
CIS 3110 Operating Systems'

&

$

%

Process management

The main task of the OS (as a resource manager) is to give

the CPU to a process that wants it. How does it know that a

process wants the CPU?

The OS keeps track of the current state of each process

(usually in the PCB of the process). The state of a process

changes as a result of the activities of the process itself or

as a result of other events that originated elsewhere.

The basic states of a process are:

Running this process has control of the CPU.

Ready this process is ready to use the CPU but does not

have control over it at this time.

Blocked this process is waiting for some external event to

happen or for some service to be provided to it. At the

present time it is not capable to use the CPU because it

needs something else first.

1



CIS 3110 Operating Systems'

&

$

%

Running

Ready Blocked

1
2

3
4

The transitions between states are:

1. A running process loses the CPU as a result of an

interrupt. After processing this interrupt, the OS gives

the CPU to another process.

2. The OS decided to give the CPU to a process and chose

this one.

3. The process asked for something that could not be

provided instantly (input/output, synchronisation with

another process, etc.).

4. The process received whatever it was asking for.

2



CIS 3110 Operating Systems'

&

$

%

Running

Ready BlockedNew

Done

1
2

3

0 4

5

The two new transitions are:

0 A new process was created by fork (or similar).

5 The running process called an exit or the execution of exit was forced upon the

process by a signal.

3



CIS 3110 Operating Systems'

&

$

%

Process termination

Whether a process terminated willingly or not, chances are

good that the process did not release all the resources it

held.

These resources are released by the OS with the use of the

u area. some resources cannot be released automatically

(e.g. file locks) and may eventually create deadlocks.

4



CIS 3110 Operating Systems'

&

$

%

exit

The termination of a process is performed by a function

called exit; this function is called internally by exit and in

many default signal handlers. It is also invoked directly by

the SIGKILL signal.

exit performs the following:

• closes any open file descriptors or handles.

• notifies the parent that the calling process is to be

terminated if the parent process is blocked in a wait() or

waitpid() call,

• If the parent process of the calling process is not inside

a wait() or waitpid() function, exit saves the exit status

code for return to the parent process when the parent

process calls wait() or waitpid().

• Terminating a process does not directly terminate its

children. exit assigns a new parent process ID (typically

init, i.e. 1) to the children of a terminated process.

• A SIGCHLD is sent to the parent of the calling process.

Note that the default action for SIGCHLD is SIG IGN.

5



CIS 3110 Operating Systems'

&

$

%

The zombies are coming to town

If the parent process has not expressed interest in the status

of the (defunct) child, the child’s PCB will have to be kept

around until the parent dies (in case the parent issues a

wait() call).

This may lead to the process lingering as a zombie for a long

time (the state of such process is either defunct or plain

zombie).

Note that init periodically calls wait() to dispose of orphaned

zombies.

6



CIS 3110 Operating Systems'

&

$

%

Worse than a zombie

exit cancels any outstanding input/output if possible. If the

operation is not cancellable (e.g. block i/o), it is executed as

if the call to exit had not yet occurred. Note that if the

operation is not cancellable and does not complete, the

exiting process will remain in a semi–zombie state forever,

always claiming to be exiting (this state is marked D; it is

labelled exiting).

There is no way to dispose of a process in this state

because its wait for i/o is not interruptible. You cannot kill it

and it will not go away on its own because it is never ready

so it will never get the CPU.

If you are tired of seeing a D process around, all you can do

is to reboot the system.

7



CIS 3110 Operating Systems'

&

$

%

Other side effects

exit also tries to get the exiting process out of any

commitments it made to shared operations (semaphores,

message queues, locks, etc.). This is not always possible to

do it in a correct manner, so other processes may block

forever as a result.

8



CIS 3110 Operating Systems'

&

$

%

How does a process block?

A running process may want to get a resource. To get it, it

must issue a system call to the OS. If the resource allocation

requires some action, the process will lose the CPU and will

have to wait until the resource is allocated or the request is

denied.

Any process may be turned into a blocked process by an

external signal SIGSTOP.

9



CIS 3110 Operating Systems'

&

$

%

How does a process become ready?

A new process is not ready for execution until its creation

stage (fork) is done. Then it becomes ready to use the CPU.

A process in progress (which already used some CPU time)

becomes ready in two ways:

• It was running and the CPU was taken away from it. This

happens in all contemporary systems: the CPU is

allocated to a process for a ti,e slice after which the cpu

is taken away and given to another process. The part of

the OS which manages CPU allocation is called a CPU

scheduler.

• A blocked process is waiting for a resource or an event.

When that resource is granted or the event takes place,

the process no longer has any reason to wait. It then

becomes ready again and becomes eligible to get the

CPU.

10



CIS 3110 Operating Systems'

&

$

%

Note that eligible means just that: there is no guarantee that

a process will get the CPU immediately after becoming ready.

Note also that a blocked process may be waiting for more

than one condition to become true before it may continue.

All these conditions must be met before the process

becomes ready again.

11


