
CIS 3110 Operating Systems'

&

$

%

Process

A process is an instance of a program just like an object is

an instance of a class.

An OS exists solely to serve processes; without processes

there would be no need for an OS.

The OS is responsible for:

• Process creation (at the instigation of some other

process).

• Allocation of resources to a process.

• Sharing of resources (process management).

• Process termination.

• Inter–process communication (to some extent).

1

CIS 3110 Operating Systems'

&

$

%

History

The earliest computers had no notion of processes. The

“system” would be controlled by a simplistic operating

system which would allow only one program to execute.

The executing program could use all the computer

resources, although painful experience quickly placed limits

to what a user program could do.

The single user model led to very poor utilisation of

computer resources. No application needs all the the

resources of a computer system. Even if one came up with

an application that uses all the resources, most of them

would be used only some of the time and idle the rest of the

time.

2

CIS 3110 Operating Systems'

&

$

%

In the single–user model most resources were sitting idle

most of the time. Considering the outlandish prices of

computer equipment in those days, it became clear that the

only economically practical way is to share resources.

3

CIS 3110 Operating Systems'

&

$

%

Time sharing

The concept originated in the tourism industry; it has almost

exactly the same meaning as in Operating Systems.

Take a resource (hotel room, CPU) and a period of time.

Divide the period of time into n slices and give one slice to

every customer.

In tourism, the period of time (1 year) is divided into 52

weeks; each timeshare owner buys one week (a slice).

In OS, the time period is not fixed (because of a variable

pool of clients) but the slice is: some arbitrary small time

interval such as 200 ms (the duration of a slice used to be

important but is not anymore).

Timesharing works for resources that cannot be divided;

otherwise the simpler method of dividing the resource into

fragments is more practical (for main memory, disk space,

access to concerts, etc.).

4

CIS 3110 Operating Systems'

&

$

%

Improvements

If one process per computer did not work, something had to

be changed. Two different solutions were used:

• Multiply the machines: create several machines out of

one computer and give each machine to a process. the

machines so created do not exist physically, so they are

virtual machines.

• Multiply the processes: allow more than one process in

execution concurrently.

5

CIS 3110 Operating Systems'

&

$

%

Virtual machines

The basic idea is as follows: the real OS carves out of the

computer system a subset of its resources, time–shares the

other resources, calls the whole thing a virtual machine and

gives it to user process.

It does not work, because the user process needs some OS

to rely upon; hence the VM was given not to a user process

but to a guest OS which was then used by the user to run

the user process.

This approach has tremendous appeal to the expert: it

allows to do operating system programming in a safe way

and permits the co–existence of many different operating

systems on the same machine at the same time.

6

CIS 3110 Operating Systems'

&

$

%

Moreover

If I have a real OS (let it be called CP) that creates virtual

machines, I can put another copy of CP on one of the virtual

machines and let that copy create more virtual machines,

etc. Now I can create any number of computers out of one

real computer.

Another option is to combine virtual machines with the other

solution (many processes per system).

Yet another application: I want students to write a program

that executes in kernel mode. It is impractical to each

student a real computer to play with (note that these

computers cannot be shared by more than one student); but

I could give each a virtual machine (perhaps even many

virtual machines).

7

CIS 3110 Operating Systems'

&

$

%

Multiplying processes

Today’s computer are based on the concept of

multiprogramming, when several processes are in execution

“at the same time” (or rather seem to be). If a system has

only one CPU, it can execute only one instruction at a time

and thus serve at most one process at a time, so it is clear

that multiprogramming is an illusion, a virtual reality.

On a single–processor machine several devices operate in

parallel with the CPU (this is true parallelism) but no two

processes can use the same CPU in parallel. Processes

share the CPU (and many other resources) by getting

access to them for only part of the time; this is called

concurrent, as opposed to parallel, access.

8

CIS 3110 Operating Systems'

&

$

%

Concurrent vs. parallel

In the human world there is no need to distinguish between

the terms concurrent and parallel (or its variant,

simultaneous).

The distinction is of great importance in any virtual reality

simulated within a real world.

Consider the execution of machine instructions by two

processes:

Parallel execution takes place when each process uses a

different CPU; hence both can execute their code

simultaneously (at the same instant of universal time).

the other.

Concurrent execution takes place when the lifespans of the

two processes overlap, i.e. there is a moment in time

when both processes are in progress (each having

already executed some, but not all, of its code).

9

CIS 3110 Operating Systems'

&

$

%

Concurrent vs. parallel

Concurrent is weaker then parallel because everything that

is parallel is also concurrent but not the other way around.

Consider two courses taught at a sane university in the

Winter 2009 term. They are taught concurrently (from

January to April). Are they taught in parallel?

Yes if they both are taught MWF 11:30–12:20. Clearly that

implies they are taught in different classrooms (sane

university).

No if one is taught MWF 11:30–12:20 and the other MWF

1:30–2:20. Note that they use the same classroom but

being active at different times prevents them from being

parallel.

10

CIS 3110 Operating Systems'

&

$

%

Sharing

The OS allows several processes to execute concurrently. It

makes the OS responsible for letting these processes share

peacefully the computer resources. The resources are:

• CPU.

• Main memory.

• File system.

• Network(s).

• Peripherals, including two special ones: standard input

(keyboard?) and standard output (monitor?).

11

CIS 3110 Operating Systems'

&

$

%

CPU

The CPU can be shared in only one way: a process is given

the right to use the CPU for a preset amount of time; the

CPU is then taken away from that process and given to the

next process. The action of taking the CPU away is

performed by the OS as a result of a timer interrupt.

