
CIS 3110 Operating Systems'

&

$

%

Scheduling with several CPUs

The term multiprocessing refers to multiple processors

not multiple processes. Likewise, multiprocessing means

using multiple CPUs.

Multiprocessor systems are divided into tightly–coupled and

loosely–coupled systems depending on whether they share

memory or not.

Multiprocessing is called asymmetric when one processor

had a different function than the others; when all the

processors are equal, multiprocessing is called symmetric .

1

CIS 3110 Operating Systems'

&

$

%

Early history

In 1961, Burroughs Corporation introduced the first

symmetric multiprocessor (Burroughs 5500) with four CPUs

and up to sixteen memory modules connected via a

crossbar switch (the first SMP architecture).

The popular and successful CDC 6600 was introduced in

1964 and provided a CPU with ten subprocessors

(peripheral processing units) one of which a dedicated

processor running part of the OS code (so it was

asymmetric).

In the late 1960s, Honeywell delivered the first Multics

system, another symmetric multiprocessing system of eight

CPUs.

All these systems were tightly coupled.

2

CIS 3110 Operating Systems'

&

$

%

Servers

Multiprocessing systems became less popular for a while.

They reemerged as network–based servers in the form of

loosely–coupled clusters, i.e. semi–independent computers

connected by a high–speed interconnect (network). Clusters

became fairly popular in the 1990s.

The main limitation of clusters was the communication part,

a single high–speed channel. It cannot deliver a bandwidth

similar to that of a memory bus as used in a tightly–coupled

system. Nevertheless, loosely–coupled systems persist (e.g.

Linux Beowulf clusters).

The introduction of multi–core processors gave a boost to

tightly–coupled multiprocessing and required operating

systems that could manage several processors.

3

CIS 3110 Operating Systems'

&

$

%

SMP Scheduling

Nowadays, all tightly–coupled multiprocessor systems use

SMP or Symmetric MultiProcessing an approach which

treats all the CPUs equally.

Scheduling processes in a tightly–coupled system is not

complex: the memory being shared, that a process can use

any CPU without noticing that it is not the same CPU as

before. This makes process migration (from CPU to CPU)

easy.

4

CIS 3110 Operating Systems'

&

$

%

Alas, hardware designers are under pressure to make the

hardware appear faster and faster. To achieve that, they

keep adding features that reduce the time to execute a

sequence of machine instructions.

These additions have an adverse effect on OS scheduling

because the essence of all the additions is to bring all the

needed memory as close to the CPU as possible. That

implies that that memory is taken farther away from the other

CPUs.

Scheduling on an SMP system introduces a new

consideration: the cost of dispatching a process in a

different CPU. This cost is not quite clear and is architecture

dependent. With architectural changes made yearly it is hard

to assess the usefulness of SMP for process scheduling.

5

CIS 3110 Operating Systems'

&

$

%

Multicore architectures

A typical multi–core system is made of a number of CPUs,

each with its own cache (L1, also L2 in i7), interconnected

via a shared bus to a common high–speed cache memory

(L3 cache, earlier L2) and, through it, to a common main

memory.

L3
M

A
IN

M
E

M
O

R
Y

L1

CPU0

L1

CPU1

L1

CPU2

L1

CPU3

Memory Bus

6

CIS 3110 Operating Systems'

&

$

%

The existence of private cache memories makes process

migration (from CPU to CPU) very costly. To reduce the

overhead of flushing a cache, the concept of processor

affinity was introduced. Although affinity is supposedly

expressed as a form of virtual gravity that can be overcome

by a superior force (pull or push), it is implemented (in Linux)

as a unconditional attachment to a particular CPU.

Affinity can be enforced at the process level (e.g. a process

wants to run only on CPU3) or at the interrupt level (e.g. IRQ

8 can only be executed on CPU1 or CPU2).

7

CIS 3110 Operating Systems'

&

$

%

IRQ affinity

Linux systems allow the user to limit processing of specific

interrupt types (IRQs) to a subset of all the available CPUs.

This has the effect of forcing parts of the OS to execute on a

subset of all the CPUs.

This is done by putting in file

/proc/irq/24/smp affinity a mask naming the

CPUs allowed to process IRQ 24 (replace 24 with your

favourite number if desired).

The mask is:

CPU 0 0001 1

CPU 1 0010 2

CPU 2 0100 4

CPU 3 1000 8

So, a mask of 6 names CPUs 1 and 2.

8

CIS 3110 Operating Systems'

&

$

%

Threads and parallelism

In shared memory multiprocessor architectures, such as

SMPs, threads can be used to implement parallelism.

Historically, hardware vendors have implemented their own

proprietary versions of threads, making portability a concern

for software developers.

Recently, a standardized C language threads programming

interface has been specified by the IEEE POSIX 1003.1c

standard. Implementations that adhere to this standard are

referred to as POSIX threads, or Pthreads.

Pthreads come in a package called pthreads for

UNIX–based systems. Win32 versions exist but seem

incomplete ((click here for details).

