
CIS 3110 Operating Systems'

&

$

%

Memory management

It is possible to assign a separate memory chip to each

process in the system, if the number of processes is small

enough. This is not a cost–effective way to spend money: as

the number of processes varies in time, we would have lots

of unused memory most of the time.

Another way to manage main memory is to allow user

processes to share it. Sharing memory has a different

meaning than sharing the CPU:

• the CPU cannot be divided into smaller pieces and has

to be given to a process as one unit (sharing is solely

temporal).

• Memory can be subdivided into smaller units (“blocks”)

and each block can be given to a process for exclusive

use (this is spatial sharing). The same block can later be

given to another process so memory sharing is both

spatial and temporal.

1

CIS 3110 Operating Systems'

&

$

%

All the memory management schemes used in

contemporary OS are based on the same idea: divide the

memory into a large number of blocks and give these blocks

to processes when they need them.

There is one problem that needs to be solved: when a user

prepares a program for execution, he/she does not know

which block of real memory will be given to this program

(when it becomes a process). Moreover, the same program

will be assigned different memory blocks each time it is

executed.

Thus even the simplest memory management scheme must

provide some form of mapping of addresses as seen by a

process into addresses in the actual main memory. The two

kinds of addresses being different, they are given different

names:

Physical address : this is an address in real memory.

Logical address : this is an address used by a process.

2

CIS 3110 Operating Systems'

&

$

%

Physical address

The computer system has some real main memory attached

to a memory controller (MMU). This memory is called

physical memory because it physically exists (it can be

touched).

Physical memory is made of identical, small, indivisible units

that can be accessed independently of other units. These

units are identical, so a label is associated with each of them

to distinguish it from other (identical) units. This label is

called a physical address .

Main memory is accessed through a memory bus. The MMU

can be placed either between the bus and the memory or

between the bus the CPU (in which case a DMA controller

sits between memory and the bus).

MMU has another meaning in the Fortran environment:

Malfunction Management Unit.

3

http://www.fortrantraffic.com/naztec/516mmu.htm

CIS 3110 Operating Systems'

&

$

%

Physical address space

Physical addresses form a set called physical address

space . We normally describe the physical address space in

terms of the range of legal physical addresses. Traditionally,

this space contained all the numbers in the set

{0..232 − 1} (in the early days other options were tried but

were abandoned). Recently there is a move towards

physical address spaces of size 264.

4

CIS 3110 Operating Systems'

&

$

%

Logical address

Physical memory is the memory that is seen by the MMU; it

happens to corresponds to the real memory as installed in a

computer.

The CPU is not forced to see memory in the same way.

Various schemes were designed to make the CPU imagine

how memory looks like, with the CPU’s imagined memory not

necessarily looking the same way as physical memory.

There are several reasons for making the distinction; the

main (and sufficient for this course) is that the OS must give

the processes a view of memory that differs from the MMU’s

view.

The memory that the CPU thinks it sees is called logical

memory. Like physical memory it is made of addressable

small units; the address of each such unit is called a logical

address.

The set of all the logical addresses is called a logical

address space .

5

CIS 3110 Operating Systems'

&

$

%

It is important to note that in all contemporary computers a

logical address is structured differently than a physical

address.

While a physical memory is made of a contiguous sequence

of units numbered 0 and up (like a one–dimensional array),

logical memory typically is seen as a one– or two–

dimensional array of pointers to one–dimensional arrays.

It only looks complicated, but is no more difficult to grasp

than:

char ∗∗LAS[] ;

6

CIS 3110 Operating Systems'

&

$

%

The CPU’s vision of memory could be mapped on the

physical memory in a static way (not changing in time).

All computer manufacturers chose a dynamic mapping of a

logical address space into a physical address space. This is

done by translating every logical address as it comes out of

the CPU and passing the translated address (physical) to the

physical memory.

M
E

M
O

R
Y

B
U

S

CPU Dynamic
Translation

logical address physical address

7

CIS 3110 Operating Systems'

&

$

%

MMU

The device performing dynamic address translation acts as

the memory controller and is responsible for detecting

addressing errors; hence the need for a feedback line to

interrupt the CPU when needed. MMU.

