
CIS 3110 Operating Systems'

&

$

%

Virtual memory

The size of virtual memory is much greater than the size of

real memory banks attached to the MMU. Consequently,

some memory requests originating from the CPU cannot be

satisfied by the MMU and result in memory faults (Page

faults or Segmentation faults) which are interrupts triggered

by the MMU when it has no direct access to a requested

memory location.

Virtual memory makes sense only if the logical address

space is fragmented into small chunks that can be moved

around independently; in practice this implies paging or/and

segmentation. Paging is particularly well suited for virtual

memory because the size of a page is fixed and can be

made compatible with the size of a disk sector (making I/O

transfer as fast as possible).

Hence, we will focus on VM implemented using paging.

1

CIS 3110 Operating Systems'

&

$

%

Virtual memory is not imaginary

In a virtual memory system, a page belonging to the logical

address space of a process can be stored:

In main memory : if it is there, it is immediately accessible.

On a swap device (hard drive): if it is on a drive, it has to

be brought into main memory before it can be accessed.

Nowhere : it does not exist. It can be accessed immediately,

if accessing it is legal at all; otherwise accessing it

results in an error.

If a page is in main memory, it is quite possible that another

copy of it exists on disk. This may lead to an increase in

efficiency.

2

CIS 3110 Operating Systems'

&

$

%

The basic idea behind virtual memory is to extend the use of

memory protection offered in paging. Page tables have

special entries informing that a page is not accessible or

does not exist.

Virtual memory simply replaces the term does not exist

with exists elsewhere or nowhere at all .

3

CIS 3110 Operating Systems'

&

$

%

Page table

Frame V W

0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
0 0
1 1
0 0
1 1
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1 V: Valid bit (also called Present). If this

bit is 0, the MMU will trigger an inter-

rupt when it attempts to access this

page table entry.

W: if this bit is a 1, the page can be

modified; otherwise, the MMU will

trigger an interrupt when the CPU at-

tempts to execute a store instruction

targeting this page.

C/W: (Copy–on–Write) will be dis-

cussed in due time (it is useful after

a fork()).

other bits : they exist.

A reference to an entry with the Valid bit off results in a page

fault. This allows the OS to implement the most popular form

virtual memory management: demand paging .

4

CIS 3110 Operating Systems'

&

$

%

Demand paging

A system that brings (or creates) pages only when they are

immediately needed is said to use demand paging.

Demand paging operates as follows:

• A process starts with no pages residing in main memory.

• The first memory reference made by a process causes a

page fault. This fault causes the OS to either bring the

needed page from the swap device (if it is there) or to

create a zero–filled page. The first fault definitely will

bring a page of code from the swap device (Why?).

• Subsequently, if a page fault is triggered in a legal

context, the OS will either bring the page from the swap

device or create a zero–filled page (as the

circumstances dictate).

• If enough pages are brought into main memory, the

supply of frames will be exhausted. When the OS needs

a frame to accommodate a page fault and there are no

free frames, a non–empty frame is picked and emptied

(done by copying it to the swap device).

5

CIS 3110 Operating Systems'

&

$

%

A reference to a vacuous place

The CPU is going to execute a machine instruction.

0x9A8220→

Frame V W

1 1
0 0
0 0
0 09A7
0 09A8
0 09A9
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1

2843
911
42

45678
345

12345

1 18880x417

CPU

0x417132PC

r7

r8

0x9A8200

20

MMU
PTOR

ST r1, (r7) + r8
0x417000

6

CIS 3110 Operating Systems'

&

$

%

the road to a page fault

The following sequence of steps takes place:

1. The CPU attempts to fetch the machine instruction

pointed to by the PC by handing the address 0x417132

to the MMU.

2. Page 0x417 is present, so the MMU fetches the contents

of location 0x888132 from memory. The instruction is

fetched without problems.

3. The CPU interprets the instruction and prepares

arguments. (r7)+r8 is computed (equals 0x9A8220) and

the execution of the instruction starts: the contents of r1

are placed in the Data Register of the MMU and

0x9A8220 is placed in the Address Register of the MMU.

4. The MMU fetches location PTOR + 0x9A8 and finds the

page table entry invalid. It interrupts the CPU.

5. The CPU suspends the current instruction (page fault),

save the PC (etc.), and jumps to the Page Fault

Handler .

7

CIS 3110 Operating Systems'

&

$

%

A context switch is unavoidable (Is it really?), so the running

process is pushed out of the CPU.

PF Handler0x024400

Frame V W

1 1
1 1
1 1
1 1
1 1
1 1

21
22
23
24
25
26

CPU

0x024400PC

r7

r8

0x9A8200

20

MMU
PTOR

The cause and context are determined. Two outcomes:

• it is a legitimate fault: a reference to a legal page that

happens not to exist in main memory. The Page Fault

Handler continues.