When you use pthreads you will need to specify that threads

are used by giving a compiler flage, such as:

• gcc -pthread code.c

• gcc code.c -lthreads

• or similar.

9

http://sourceware.org/pthreads-win32/

CIS 3110 Operating Systems'

&

$

%

Some references:

• Tutorial from LLNatLab: all the details, lots of colours

and code.

• YoLinux tutorial: lots of informative code.

• Another tutorial

• LUPG tutorial, long

These references contain working code written in C.

10

https://computing.llnl.gov/tutorials/pthreads/
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.humbug.org.au/talks/pthreads/
http://users.actcom.co.il/~choo/lupg/tutorials/multi-thread/multi-thread.html

CIS 3110 Operating Systems'

&

$

%

What is a thread

A thread is a portion of a process, a semi–process (another

term is lightweight process) that has its own stack, and

executes a given piece of code. Unlike a real process, the

thread shares its global variables with other threads (where

as for processes we usually have a different memory area

for each one of them).

A Thread Group is a set of threads all executing inside the

same process. They all share the same memory, and thus

can access the same global variables, same heap memory

(malloc()), same set of file descriptors, etc.

All these threads execute concurrently (using time slices) or

in parallel, if the system has several CPUs.

The pthreads API combines shared memory and

semaphores into one set of functions. Sadly, the standard

uses different names for these functions than the ones used

in POSIX XSI shared memory and semaphore standard.

11

CIS 3110 Operating Systems'

&

$

%

Example

Suppose we have the urge to execute the function do loop

twice.

void do loop(int me)

{

int i; /∗ counter, to print numbers ∗/

int j; /∗ counter, for delay ∗/

for (i=0; i<10; i++) {

for (j=0; j<50000 ; j++) /∗ delay loop ∗/

;

printf("'%d' - Got '%d'\n" , me, i);

}

exit(0);

}

12

CIS 3110 Operating Systems'

&

$

%

I can fork a process

// parent process starts execution in main

int main(int argc, char∗ argv[])

{

pid t child; // pid of the newly created child

if((pid = fork()) == 0) {

do loop(1) ;

else

do loop(2);

printf("If you see this message, say

huh?\n") ;

}

13

CIS 3110 Operating Systems'

&

$

%

Same using threads

The code changes because the pthread create system call

requires specific argument types.

// execution begins in main (single thread starts)

int main(int argc, char∗ argv[])

{

int thr id; // thread ID for the newly created thread

pthread t p thread; // thread’s structure

int a = 1; // thread 1 identifying number

int b = 2; // thread 2 identifying number

thr id = pthread create(&p thread, NULL, do loop,

(void∗)&a);

do loop((void∗)&b);

printf("If you see this message, say

huh?\n") ;

}

Must be compiled using cc -pthread or gcc -pthread .

14

CIS 3110 Operating Systems'

&

$

%

pthread create() has 4 arguments:

• The first is used by pthread create() to return to the

program information about the thread.

• The second is used to set some attributes for the new

thread. In our case we supplied a NULL pointer to tell

pthread create() to use the default values.

• The third is the name of the function that the thread will

start executing. It must return a void *.

• The fourth is an argument (or argument list) to pass to

the function. It must be of type void *.

15

CIS 3110 Operating Systems'

&

$

%

The function must be rewritten to match pthread create:

void∗ do loop(void∗ data)

{

int i; /∗ counter, to print numbers ∗/

int j; /∗ counter, for delay ∗/

int me = ∗((int∗)data); /∗ thread identifying number ∗/

for (i=0; i<10; i++) {

for (j=0; j<50000 ; j++) /∗ delay loop ∗/

;

printf("'%d' - Got '%d'\n" , me, i);

}

pthread exit(NULL) ;

}

pthread exit() terminates the thread (note that the main

process is a thread, too, so it also terminates with a

pthread exit).

16

CIS 3110 Operating Systems'

&

$

%

Memory sharing

All the pthreads forming one group share all their global

memory. That includes the memory placed on the heap (i.e.

acquired using malloc).

Whenever a thread calls a function, the local variables of

that function land on the private stack of the calling thread.

They are not accessible by other threads. In the do loop

function there will be two sets of private variables i, j, me;

one set for each thread. These variables will be different and

hence will have different values in each thread.

17

CIS 3110 Operating Systems'

&

$

%

Semaphores in threads

pthreads have semaphores which are called mutex es.

A mutex is declared like any other global variable:

pthread mutex mutex = PTHREAD MUTEX INITIALIZER ;

This gives a properly initialised semaphore.

The operations on these semaphores are very simple:

P(mutex) : pthread mutex lock(&mutex) ;

V(mutex) : pthread mutex unlock(&mutex) ;

18

CIS 3110 Operating Systems'

&

$

%

There is much more

pthreads support many other features:

• Waiting for events to happen or conditions to become

true.

• Joining threads (like a return).

• Thread cancellation.

19

