
CIS 3210 Computer Networks'

&

$

%

Transport layer

The TL deals with end–to–end transport only, so there is no

packet loss due to congestion in this layer.

Host 1 Host 2

Application Application

TL TL

1



CIS 3210 Computer Networks'

&

$

%

Protocol Data Unit

Abbreviated as PDU this is the unit of data from the point of

view of a given protocol and is used instead of “packet” in pro

circles. There is a synonym for the PDU used by each layer:

7 Application A–PDU Message (“Text”)

4 Transport T–PDU Segment

3 Network N–PDU Datagram

2 Link DL–PDU Frame

1 Physical 1–PDU Bit/Symbol

Message

Segment

Datagram

Frame

User Data

HL Blah blah blah

HN Blah blah blah

HT Blah blah blah

2



CIS 3210 Computer Networks'

&

$

%

Transport layer

Two basic protocols are used: TCP and UDP.

TPDUs are called segments (TCP) or (somewhat incorrectly)

datagrams (UDP).

TCP and UDP differ in a number of key properties:

• Reliable vs. unreliable.

• Sequential vs. random order arrivals.

• Connection–oriented vs. connectionless.

• Congestion control vs. swamping the net.

3



CIS 3210 Computer Networks'

&

$

%

TCP

TCP (rfc793) offers:

• Sessions: it provides connection–oriented service.

• A reliable transport–if TCP delivers a segment to an

application, it is “guaranteed” to be correct and in order.

• A certain degree of protection against spoofing.

• Possibly some protection against certain DoS attacks.

• Congestion control.

The main drawback is the overhead added by these features.

4

http://tools.ietf.org/html/rfc793


CIS 3210 Computer Networks'

&

$

%

Segment format

A TCP segment has a header and a variable–length

segment body. The header is made of two parts: the fixed

20–byte part possibly followed by a variable–length options

part; typically, the options part is empty.

Source port Dest. port

Sequence number

Acknowledged number

HL 000000 Flags Window size

Checksum Urgent pointer

Options

Segment

body

5



CIS 3210 Computer Networks'

&

$

%

Ports: 16–bit port numbers.

Sequence number, Acknowledged number are explained

below.

HL: is the length of the header in 32–bit words . The

minimum is 5 (fixed header only); the maximum is 15 (40

bytes of options).

Flags: 6 control flags.

Window size: the size of free buffer space (imposes a

maximum segment length).

Checksum: computed for the whole segment and for an

imaginary IP header that will prefix the segment.

Urgent pointer: points to the first byte of non–urgent data

in the segment.

6



CIS 3210 Computer Networks'

&

$

%

Data flow control

A TCP connection provides two unidirectional sequential

streams of bytes flowing in opposite directions.

Client

TCP

AL

Server

TCP ?

The streams are sequential: bytes must be handed to the

receiver’s application in the same order in which they were

sent. This is implemented by assigning each byte a byte

number which corresponds to the byte’s position in the

stream.

7



CIS 3210 Computer Networks'

&

$

%

Sequence numbers

TCP “thinks” in bytes . A stream starts its byte sequence

with a random value isn. Every segment is given an identifier

that is equal to the byte number (in the stream) of its first

byte. Hence, the first segment is 1 + isn (to be explained).

An out–of–band stream is piggybacked on each byte stream

(it is called “urgent data”). The “urgent” bytes are not part of

the byte stream (but they, too, count for the purpose of byte

numbering).

8

http://www.faqs.org/rfcs/rfc1948.html


CIS 3210 Computer Networks'

&

$

%

Acknowledgments

Reliability is guaranteed by forcing the receiving end of each

stream to acknowledge the bytes it received.

TCP acknowledges by putting a number in the segment’s

header. This number is the number (in the stream) of the

byte it expects next. This method is called cumulative

acknowledgments (a form of selective

acknowledgments ).

When a TCP sends a segment, it starts a timer which ticks

until an acknowledgment arrives or the time expires, a

situation called timeout .

A timeout makes TCP resend all the segments that were not

acknowledged. This in turn creates the problem of reacting

to a late acknowledgment (one that comes when some

segments are being retransmitted): the retransmission

should be aborted.