CPU MMU

Address

Data

signal lines

feedback

MMU Memory banks

8

CIS 3110 Operating Systems'

&

$

%

In many architectures all the devices use physical addresses and only the CPU

uses logical addresses. Note that this arrangement makes it impossible for a

process to issue an I/O request directly.

MMU

CPU
logical address

physical address

MEMORY
DISK

A clever trick allows to disable translation: make the MMU replace logical

addresses with identical copies as physical addresses.

9

CIS 3110 Operating Systems'

&

$

%

Prehistoric approach

In early OS memory management, each process was given

a chunk of physical memory. To make this scheme work, the

CPU was equipped with two extra registers: the base

register and the limit register.

Suppose that a process was given an area of physical

memory of size L starting at physical address B.

When the OS gave the CPU to the process, it first loaded the

two registers:

base = B

limit = B + L

Whenever the CPU wants to access (logical) address A, the

following code was executed (in hardware circuitry) to obtain

the corresponding physical address P :

P = A + base ;

if(!(P < limit)) interrupt ;

10

CIS 3110 Operating Systems'

&

$

%

Relocation

The approach was called dynamic relocation: each address

was translated at runtime from logical to physical.

Base Limit

+

? M
E

M
O

R
Y

CPU

logical address physical address

If the comparison with the limit register was unsuccessful, a

memory protection violation was assumed (address out of

bounds).

11

CIS 3110 Operating Systems'

&

$

%

Relocation and now what?

If dynamic relocation is available, the OS could keep several

processes in main memory simultaneously by giving each of

them a block:

Kernel

Process #1

Process #2

Process #3

Kernel

0x00040000
256KB

256KB

384KB

256KB

768KB

0x001C0000

We now have a 2MB memory holding simultaneously 3 user

processes, potentially giving the scheduler 3 to choose from

(if all 3 are ready).

12

CIS 3110 Operating Systems'

&

$

%

Partitioning

With dynamic relocation, main memory is divided into

memory blocks called partitions (they could be fixed or

variable). When a user submits a program for execution, the

memory needs of this program are deduced (usually with

user input). The act of creating a process includes finding for

it a partition of suitable size (“not too big, not too small”).

Usually, a process in execution is permanently bound to one

and the same partition. There is a possibility of moving an

existing process from partition to partition (swapping) but

this is a time–consuming operation.

13

CIS 3110 Operating Systems'

&

$

%

Complications

Partitioning did not work well for many reasons:

• Every process has a different size. when one process

terminated, it was not always possible to replace it in

memory (long story of fragmentation).

• Some programs (and some programming languages)

expected the size of the address space of a process to

change dynamically (stack, heap, many other reasons).

Few programmers can predict in advance what these

changes would be.

• One big I/O–bound process can bring the system

(almost) to a stop.

And there was the additional (seemingly unsolvable)

problem of the process that was too big to fit in the whole

main memory (how to fit a 3GB address space into a 2GB

memory?).

14

CIS 3110 Operating Systems'

&

$

%

Main memory fragmentation

Main memory

Kernel

384KB

256KB

384KB

384KB

Kernel

#1

#2

#3

#4

Waiting for memory

1024KB

256KB

512KB

#5

#6

#7

15

CIS 3110 Operating Systems'

&

$

%

Main memory fragmentation

Main memory

Kernel

384KB

640KB

384KB

Kernel

#1

#4

Waiting for memory

1024KB

256KB

512KB

#5

#6

#7

16

CIS 3110 Operating Systems'

&

$

%

Main memory fragmentation

Main memory

Kernel

384KB

256KB

512KB

256KB

Kernel

#1

#3

Waiting for memory

512KB

384KB

384KB

#5

#6

#7

17

CIS 3110 Operating Systems'

&

$

%

Fragmented logical address space

All the problems were magically solved by the development

of virtual memory . This concept was first introduced in

1958 (UK) and was gradually refined into its today’s form

called paged segmentation which is a combination of two

originally competing approaches:

Paging : divide the address space of a process into

fixed–size blocks just like a telephone book is divided

into pages. The division is purely mechanical, akin to the

operation of slicing bread by a bread slicer.