It is obvious that manipulating the timers must be a

privileged activity or an process may hijack the CPU forever.

12

CIS 3110 Operating Systems'

&

$

%

Main memory

Originally, memory was simply divided into blocks called

partitions, each block given to a different process.

Many improvements were made until virtual memory solved

the problem:

• Every process receives the maximum possible address

space (on traditional hardware, 232 bytes). This address

space does not exist anywhere as an entity. It is divides

into small blocks called pages; pages have a fixed size

(typically 2048 bytes with 1024, 4096 also common).

• The virtual memory is simulated by real memory which

is divided into blocks of the same size as pages (called

frames).

• All the pages reside on a secondary storage device

(disk) if they exist at all. Copies of them are kept in main

memory when needed.

• When a process needs a page that is not in main

memory, a frame is found to hold the page.

This is a very simplified description; a more adequate

13

CIS 3110 Operating Systems'

&

$

%

presentation will follow in due time.

14

CIS 3110 Operating Systems'

&

$

%

File systems

This is totally effortless–all that needed to be done was to

add the concept of file ownership and access rights.

15

CIS 3110 Operating Systems'

&

$

%

Networks

Fortunately, networking software was introduced much later

than other OS code. Right from the start it was

well–structured (divided into the famed 7 layers). A process,

whether on a single–process or a multi–process machine,

interacts only with the top levels of networking software

(TCP/UDP) which give the impression that the process is the

one and only process around.

16

CIS 3110 Operating Systems'

&

$

%

So, what is a process?

The definition (a program in execution) means nothing to an

OS. Inside the kernel, a process is a data structure called

Process Control Block pointed to by a Process IDentifier. A

PCB is unique in the system and it represents the identity of

the process.

There are two ways to store PCBs, giving way to two sets of

terms:

• A system–wide Process Table is made of Process

Table Entries each of them containing one PCB.

• Each process has a block of memory called the u area

associated with it. The u area contains the PCB and

other system information describing the process and its

environment.

Both are functionally identical.

17

CIS 3110 Operating Systems'

&

$

%

The u area

This area contains all the information about the context of a

process. It is made of:

Identity: pid, ppid, gid.

Context switch information: registers, PSW, pointer to

segment (or page) table.

Scheduling information: priority, usage statistics (CPU,

memory faults, etc.)

File system information: open files, current directory, etc.

Signal information: vector of pending signals, vector of

signal handler addresses, signal mask.

Context information: shared segments, semaphores, etc.

Per process kernel stack: sometimes the kernel executes

in the context of a process (i.e. does not perform a full

context switch before proceeding). Then it uses this area

to accept interrupts.

18

CIS 3110 Operating Systems'

&

$

%

Moral

The kernel thinks that a process is a PCB.

Note that varies drastically from what a process really is

because in reality a process is a collection of memory areas

including the code of the process, etc.

19

CIS 3110 Operating Systems'

&

$

%

Process creation

A new process is created by an existing process through a

system call:

• In Windows a single system call CreateProcess creates

a new PCB and starts the process with code taken from

a file. The child never shares any memory (code or data)

with the parent.

• In Unix process creation is divided into two separate

steps: creation of a PCB (fork()) and loading the child’s

code from a file (exec()) which is not a required part of

process creation.

20

CIS 3110 Operating Systems'

&

$

%

Process creation in Unix

The system call exec does not create a new process; it

replaces the code of an existing process with code taken

from an executable file (traditional OSs call this loading).

Consider the code:

printf("A...\n");

execve("/misc/starsandstripes" , ...) ;

printf("B...\n") ;

This code will display A and then start playing some strange

music. B will never be displayed.

21

CIS 3110 Operating Systems'

&

$

%

Process creation in Unix

Unix has one system call to create a process: fork() (it exists

in two versions, the other being vfork()).

When invoked, fork() makes an exact copy of u area of the

current process. This gives the new process a new identity

but retains all the other attributes of the original process

(“parent”).

One aspect of fork that is somewhat tricky is its handling of

the address space: the space is not copied, only the

segment/page table is. Both the original and the copy of the

table has all the entries marked Copy–on–Write which will

be discussed in due time (Memory Management).

The alternative form vfork does not make a copy of the

segment table and puts in the new PCB a pointer to the

parent’s table (this way both the parent and the child share

the same physical memory). Unix expects the child to

replace immediately its memory image using exec and

guarantees bad results if that is not done.

22

CIS 3110 Operating Systems'

&

$

%

Process hierarchy

Every process, except process 0, is created by the fork()

system call.

When the system is booted, a simple process image is

“manually” created and is given the pid of 0.

This process contains two instructions: a fork() followed by

an exec().

The fork creates process 1 (init) which becomes the

ancestor of all other processes. The exec that follows

changes the code of 0 into the swapper (see lyrics for a

musical explanation).

init goes through all the list of all devices of type tty and forks

a dæmon process for each of them called getty.

23

http://poppyfields.net/filks/00216.html

CIS 3110 Operating Systems'

&

$

%

Shells

A terminal dæmon waits for someone to log in. when that

happens, getty forks a process that immediately execs the

file given as default shell in the /etc/passwd file starting an

interactive interpreter that accepts input form the keyboard

(this input is in a special programming language, such as

bash) or a GUI.

24

CIS 3110 Operating Systems'

&

$

%

Process termination

Whether a process terminated willingly or not, chances are

good that the process did not release all the resources it

held.

These resources are released by the OS with the use of the

u area. some resources cannot be released automatically

(e.g. file locks) and may eventually create deadlocks.

25

