
CIS 3110 Operating Systems'

&

$

%

Threads and parallelism

In shared memory multiprocessor architectures, such as

SMPs, threads can be used to implement parallelism.

Historically, hardware vendors have implemented their own

proprietary versions of threads, making portability a concern

for software developers.

Recently, a standardized C language threads programming

interface has been specified by the IEEE POSIX 1003.1c

standard. Implementations that adhere to this standard are

referred to as POSIX threads, or Pthreads.

Pthreads come in a package called pthreads for

UNIX–based systems. Win32 versions exist but seem

incomplete ((click here for details).

When you use pthreads you will need to specify that threads

are used by giving a compiler flage, such as:

• gcc -pthread code.c

• gcc code.c -lthreads

• or similar.

1

http://sourceware.org/pthreads-win32/

CIS 3110 Operating Systems'

&

$

%

Some references:

• Tutorial from LLNatLab: all the details, lots of colours

and code.

• YoLinux tutorial: lots of informative code.

• Another tutorial

• LUPG tutorial, long

These references contain working code written in C.

2

https://computing.llnl.gov/tutorials/pthreads/
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.humbug.org.au/talks/pthreads/
http://users.actcom.co.il/~choo/lupg/tutorials/multi-thread/multi-thread.html

CIS 3110 Operating Systems'

&

$

%

What is a thread

A thread is a portion of a process, a semi–process (another

term is lightweight process) that has its own stack, and

executes a given piece of code. Unlike a real process, the

thread shares its global variables with other threads (where

as for processes we usually have a different memory area

for each one of them).

A Thread Group is a set of threads all executing inside the

same process. They all share the same memory, and thus

can access the same global variables, same heap memory

(malloc()), same set of file descriptors, etc.

All these threads execute concurrently (using time slices) or

in parallel, if the system has several CPUs.

The pthreads API combines shared memory and

semaphores into one set of functions. Sadly, the standard

uses different names for these functions than the ones used

in POSIX XSI shared memory and semaphore standard.

3

CIS 3110 Operating Systems'

&

$

%
0

0xFFFFFFFF

U area

(code)
Text

Data

Heap

(including shmem)

Stack

P
ro

te
ct

ed
M

ai
nl

y
em

pt
y

4

CIS 3110 Operating Systems'

&

$

%

Example

Suppose we have the urge to execute the function do loop

twice.

void do loop(int me)

{

int i; /∗ counter, to print numbers ∗/

int j; /∗ counter, for delay ∗/

for (i=0; i<10; i++) {

for (j=0; j<50000 ; j++) /∗ delay loop ∗/

;

printf("'%d' - Got '%d'\n" , me, i);

}

exit(0);

}

5

CIS 3110 Operating Systems'

&

$

%

I can fork a process

// parent process starts execution in main

int main(int argc, char∗ argv[])

{

pid t child; // pid of the newly created child

if((pid = fork()) == 0) {

do loop(1) ;

else

do loop(2);

printf("If you see this message, say

huh?\n") ;

}

6

CIS 3110 Operating Systems'

&

$

%

Same using threads

The code changes because the pthread create system call

requires specific argument types.

// execution begins in main (single thread starts)

int main(int argc, char∗ argv[])

{

int thr id; // thread ID for the newly created thread

pthread t p thread; // thread’s structure

int a = 1; // thread 1 identifying number

int b = 2; // thread 2 identifying number

thr id = pthread create(&p thread, NULL, do loop,

(void∗)&a);

do loop((void∗)&b);

printf("If you see this message, say

huh?\n") ;

}

Must be compiled using cc -pthread or gcc -pthread.

7

CIS 3110 Operating Systems'

&

$

%

pthread create() has 4 arguments:

• The first is used by pthread create() to return to the

program information about the thread.

• The second is used to set some attributes for the new

thread. In our case we supplied a NULL pointer to tell

pthread create() to use the default values.

• The third is the name of the function that the thread will

start executing. It must return a void *.

• The fourth is an argument (or argument list) to pass to

the function. It must be of type void *.

8

CIS 3110 Operating Systems'

&

$

%

The function must be rewritten to match pthread create:

void∗ do loop(void∗ data)

{

int i; /∗ counter, to print numbers ∗/

int j; /∗ counter, for delay ∗/

int me = ∗((int∗)data); /∗ thread identifying number ∗/

for (i=0; i<10; i++) {

for (j=0; j<50000 ; j++) /∗ delay loop ∗/

;

printf("'%d' - Got '%d'\n" , me, i);

}

pthread exit(NULL) ;

}

pthread exit() terminates the thread (note that the main

process is a thread, too, so it also terminates with a

pthread exit).

9

CIS 3110 Operating Systems'

&

$

%

Memory sharing

All the pthreads forming one group share all their global

memory. That includes the memory placed on the heap (i.e.

acquired using malloc).

Whenever a thread calls a function, the local variables of

that function land on the private stack of the calling thread.

They are not accessible by other threads. In the do loop

function there will be two sets of private variables i, j, me;

one set for each thread. These variables will be different and

hence will have different values in each thread.

10

CIS 3110 Operating Systems'

&

$

%

Semaphores in threads

pthreads have semaphores which are called mutexes.

A mutex is declared like any other global variable:

pthread mutex mutex = PTHREAD MUTEX INITIALIZER ;

This gives a properly initialised semaphore.

The operations on these semaphores are very simple:

P(mutex): pthread mutex lock(&mutex) ;

V(mutex): pthread mutex unlock(&mutex) ;

11

CIS 3110 Operating Systems'

&

$

%

There is much more

pthreads support many other features:

• Waiting for events to happen or conditions to become

true.

• Joining threads (like a return).

• Thread cancellation.

12

CIS 3110 Operating Systems'

&

$

%

void Directory(char ∗dir)

{

// declarations here

struct stat filestat ;

sprintf(buf , "ls %s > %s/.tmp%d" , dir , dir ,

getpid()) ;

system(buf) ;

fp = fopen(tmp , "r") ;

while((ret = fscanf(fp , "%s" , file)) > 0) {

sprintf(buf , "%s/%s" , dir , file) ;

strcpy(file , buf) ;

if((ret = lstat(file , &filestat)) < 0) {

perror("stat") ;

kill(getpid() , SIGKILL) ;

} else

handlefile(file , filestat) ;

}

fclose(fp) ; unlink(tmp) ;

}

13

CIS 3110 Operating Systems'

&

$

%

void handlefile(char ∗file , struct stat filestat)

{

if(S ISDIR(filestat.st mode)) {

printf("directory\n") ;

Directory(file) ;

}

if(S ISREG(filestat.st mode)) {

printf("regular\n") ;

if(filestat.st mtime > backup→lastinc) {

printf("=======> Backup needed\n") ;

}

}

if(S ISLNK(filestat.st mode))

printf("link\n") ;

}

14

CIS 3110 Operating Systems'

&

$

%

void handlefile(char ∗file , struct stat filestat)

{

if(S ISDIR(filestat.st mode)) {

printf("directory\n") ;

pthread create(&p thread , NULL ,

Directory, (void ∗)&file) ;

}

if(S ISREG(filestat.st mode)) {

printf("regular\n") ;

if(filestat.st mtime > backup→lastinc) {

printf("=======> Backup needed\n") ;

}

}

if(S ISLNK(filestat.st mode))

printf("link\n") ;

}

15