• It is a memory protection violation of some sort. An

signal is prepared; the process is marked ready and the

Scheduler is invoked.

8

CIS 3110 Operating Systems'

&

$

%

The Page Fault Handler in action

1. An empty frame is located. If there are no empty frames,

the Page Replacement algorithm is invoked; when it is

done, there is a free frame. Next, the frame will be filled.

2. The current location of the desired page is found. Two

possibilities:

• It is on the swap device (disk). An asynchronous

disk i/o transfer (disk→memory) is initiated.

• It never existed. The frame is filled with zeroes. the

faulting process is marked ready .

3. The page table of the faulting process is updated. The

process is marked blocked (for i/o).

4. The handler jumps to the Scheduler which performs a

context switch, giving the CPU to a ready process.

If a paging i/o operation is initiated, it will eventually

terminate. If it terminates unsuccessfully, suitable steps are

taken. Otherwise, the process is marked ready.

9

CIS 3110 Operating Systems'

&

$

%

Some time later

Sooner or later, the Scheduler will give the CPU to the

process. The interrupted instruction is continued:

0x9A8220→

Frame V W

1 1
0 0
0 0
0 09A7
1 19A8
0 09A9
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1

444

2843
911
42

45678
345

12345

1 18880x417

CPU

0x417132PC

r7

r8

0x9A8200

20

MMU
PTOR

ST r1, (r7) + r8
0x417000

10

CIS 3110 Operating Systems'

&

$

%

A variation

0x9A8220→

Frame V W

1 1
0 0
0 0
0 09A7
0 09A8
0 09A9
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1

2843
911
42

45678
345

12345

0 00x417

CPU

0x417132PC

r7

r8

0x9A8200

20

MMU
PTOR

ST r1, (r7) + r8
0x417000

11

CIS 3110 Operating Systems'

&

$

%

Another variation

0x9A8220→

Frame V W

1 1
0 0
0 0
0 09A7
1 09A8
0 09A9
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1

444

2843
911
42

45678
345

12345

1 18880x417

CPU

0x417132PC

r7

r8

0x9A8200

20

MMU
PTOR

ST r1, (r7) + r8
0x417000

12

CIS 3110 Operating Systems'

&

$

%

Page replacement

When a free frame is needed as a result of a page fault, the

kernel will look for one:

• It starts by trying to find a free frame. A frame may be

free because a process just terminated (and all its

pages became irrelevant, releasing the frames holding

them) or because the system was booted recently and

some frame have not been used so far. The first free

frame found is used (they are all identical, so the first is

as good as the second, etc.).

• If there are no free frames, the kernel calls in the Page

Replacement algorithm; this algorithm will create a free

frame by confiscating it. The PR inspects the occupied

frames and picks one of them. It removes from it the

page occupying it (called the victim) thus making it free.

The PR always succeeds, even if the price is high (see

thrashing).

13

CIS 3110 Operating Systems'

&

$

%

We say that PR is local if it checks only frames belonging to

the faulting process; otherwise, it is global . Global PR is

more efficient, but is also more dangerous, because of

thrashing and because it creates a security threat (I know

how to steal all your frames).

When a process starts, it is given a number of frames. In

global replacement this number usually is 1 (containing the

entry point to the program) but does not matter because the

number will change in time. In local replacement the number

of frames given to a process is of crucial importance but is

hard to guess.

Most systems use local replacement in the short term,

adjusting the number of frames allocated to each process

from time to time (based on page fault rates).

14

CIS 3110 Operating Systems'

&

$

%

Page replacement

Several PR algorithms are used:

Not–Used–Recently :

Second Chance (Clock) :

Least–Recently–Used :

Aging (pseudo LRU :

Belady’s anomaly : this is not an algorithm but a strange

behaviour that might be exhibited by a process.

15

CIS 3110 Operating Systems'

&

$

%

Not–Used–Recently

The NUR algorithm has not been used recently because it is

not very efficient. It is, however, cheap to implement without

any special–purpose hardware.

The fate of pages in main memory is decided in rounds . A

page may be swapped out if it had not been used during the

latest round.

A soft timer is used to indicate to the kernel the beginning of

a new round. When it ticks, all the entries in the current page

table are marked invalid but are left otherwise intact (in

particular, the frame number is kept, with 0 meaning “not

there”).

The duration of a round is a mysterious parameter usually

set to 1

60
s out of respect for the good old days.