Segmentation : divide the address space of a process into

logically–connected subunits. Analogous to dividing a

report into sections or a book into chapters.

Combining the two methods is similar to creating a book: a

sequence of words is divided into (presumably) coherent

chapters of variable length (each chapter bound by some

common thread), which are in turn printed on pages of fixed

size.

18

http://www.ideafinder.com/history/inventions/breadslicer.htm

CIS 3110 Operating Systems'

&

$

%

Fragmented logical address space

All the problems were magically solved by the development

of virtual memory . This concept was first introduced in

1958 (UK) and was gradually refined into its today’s form

called paged segmentation which is a combination of two

originally competing approaches:

Paging : divide the address space of a process into

fixed–size blocks just like a telephone book is divided

into pages. The division is purely mechanical, akin to the

operation of slicing bread by a bread slicer.

Segmentation : divide the address space of a process into

logically–connected subunits. Analogous to dividing a

report into sections or a book into chapters.

Combining the two methods is similar to creating a book: a

sequence of words is divided into (presumably) coherent

chapters of variable length (each chapter bound by some

common thread), which are in turn printed on pages of fixed

size.

19

http://www.ideafinder.com/history/inventions/breadslicer.htm

CIS 3110 Operating Systems'

&

$

%

With or without VM

Paging and segmentation are not directly related to virtual

memory: they can be implemented in a system without

virtual memory.

Paging : practically solves two major problems:

fragmentation of main memory and expanding address

spaces.

Segmentation : reduces the impact of memory

fragmentation but does not address the need to expand

an address space. It does solve another big problem:

library sharing (this problem is not directly related to

memory management but is of great importance and

eventually made virtual memory necessary).

But none of them solves the other problem: several large

logical address spaces cannot fit simultaneously in the main

memory. Virtual memory is needed to solve this problem.

20

CIS 3110 Operating Systems'

&

$

%

Paging

Each logical address space is broken into fixed–sized blocks

called pages. The division is purely mechanical and is done

by numbering all the addresses in the logical address space

from 0 up and then dividing them into pages:

0x0

0x9FFF

1x000

2x000

3x000

4x000

5x000

6x000

7x000

8x000

9x000

Note: 0x1000 = 16
3 = 2

12 = 4096

21

CIS 3110 Operating Systems'

&

$

%

Each page is treated as a separate entity independent of all

the other pages:

0x000

1x000

2x000

3x000

4x000

5x000

6x000

0x000

0xFFF
1x000

1xFFF

2x000

2xFFF

5x000

5xFFF

22

CIS 3110 Operating Systems'

&

$

%

Conveniently, the size of a page is a power of 2. This makes

the translation from a (uniform) logical address to a

(fragmented) page address is simple:

b b

b b

PAGE OFFSET

Note that the offset field cannot exceed the page size

because only this many bits are extracted from the logical

address.

In paging, a logical address is a pair of numbers: the page

number and the offset within the page. This address is

commonly written as (p,d) (d is an abbreviation of

medieval–polish offset).

23

CIS 3110 Operating Systems'

&

$

%

Where to store a page?

Physical memory is divided into blocks of fixed size called

frames. The size of a frame is the same as the size of a

page (a frame is sometimes called a page frame). the

frames are numbered from 0 up (the whole main memory is

thus divided). A physical address is written as a pair (f,d),

where d is, as before, derived from medieval–polish.

We remember that there is only one physical memory in a

computer (it is the one you paid for) and the frames are

permanent and so are their numbers, i.e. the second frame

of the second gigabyte memory chip will always have the

same frame number = 1 + 217 if frames have a size of 213

bytes (1 GB = 230 bytes).

A page is stored in a frame ; it can be any frame because

they are all the same.

24

CIS 3110 Operating Systems'

&

$

%

Page table

The CPU hands to the MMU a logical address which is made

of two parts (p,d). The MMU must convert this pair into a pair

(f,d) where d = d (the sizes being the same).

So, the difficult part if to find the f corresponding to the given

p. This can be done using a table which has one entry for

each possible page number: the corresponding frame

number.

