflg = 0640 | IPC CREAT | IPC EXCL ;

5

CIS 3110 Operating Systems'

&

$

%

shmget() got you a shared memory identifier but it is not a

pointer to a location in memory and thus is useless in itself.

What you need is a pointer that you can use to access the

memory area:

shmptr = shmat(shmid , mychoice , 0) ;

if(shmptr == (char ∗) −1) {

perror("shmat") ;

exit(−1) ;

}

The second argument mychoice is almost always 0; if not, it

asks that the value returned by shmat be equal to this

argument, if possible. The last argument gives access rights

again.

Now you can access the shared memory using the pointer

provided by shmat().

6

CIS 3110 Operating Systems'

&

$

%

Here is some nonsensical code copied from Marshall:

main()

{

char c;

int shmid;

key t key = 5678 ;

char ∗shm, ∗s;

if ((shmid = shmget(key, 27, IPC CREAT | 0666)) < 0) ...

if ((shm = shmat(shmid, 0, 0)) == (char ∗) −1) ...

s = shm;

for (c = 'a' ; c <= 'z' ; ∗s++ = c++) ;

∗s = NULL;

while (∗shm ! = ' * ')

sleep(1);

}

7

CIS 3110 Operating Systems'

&

$

%

Creating a semaphore

You cannot get one semaphore; you must ask for an array of

them. The code below asks for nsems semaphores.

if ((semid = semget(key, nsems, semflg)) == −1) {

perror("semget failed");

exit(−1);

}

You give a magic key which is the external name (“public

name”) of your semaphore cluster and you provide flags that

indicate what access permission you are willing to grant to

users of this cluster. The standard permission is 0600 (I

can read and write and nobody else can).

The returned value is an identifier (not a pointer). A

semaphore is a tightly controlled entity and you cannot

simply access it directly as in:

semid[2] = 0 ;

This will not compile. If you want to set the third semaphore

of the cluster identified by semid to 0, you must use the

system call semctl() which has most obscure semantics.

8

CIS 3110 Operating Systems'

&

$

%

Acquiring a semaphore (again)

The key is the public name of the semaphore cluster you

want; the same name will be used by all the processes that

will share this semaphore cluster.

Consider using the inode of the current directory (if you are

there, it is accessible) to create 2 semaphores with the

requirement that they must be brand new:

key = ftok("." , 'Q') ;

semid = semget(key , 2 , 0600 | IPC CREAT | IPC EXCL) ;

if(semid == −1) {

perror("semget refused");

kill(getpid() , SIGINT) ;

}

The ’Q’ argument is an integer between 0 and 255 (as

required).

9

CIS 3110 Operating Systems'

&

$

%

Clean after your code

void delete(int sig)

{

printf("Cleaning\n") ;

shmctl(shmid , IPC RMID , 0) ;

semctl(semid , IPC RMID , 0) ;

exit(0) ;

}

void start()

{

signal(SIGINT , delete) ;

... ...

10

CIS 3110 Operating Systems'

&

$

%

Semaphore operations

Two operations are of real interest:

semctl() allows to manipulate the values of semaphores.

semop() provides the basic P and V operations on a

semaphore. You can use semop() to define your own

operations (such as a non–blocking Poll()).

11

CIS 3110 Operating Systems'

&

$

%

Basic use of semaphores

P(semaphore) ;

... modify the shared memory ...

V(semaphore) ;

If the semaphore is properly initialised (to 1), the P

operation will block any process that wants to touch the

shared memory when another process is doing so.

12

CIS 3110 Operating Systems'

&

$

%

void V(int s)

{

struct sembuf S ;

S.sem num = s ;

S.sem op = 1 ;

if(semop(semid , &S , 1) == −1) {

perror("V failed") ;

kill(getpid() , SIGINT) ;

}

}

13

CIS 3110 Operating Systems'

&

$

%

P

void P(int s)

{

struct sembuf S ;

S.sem num = s ;

S.sem op = −1 ;

while(semop(semid , &S , 1) == −1) {

perror("P failed") ;

sleep(1) ;

}

}

This code assumes that semop() failed due to an

interrupted system call ordue to a race condition (this is the

purpose of the sleep()).

It will not work if there is asynchronisation error; in such

case, it will loop forever.

14

CIS 3110 Operating Systems'

&

$

%

semun

The system call semctl requires a union type called semun .

Some systems have it defined in bits/sem.h (called inside

sys/sem.h); other systems require that you define it yourself.

#include<sys/sem.h>

#ifdef SEM SEMUN UNDEFINED

union semun {

int val ;

struct semid ds ∗buf ;

unsigned short ∗array ;

} ;

#endif // SEM SEMUN UNDEFINED

Consult the file /usr/include/bits/sem.h for details.

15

CIS 3110 Operating Systems'

&

$

%

Two non–standard operations on semaphores: a

non–blocking Poll() and an initialisation function I().

int Poll(int s)

{

return semctl(semid , s , GETVAL) ;

}

void I(int s)

{

union semun arg ;

arg.val = 1 ; // sets it to 1

if(semctl(semid , s , SETVAL , arg) == −1)

perror("semctl") ;

}

16

CIS 3110 Operating Systems'

&

$

%

struct VID {

int code ; // the current state of this entry

// = 0 empty (sem 0 == 1)

// = 1 vid inside (sem 1 == 0)

// = 2 confirmed vid (sem 1 == 0)

pid t pid ; // Validator’s pid

int vid ; // the vid to be recorded

int confirmation ; // passed back from Tallier

} ;

17

CIS 3110 Operating Systems'

&

$

%

fh = fopen("Booth pid pid" , "w") ;

if(fh == NULL)

perror("Could not open the pid file") ;

fprintf(fh , "%d\n" , getpid()) ;

fclose(fh) ;

key = ftok("/dev/null" , 'B') ;

if((key t) key == −1)

perror("ftok") ;

shmid = shmget(key , ...

shmptr = (struct VID ∗)shmat(shmid , 0 , 0) ;

semid = semget(key , 2 , 0600 | IPC CREAT | IPC EXCL

) ;

18

