
CIS 3110 Operating Systems'

&

$

%

CPU and OS

The CPU has always been the most important and the most

coveted resource in a computer system.

Since the introduction of multiprogramming, it is the norm

that there are several processes competing for the right to

use the CPU. When the OS gets the CPU (for whatever

reasona) it performs the needed actions and tries to give the

CPU back to a process.

Thus, the last instruction of every OS module is an

unconditional goto to a dedicated handler called the

scheduler . If the system has more than one CPU the

scheduler may exist in several copies.

aSome interrupt handling excepted.

1



CIS 3110 Operating Systems'

&

$

%

Scheduler in action

A scheduler can be non–preemptive, in which case if simply

returns the CPU to the process that was using it last, if the

process is ready. If the process is not ready anymore, a

non–preemptive scheduler acts like a preemptive one.

When a preemptive scheduler is invoked it performs two

actions:

Picks a process : only ready processes are considered. If

there are several ready processes, the OS pick the most

worthy of them using a scheduling algorithm.

Gives the CPU to the selected process : this operation,

called dispatching, involves a full context switch.

In the past, a great deal of work has gone into devising

clever and efficient scheduling algorithms.

2



CIS 3110 Operating Systems'

&

$

%

A bit of history

In the early days of computing, scheduling was done

manually (only one process was served at a time).

When multiprogramming was introduced (in OS/360 or

maybe earlier) it became necessary to automate this task.

When interactive users appeared w(with timesharing) the

scheduling algorithm became one of the most important

components of an OS.

the relevance of scheduling came to an abrupt end when

personal computers became widespread. Today’s operating

systems are prepared to handle many processes

concurrently, but they face an average ready queue size that

is close to 0 and seldom exceeds 1. In such circumstances

any correct decision is perfect.

Scheduling remained relevant in two specialised domains:

supercomputers and network servers. Both domains are

populated by CPU–hungry processes that have to be forced

to share the CPU.

3



CIS 3110 Operating Systems'

&

$

%

REDMOND, WAIn what CEO Bill Gates called ”an

unfortunate but necessary step to protect our intellectual

property from theft and exploitation by competitors,” the

Microsoft Corporation patented the numbers one and zero

Monday.

At a press conference beamed live to Microsoft shareholders

around the globe, Bill Gates announces the company’s

patenting of the binary system.

With the patent, Microsoft’s rivals are prohibited from

manufacturing or selling products containing zeroes and

ones–the mathematical building blocks of all computer

languages and programs–unless a royalty fee of 10 cents

per digit used is paid to the software giant.

4



CIS 3110 Operating Systems'

&

$

%

The sad life of a scribe

Before proceeding, let us examine the prospects of two

beginner processes: Crunch and Scribe, both exec’ed into

being at the same time:

Crunch : reads in one integer n, computes the smallest

prime number larger than 2
n and prints its last 10 digits.

The central part–the computation–takes about n6µs.

Scribe : reads in two strings F1 and F2 and copies file F1

onto file F2 (assuming F1 exists). The central part–the

copying–takes about 5ms per block of data (let the

block be 1 KB).

5



CIS 3110 Operating Systems'

&

$

%

Both processes start at almost the same time (why not

exactly the same?). The OS gives the CPU for 1 second; the

longest waiting process gets it (that’s fair!).

The value read by Crunch is 20; the filename provided to

Scribe names a file of 100 blocks. Given these inputs,

Crunch needs about 70 seconds to finish (in an ideal world)

while Scribe should be done after about a second (100

reads+100 writes).

Alas, reality does not match theory. Crunch will indeed finish

in less than 70 seconds but the poor Scribe will take slightly

longer than Crunch in spite of needing only a second of disk

i/o time and practically no CPU time at all.

6



CIS 3110 Operating Systems'

&

$

%

Who stole the kishka?

To find the cause of the strange conspiracy against the

Scribe process, we might start by decreasing the time slice

from 1s to 100ms. With this timeslice Crunch sees no

difference in speed while Scribe finishes in about 20

seconds.

Reducing the timeslice even more drastically, to 10ms, will

see Scribe finish in slightly over 2 seconds while the time

taken by Crunch still is around 70s.

The problem must therefore be with the time that Scribe

spends waiting for the CPU. But Scribe doesn’t need the

CPU!

7



CIS 3110 Operating Systems'

&

$

%

The CPU is needed for everything

When a process wants to execute a system call (any system

call) it must have the CPU to do so. This is because a

system call is a CPU instruction.