The page table resides in main memory (so that it is

accessible to the MMU or in special–purpose high–speed

memory (solely to make it faster).

A special control register contains a pointer to the beginning

of the page table of the running process (the kernel can also

put there a pointer to a fake table when it wants to). This

register, called PTOR is a control register accessible only in

kernel mode, so that user processes do not confuse the

MMU.

25

CIS 3110 Operating Systems'

&

$

%

The simplest form of paging involves a simple table lookup:

logical address:
p d

PTOR−→

p

276

276 d

Note that kernel loads the PTOR register during a context

switch. It may also be necessary to load it when accepting

an interrupt.

26

CIS 3110 Operating Systems'

&

$

%

Mercifully, a large part (most) of the logical address space

does not actually exist (to be precise: is empty). When this

address space is chopped into pages, there is no need to

worry about pages that do not exist.

A logical address space is divided into several parts (this

division varies from one programming environment to

another):

U area: system information associated with the process.

Never directly accessible to the process.

Text : the code of the process. Typically write–protected .

Data: the constants and global variables used by the

process. The constants are sometimes put in a separate

part called Const which is write–protected .

Stack : the dynamic stack of the process. Its size changes

during execution (starts empty). An old custom requires

that it occupies the highest addresses and grows

downward.

The rest nicknamed HEAP.

27

CIS 3110 Operating Systems'

&

$

%

The heap

This is the rest of the address space.It usually is very large,

much larger than all the other parts combined.

It is bounded from below by the end of the Data part (static)

and by the bottom (= top) of the stack (dynamically

changing).

It starts empty (i.e. has no contents). Gradually some

portions of it become allocated (through malloc/new); some

of these portions may become empty again (through

free/delete or implicit garbage collection in Java&Co.); they

may be reallocated afterwards, etc.

The heap also contains dynamically–linked libraries, i.e code

that becomes part of the logical address space on demand

(only when called).

The heap of a process in execution looks quite chaotic;

system designer wish it never existed, but have to accept its

necessity because there is no better way to implement

dynamic memory allocation and dynamic libraries.

28

CIS 3110 Operating Systems'

&

$

%

A typical logical address space

0x0

0xFFFFFFFF

U area

Text

Used Heap

Data

Stack
P

ro
te

ct
ed

Hidden

M
ai

nl
y

em
pt

y

M
ai

nl
y

em
pt

y

29

CIS 3110 Operating Systems'

&

$

%

Page table

To represent the properties of the various parts of the logical

address space, the page table have a few extra fields:

Frame V W

0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
0 0
1 1
0 0

0 0
1 1

V: Valid bit (also called Present). If this

bit is 0, the MMU will trigger an inter-

rupt when it attempts to access this

page table entry.

W: if this bit is a 1, the page can be

modified; otherwise, the MMU will

trigger an interrupt when the CPU at-

tempts to execute a store instruction

targeting this page.

C/W: (Copy–on–Write) will be dis-

cussed in due time (it is useful after

a fork()).

other bits : they exist.

30

CIS 3110 Operating Systems'

&

$

%

A reference to a vacuous place

The CPU is going to execute a machine instruction.

0xFFFFFFFF

0xFFFA0000

Used Heap

Stack

Frame V W

0 0
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 00xFFF9
1 10xFFFA
1 1
1 1
1 1
1 1
1 1

2843
911
42

45678
345

12345

CPU

PC

SP

MMU
PTOR

PUSH R1, – –SP

31

CIS 3110 Operating Systems'

&

$

%

A reference to a vacuous place

The CPU managed to subtract 1 from the SP which now has

the value of 0xFFF9FFFF. Now, it puts the value of register 1

in the MMU’s Data Register and 0xFFF9FFFF in the

Address Register .

The MMU will object to the address and reply with an

interrupt.