9



CIS 3210 Computer Networks'

&

$

%

The amount of time before the timer expires is a carefully

computed value (it is a variable). Choosing a value too small

reduces effective throughput in the network, a value too

large increases delays seen by the application. When an

arrives or a new message is submitted by the AL, the

timeout interval is derived from the most recent values of two

variables (EstimatedRTT and SampleRTT ); in the case of a

timeout, the timeout interval is doubled instead of being

recomputed.

10



CIS 3210 Computer Networks'

&

$

%

Acknowledgment loss

The network layer (IP) is unreliable, so segments may be

lost. That implies that acknowledgments may also be lost.

Hence the need to handle duplicate acknowledgments.

Acknowledgments may arrive late (after a timeout, but

before all the unacknowledged segments were

retransmitted). Then, the sender must stop retransmitting.

Finally, when an out–of–order segment arrives, the receiver

must send a duplicate acknowledgment (RFC2581), so the

sender must be prepared to receive duplicate

acknowledgments.

11



CIS 3210 Computer Networks'

&

$

%

The importance of the window

The TCP header allows each host to declare (dynamically) a

window sizeW–interpreted as the amount of space left in

the host’s receiver buffer.

No segment may be larger than the receiver’s window size.

When a receiver is backlogged, it may declare its window to

be of size 0, barring the sender from sending anything until

further notice.

RFC793 requires a receiver to drop segments with a

sequence number that falls outside the receiver’s window,

i.e. only segments with a sequence numberN that satisfies:

ack.last ≤ N < ack.last +W

will be accepted for further scrutiny (they may still be

discarded at a later point).

12



CIS 3210 Computer Networks'

&

$

%

Control flags

URG ACK PSH RST SYN FIN

The flags are set (to 1) if:

URG urgent data pointer is valid (implies that there is

some out–of–band data at the start of the payload).

ACK the value of the acknowledgment field is valid.

PSH asks the receiver to push the contents of its input

buffer to the application layer.

RST the sender reset the connection.

SYN the packet attempts to start the handshaking process.

Its main purpose is to exchange the initial sequence

numbers.

FIN the sender closes its end of the connection.

13



CIS 3210 Computer Networks'

&

$

%

Connection

TCP requires a 3–way handshake which establishes a

trusted connection:

1. The client sends a packet to the server . In this packet

the client identifies itself and requests the connection.

2. The server replies with a packet acknowledging the

request and accepting the connection. Some connection

parameters may be sent at this point.

3. The client concludes the setup by sending a packet

which acknowledges the acceptance (so that the server

knows that the connection was truly established).

The last step is necessary to prevent dangling connections,

a common memory leak as well as a serious DoS threat.

14



CIS 3210 Computer Networks'

&

$

%

Simplistic 3–way handshake

Watch a video.
Client Server

Connect−→

Accept

Ack. the accept−→

The third segment serves as acknowledgment for the

“Accept” segment and as the first segment of the

client→ server byte stream.

The first two segments are called:

• SYN (“Connect”)

• SYNACK (“Accept”)

15

http://www.youtube.com/watch?v=248gcCvAIMU&feature=related


CIS 3210 Computer Networks'

&

$

%

Initial sequence numbers

It is natural to count the bytes of a sequential stream starting

with 1 or 0. This leads to two potential problems:

Error: After a network turbulence, segments from a

terminated connection may reach the receiver and be

accepted as part of the current connection.

Attack: An intruder may hijack a connection being

established by providing the third part of the 3–way

handshake.

16



CIS 3210 Computer Networks'

&

$

%

Segment arriving late

Client Server

isn = 0−→

SYN−→

WAIT−→ SYNACK

←−WAITisn = 0−→

The older segment becomes the third part of the handshake

and the correct segment is discarded as duplicate. If the two

segments have the same length, the only problem is that

different bytes are inserted into the stream. If the lengths

differ, the resulting confusion cannot be fixed easily.

17



CIS 3210 Computer Networks'

&

$

%

ISN attack

Client
ip1:p1

Server Intruder
ip2:p2

spoofs ip1:p1

SYN−→

SYNACK

←WAIT
isn = 0 −→

← isn = 0

The intruder succeeds in placing a block of bytes in the

stream and disrupts the connection, if desired.