16

CIS 3110 Operating Systems'

&

$

%

During a round, the NUR algorithm behaves as follows:

• When a page fault occurs, NUR checks whether there is

a frame number in the entry (i.e. not 0):

– If so, the V bit is set and the faulting instruction is

restarted (this is called a minor fault because it

takes little time to handle).

– If not so, this is a major page fault and NUR picks a

victim: any entry in the page table with the V bit off

and a legal frame number shows a suitable victim.

The victim page is booted out and the faulting page

gets the vacated frame.

• When a memory reference does not trigger a fault, we

happily proceed on.

Note that NUR can only be local (Why?).

17

CIS 3110 Operating Systems'

&

$

%

Second chance (Clock)

This algorithm is better than NUR but it requires a bit of extra

hardware: an extra bit in each page table entry (the

Reference bit). There are no rounds.

Whenever a page table entry is referenced (used for

translation), the R bit is set.

A pointer (hand) points to the page table entry that will be

the first pick in the search for a victim. the hand moves (in a

circular motion) through the whole page table, so SC is fair.

18

CIS 3110 Operating Systems'

&

$

%

When a page fault occurs, SC performs the following step in

a loop:

while(PTE[hand].R) {

PTE[hand].R = 0 ;

hand = (hand+1) % SIZE ;

}

This loop is bound to end; when it ends, hand points to the

PTE of the victim page.

19

CIS 3110 Operating Systems'

&

$

%

Least Recently Used

LRU is considered the “best” practical PR algorithm; it is too

expensive to be implemented in full in normal computers, but

cheaper variants of it are predominant.

LRU calls for victimising the page that was the least recently

used, meaning that it has remained unused the longest

(among the pages residing in frames).

One way to implement LRU is to have a timestamp field as

part of every PTE. whenever the PTE is referenced, the

timestamp is updated. When a victim is needed, the page

with the oldest timestamp is it.

Slightly cheaper ways exist but none is cheap enough, so

LRU remains an academic algorithm.

20

CIS 3110 Operating Systems'

&

$

%

Aging

An 8–bit shift register is added to every PTE. Time is divided

into rounds (as in NUR), with a soft timer ticking every, say,
1

60
s (1

50
s in Europe).

These rules apply:

• Every time a PTE is referenced, the leftmost bit of the

shift register is set to 1.

• Every time the timer ticks, all shift registers are shifted 1

bit to the right.

• When a page fault occurs (all page faults are major in

LRU), the PTE with the smallest value in its shift register

is the victim (the registers are treated as unsigned

integers).

If there is a tie, any tiebreaker can be used.

21

CIS 3110 Operating Systems'

&

$

%

Belady’s anomaly

Some PR algorithms (very rarely) exhibit a peculiar

behaviour: they generate more page faults if they give

more frames to a process.

Example: a process is made of 5 pages which it accesses in

this order:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

If one uses a local FIFO page replacement algorithm, there

will be 10 faults if the process is given 4 frames and 9 if the

process is given 3.

22

CIS 3110 Operating Systems'

&

$

%

Additional concepts

A few (of many) issues related to virtual memory:

I/O interlock : Frames involved in a paging i/0 transfer

cannot be touched.

Thrashing : In a worst–possible scenario, every page

reference may cause a page fault. If anything similar

happens, the system will be practically idle with the

exception of a frantically working hard drive busy moving

pages back and from the swap device.

Copy–on–Write : When a writable page is duplicated, it will

eventually need to be physically copied. The C/W bit in a

page table allows to delay this action until it is necessary.

Dirty bit : A page that exists on the swap device does not

have to be written out unless it was modified.

23

CIS 3110 Operating Systems'

&

$

%

I/O interlock

Frames involved in i/o operations cannot be chosen for

replacement because the device controller understands only

physical addresses and is not aware of paging: it deals with

a frame not a page.

Moreover, once an i/o transfer request reaches a device

controller, it is impossible to modify (change the memory

address) and to stop (usually).

Moral: frames involved in i/o operations are locked .

A note on segmentation: i/o interlock offers a beautiful

mechanism for a seamless implementation of asynchronous

i/o: the segment is simply locked until the transfer is done.

24

CIS 3110 Operating Systems'

&

$

%

Consider this situation:

1. Page 0x234 resides in frame 0x5678.

2. The owning process executes a system call:

read(fd , 0x234080 , 0x100) ;

(The address is part of page 0x234).

3. The kernel converts the logical address to a physical

address which happens to be 0x5678080.

4. The read operation is enqueued (the disk controller is

busy with another transfer) as a transfer to location

0x5678080.

5. A page fault causes the frame 0x5678 to be freed (page

0x234 is swapped out) and reallocated to page 0x888.