0xFFFFFFFF

0xFFF9FFFF−→

Vacuum
in frame 2843

Frame V W

0 00xFFF9
1 12843

911
42

45678
345

12345

MMU
PTOR

32

CIS 3110 Operating Systems'

&

$

%

If translation is unsuccessful, the MMU activates an interrupt

line leading to the CPU forcing the CPU hardware to interrupt

(unless interrupts are masked). The interrupt starts an

interrupt handler (in the kernel) which decides what to do

(not the MMU’s job to make decisions).

CPU MMU

0xFFF9FFFF

Data

interrupt

MMU

33

CIS 3110 Operating Systems'

&

$

%

After the interrupt

This interrupt, like every interrupt, is handled by the kernel.

The kernel determines it is a memory fault (page fault) and

notices that it was caused by an expansion of the stack,

something legitimate (within reasons).

The kernel looks for an unused frame. If it find one (say,

frame 5196), it fills it with zeroes and makes page 0xFFF9

stored in it (Why zeroes? How is the page stored in the

frame?). the page is available for reading and writing

(because it is part of the stack).

If there are no unused frames (and virtual memory is not

used) the faulting process is blocked until a frame becomes

free (the above operation is performed when that happens).

Eventually, the faulting process gets the CPU back. The

machine instruction that caused the fault is restarted (not

quite from the very beginning–Why not?) and this time it is

successful because the translation of 0xFFF9 yields 5196

and not a fault.

34

CIS 3110 Operating Systems'

&

$

%

0xFFFFFFFF

0xFFF9FFFF−→

zeroes

Frame V W

1 10xFFF9
1 1

5196
2843
911
42

45678
345

12345

MMU
PTOR

35

CIS 3110 Operating Systems'

&

$

%

Efficiency considerations

Any form of address translation will increase the total

memory access time.

It is not much of an issue in dynamic relocation where it can

be done using a fast circuit (only 2 registers and a simple

adder) are involved.

In paging it requires a table lookup; it done the simplistic

way, it doubles the time to access the target location which is

not acceptable.

Another problem is the size of a page table because it must

reside entirely in main memory (Why?). Considering that a

page entry is not shorter than 3 bytes, a page table occupies

well over 1MB of main memory (per process, whether ready

or not). Some partial fixes are: multilevel tables, inverted

tables, and other implementations of sparse arrays.

36

CIS 3110 Operating Systems'

&

$

%

Fast translation

The time needed to convert a page number into a frame

number can be reduced by using a dedicated associative

memory . In the context of paging an associative memory is

usually called a TLB (Translation Lookaside Buffer). It is a

small but very fast parallel circuit which performs

simultaneously a number of comparisons.

A typical TLB has 64 registers that are accessed in parallel.

Each register has a page field and a frame field:

page frame

V M RW

V is the valid bit; RW are two protection bits (actual

protection bits vary). The M bit indicates whether the page

was modified since it was placed in its current frame

(makes sense for VM systems only).

37

CIS 3110 Operating Systems'

&

$

%

TLB successful

CPU
p d

TLB

p f

f d

MMU

PTOR

Memory

38

CIS 3110 Operating Systems'

&

$

%

TLB unsuccessful

CPU
p d

TLB

2nd

f d

MMU

PTOR

1st

PTOR + p

Memory

f

39

CIS 3110 Operating Systems'

&

$

%

TLB–summary

Associative memory reduces the overhead of paging to

10–20%, an acceptable level. It is not possible to get a much

lower overhead because the product speed × size is

approximately fixed (within a reasonable budget). This led to

a peculiar trend to increase the page size (to keep the size

of the TLB down) with Vista ’s 4MB pages being the current

record–holder.

40

CIS 3110 Operating Systems'

&

$

%

Shared libraries

Pages can be shared by existing in several page tables.

If a block of pages (typically, a library) needs to be shared,

its paged are stored in only one physical location. They are

part of several logical address spaces, usually having

different page numbers in each space (necessary if they are

attached at runtime, the same way as shared memory).

519

29754

1765

2657

23
24
25
26

41
42
43
44

41

CIS 3110 Operating Systems'

&

$

%

Segmentation

In paging, the whole logical address space forms a single

unidimensional entity. There is an advantage in splitting the

logical address space into a number of independent units

called segments .

A segment is an independent address space. Each segment

consists of a linear sequence of addresses from 0 to some

maximum which differs from segment to segment.