Crunch

Scribe
timestart

disk cpu

Through a magnifying glass:

Crunch

Scribe

start

disk cpu idle

8



CIS 3110 Operating Systems'

&

$

%

Moral

The two processes behave very differently:

Crunch : needs the CPU and practically nothing else. Its

execution time is proportional to the speed of the CPU.

Such processes are called CPU–bound.

Scribe : does only input–output and needs the CPU only to

execute the next system call. Its execution is

proportional to the access time to the i/o device needed

(disk in most cases) and the speed of the CPU is of no

relevance. such processes are called I/O–bound.

It should be clear that while the speed of the CPU matters

little to an I/O–bound process, the availability of the CPU is of

great importance.

9



CIS 3110 Operating Systems'

&

$

%

Scheduling criteria

The main goals of a general–purpose scheduling algorithm:

Fairness : comparable processes should get similar

treatment.

Balance : keep in use as many resources as possible

(probably weighed by their importance).

Response time : take as little time as possible to start a

process.

Predictability : it is increasingly important that the variance

(departure from average) of scheduling behaviour be

limited. This is in interactive systems (response time),

real–time systems especially involving audio–visual

aspects (they are synchronous).

With the above goals duly noticed, other criteria are used,

mainly CPU utilisation; this is a leftover from prehistoric days.

10



CIS 3110 Operating Systems'

&

$

%

Scheduling algorithms

Many algorithms were used in the days of large mainframes.

These included:

First–Come–First–Serve : a process is given the CPU for

an infinite timeslice. When a process gives the CPU

away (only voluntarily) it is placed at the end of the

ready queue, as if it was just created. The most hated

scheduling policy of all.

Priority scheduling : this policy exists in 2 forms: static

priorities (as good as feudalism was) or dynamic

priorities (also known as priorities with aging) which is

fairly reasonable.

Round Robin : this is the most commonly used scheduling

algorithm. It has no serious weaknesses.

Multilevel Feedback Queues : A combination of RR and

dynamic priorities where priorities are derived from the

past behaviour of the process. Good but complex and

easy to dupe by enterprising students.

11



CIS 3110 Operating Systems'

&

$

%

Round Robin

This is “one of the oldest, simplest, fairest, and most widely

used algorithms” according to Tanenbaum.

The process at the front of the ready queue is given the CPU

for a fixed timeslice (also called quantum). When the

timeslice expires, the process goes to the end of the ready

queue.

The time quantum is the only parameter of RR. When too

large, RR loses its predictability; when too small, it wastes

much CPU time on context switches (but is excellent in other

respects).

The perfect time quantum? Nobody knows, but the duration

of a disk i/o operation seems to be a logical lower bound

(5–10 ms).

12



CIS 3110 Operating Systems'

&

$

%

Feedback queues

The general idea is to give priority to processes that need

the CPU mostly to issue input–output system calls (these are

interactive processes and i/o–bound processes).

The scheduler maintains multiple ready queues ordered

from highest Q0 to lowest Qn priority (n > 0).

Each queue is a RR queue with a timeslice that increases

with the queue number (typically, timeslice of Qi is twice the

length of the timeslice of queue Qi−1).

13



CIS 3110 Operating Systems'

&

$

%

When the CPU is to be given away, the scheduler picks the

first process from the highest non–empty queue and

dispatches it for a time equal to the timeslice of that queue.

Suppose that the CPU is given to P from queue Qi. The

timeslice is ti.

Three possibilities exist:

• P uses the whole timeslice ti. It is demoted to the next

lower queue, Qi+1

• P relinquished the CPU after a period of time less than

ti/2. P becomes blocked; when it becomes ready

again, it is placed at the end of Qi−1 (promoted) if

i 6= 0.

• P relinquished the CPU after a time period no shorter than

ti/2. P becomes blocked; when it is ready again, it is placed

at the end of the queue that it came from, Qi.

This algorithm promotes processes that use resources other

than the CPU which makes sense, as it keeps the whole

system busy, not just the CPU.

14



CIS 3110 Operating Systems'

&

$

%

Linux scheduler

Some references for the truly interested:

• The basic paper by Josh Aas

• An overview by Amit Gud

• Another site with the basic paper by Josh Aas

• Paper on process management in Linux

• Anonymous lecture notes from Freie Universität Berlin

15

file:www.faqs.org/docs/kernel_2_4/lki-2.html