6. The i/o request if performed now, putting data into page

0x888 (sitting in frame 0x5678).

This situation must be prevented.

25

CIS 3110 Operating Systems'

&

$

%

Thrashing

Consider the program:

main() {

int ∗p = (int ∗)malloc(4 ∗ 102400) ;

for(int i = 0 ; i < 1024 ; i++)

for(j = i ; j < 102400 ; j = j + 1024)

p[j] = i ;

}

When the execution of this program starts, it will have 2

pages: a text page (with the code) and a stack page, first

empty, then containing p, i, j .

After the malloc call, the heap will contain 100

pages,assuming a 4096B page.

The way the code is written, it will access a different page

every time it performs p[j] = i (still assuming a page size of

4096B).

26

CIS 3110 Operating Systems'

&

$

%

If this process is given 3 frames, the double loop will trigger

102400 page faults. If a page fault requires 2 ms (a fast disk

i/o) and one loop iteration of the inner loop 20 ns (excluding

the necessary context switch), we will observe a CPU

utilisation of 0.001%. If the time of a context switch is

included (say, 2000 ns), the appearance will be slightly

better (0.1%) even though most of the time the CPU will be

doing useless things. The utilisation of the swap device will

approach 100%.

27

CIS 3110 Operating Systems'

&

$

%

When one process starts to thrash because of shortage of

frames, things get bad.

They get really bad if global page replacement is used.

Then the thrashing process will steal frames from other

processes; if those processes become short of frames, they

will start to thrash, too.

The situation gets even worse because the i/o interlock rule

will take the thrashing frames out of consideration for

replacement.

28

CIS 3110 Operating Systems'

&

$

%

Copy–on–Write

A process executes a fork(). Just before the fork, its page

table looks like this:

Frame V W C/W

12345 0 1
345 1 0

45678 1 0
42 1 0

911 1 0
2843 1 1

0 0
289 1 1

0 0
324 1 1
361 1 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0

169 1 1
196 1 1
225 1 1

One can see the:

• u area

• text

• data

• stack

• and the rest known as the

heap.

The C/W bits are turned off .

29

CIS 3110 Operating Systems'

&

$

%

fork results in the following:

• A new process is created.

• As part of it, a new logical address space is created by

making a copy of the page table of the parent. All the

entries in both tables are marked Copy–on–Write .

• The u area of the child is updated before the child is

ready. That will result in duplicating the pages forming

the u area and (so that each occupies two frames) and

modifying one copy (the child’s).

Frame V W C/W

12345 0 1 0
345 1 0 1

45678 1 0 1
42 1 0 1
911 1 0 1

2843 1 1 1
0 0 1

289 1 1 1
0 0 1

324 1 1 1
361 1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

169 1 1 1
196 1 1 1
225 1 1 1

169

196

441

12345

Frame V W C/W

441 0 1 0
345 1 0 1

45678 1 0 1
42 1 0 1

911 1 0 1
2843 1 1 1

0 0 1
289 1 1 1

0 0 1
324 1 1 1
361 1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

169 1 1 1
196 1 1 1
225 1 1 1

30

CIS 3110 Operating Systems'

&

$

%

The child process (eventually) starts executing. Its first

instruction starts the action of returning from the fork. As

part of it, the returned value (0) is pushed on the stack,

causing a page fault (the C/W bit is on. The faulting page is

duplicated and the child’s copy updated (the 0 is pushed on

the child’s stack)
Frame V W C/W

12345 0 1 0
345 1 0 1

45678 1 0 1
42 1 0 1
911 1 0 1

2843 1 1 1
0 0 1

289 1 1 1
0 0 1

324 1 1 1
361 1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

169 1 1 0
196 1 1 1
225 1 1 1

169

196

441

529

12345

Frame V W C/W

441 0 1 0
345 1 0 1

45678 1 0 1
42 1 0 1

911 1 0 1
2843 1 1 1

0 0 1
289 1 1 1

0 0 1
324 1 1 1
361 1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

529 1 1 0
196 1 1 1
225 1 1 1

31

CIS 3110 Operating Systems'

&

$

%

Modified page

Another trick used in page replacement is the addition of the

Modified bit to each page table entry. Where it exists, the M

bit is set every time the page table entry is used for a store

operation.

When the page is being victimised, the M bit indicates

whether a copy on the swap device is up–to–date or not.

32

CIS 3110 Operating Systems'

&

$

%

Shared pages

Pages can be shared by existing in several page tables. This

requires special care: when a shared paged is swapped out,

all the page tables must be updated. The same is happens

when it is subsequently swapped in.

To achieve this, the kernel keeps a list of all the shared

structures. This list is updated during every context switch

(the modified bit).

33