Segments are created automatically by a compiler based on

the structure of the code being compiled, so that the

addresses forming a segment represent logically related

locations.

42

CIS 3110 Operating Systems'

&

$

%

A segment could be:

• The code of a function.

• An array.

• An object of a class (in OO languages).

• A table of constants (Const).

• The set of global variables (Data).

• The stack.

• Each memory area created using a malloc/new or a

shmget.

• A file buffer.

• A network buffer.

• Etc.

43

CIS 3110 Operating Systems'

&

$

%

Page vs. Segment

Segments are similar to pages: they represent a way of

fragmenting one logical address space into a number of

separate entities that can be handled with more ease.

The differences:

Size: pages have a fixed size while each segment has its

own size. Moreover, segments may grow (and shrink)

while pages cannot.

Contents : The contents of a page are accidental while the

contents of a segment are logically related. Thus,

segmentation provides superior protection and sharing

options.

Storage : pages fit into frames while segments have no

ready–made counterpart in physical memory. Big point

for paging.

44

CIS 3110 Operating Systems'

&

$

%

Segment independence

All the pages form a single entity while each segment is

separate. This makes a difference when modifying large

programs.

In a paging environment, changing a single line requires that

the whole program to be relinked again (and possibly even

recompiled). Sharing code is possible although it requires

that the code be generated in a special way (“reentrant”).

In segmentation, changes made to one function affect only

one segment and only this segment needs to be recompiled

and possibly relinked (there is a way to avoid static linking

altogether in segmentation).

Additionally, segmentation allows a process to create code

for itself to execute. for example, a process may create a

new segment, place some in it and then start to execute this

code. This is impossible in a paging environment.

45

CIS 3110 Operating Systems'

&

$

%

Segmentation—implementation

Segmentation could be implemented in essentially the same

way as paging with one big difference: segments are not of

fixed size and do not fit into any prefabricated physical

memory.

The segment table has one entry for each segment forming

the logical address space. The segments are numbered 0

and up.

segment offsetLogical address:

Segment table entry: address length P ?

The address field is a complete address 32 bits or 64 bits,

possibly with some lower–order bits omitted. The physical

address is created by adding the address to the offset

(regular addition is needed). The offset is first compared

with the length.

46

CIS 3110 Operating Systems'

&

$

%

A simplistic translation

CPU 3 d ?

3

0

5

0

0

0

2

0

4

0

1

0

A ℓ A+d

Memory

#3

47

CIS 3110 Operating Systems'

&

$

%

Real–life segmentation

The two–access–for–one approach is not realistic, hence

there is a need for hardware speedup of address translation.

Two approaches are used:

• Associative memory used in the same way as in paging.

It actually works better with segmentation because

processes seldom require many segments

simultaneously.

• Replace conventional addressing with indirect

addressing in which all addresses are represented in

terms of offsets to addresses stored in a number of

special–purpose registers.

48

CIS 3110 Operating Systems'

&

$

%

Segmentation with selector registers

Special–purpose registers are used in addressing: every

address is in the form:

(selector , offset)

where selector is a register pointing to an entry in a

Segment Table which looks approximately like this:
base

limit bits

The base is a regular physical address; it corresponds to the

beginning of the segment in physical memory.

To make this scheme fast, the selected ST entries are also

kept in a high–speed microprogrammable memory, so that

there is no need to access the actual Segment Table.

The overhead results from the need to load a new selector

every time a function is called or when a new data area

becomes relevant. It may lead to very poor efficiency in

extreme cases (same phenomenon as thrashing in Virtual

Memory).

49

CIS 3110 Operating Systems'

&

$

%

Paged segmentation

If one expects that segments will be large, it is natural to

divide them into pages; this yields a combination of the two

memory management methods.

Paged segmentation is useless without hardware support

which comes in the form of selector registers, similar to

those used in segmentation.

Pentium notes from Iowa

Paged segmentation in Pentium

50

http://www.cs.uiowa.edu/~ghosh/3-9-06.pdf
http://www.cse.iitb.ac.in/~cs431/student_slides/