18



CIS 3210 Computer Networks'

&

$

%

Defeating the ISN attack

RFC793 tried to prevent isn attacks by requiring that the

initial sequence numbers be chosen using a function of the

current time and the number of opened TCP connections.

Serious hackers had no difficulty guessing isns derived in

this manner.

The current defense is to generate initial sequence numbers

at random. This reduces greatly the chance of a successful

isn attack unless the standard pseudo–random number

generator is used.

19



CIS 3210 Computer Networks'

&

$

%

Connection revisited

The simplistic 3–way handshake has several weaknesses

and the protocol requires a more elaborate handshake

which does the following:

• Sets up a virtual circuit (the hosts’ identities and access

rights are checked as part of the setup).

• Makes the two sides exchange initial sequence numbers

which serve as passwords and make breaking into a

circuit difficult. To reduce vulnerability, the two sides pick

their isn values in some semi–random fashion.

20



CIS 3210 Computer Networks'

&

$

%

Client Server

←−
{

Other clients
+ WAIT

SYN−→

WAIT−→ SYNACK

←−
{

Other clients
+ WAIT

send()−→

21



CIS 3210 Computer Networks'

&

$

%

SYN: SYN = 1 , ACK = 0 ,

SeqNum = client isn.

SYNACK: SYN = 1 , ACK = 1 ,

AckNum = client isn+1 ,

SeqNum = server isn.

send(): SYN = 0 , ACK = 1 ,

SeqNum = client isn+1 ,

AckNum = server isn+1.

22



CIS 3210 Computer Networks'

&

$

%

The SYN flooding attack

A naive implementation of TCP reserves memory for a

connection when a SYN segment arrives:

Client Server

←−
{

Other clients
+ WAIT

SYN−→

WAIT−→

Allocation

SYNACK

←−
{

Other clients
+ WAIT

send()−→

This implementation works if all the clients are legitimate.

23



CIS 3210 Computer Networks'

&

$

%

If a client chooses not to complete the 3–way handshake,

the data structure kept for connections–in–the–making can

be filled, preventing the server from accepting connections.

Client Server

SYN−→
Allocation

SYNACKSYN−→
Allocation

SYNACKSYN−→
Allocation

SYNACKSYN−→
Allocation

SYNACK

24



CIS 3210 Computer Networks'

&

$

%

One method to reduce the damage of a flooding SYN attack

is to delay allocating resources until the end of the third

phase of the handshake. The server computes a cookie

using information coming on the SYN segment and a secret

function and sends it as its isn back to the (potential) client.

The value of the cookie is not stored anywhere.

When the client’s first send() arrives, it must contain the

server’s isn+1 in its acknowledgment field. The server

recomputes the cookie and checks it against the

acknowledged value. If they match, the connection is

legitimate (probabilistically) and the data structures can be

allocated.

25



CIS 3210 Computer Networks'

&

$

%

Client Server

←−
{

Other clients
+ WAIT

SYN−→

WAIT−→

Cookie computation

SYNACK

←−
{

Other clients
+ WAIT

send()−→

←−
{

Recompute cookie
+ Allocation

26



CIS 3210 Computer Networks'

&

$

%

Control flag attacks

The flooding SYN attack is one case of attacks based on the

abuse of control flags. Another SYN attack, the spoofing SYN

attack is a weaker variant of the Reset Attack which uses the

RST bit to destroy other clients’ connections.

The idea is simple. A bad guy spoofs a segment with this

header:

• Destination address: the address of the server. This is

easy to obtain.

• Source address: the address of the victim client (the IP

part is relatively easy; the port number has to be

guessed or sniffed).

• A legitimate client sequence number. This is the tough

part.

• The RST bit set.

When a packet with this header reaches the server, it will

immediately reset (i.e. close) the connection, which causes

DoS and worse.

27



CIS 3210 Computer Networks'

&

$

%

Reset attack helpers

It appears difficult to guess the source port number and the

current sequence number. However, some tricks make it

easier:

• Guessing the client’s port number may be simple.

• Faking an acceptable sequence number may require

just a few seconds of persistent attempts.

28



CIS 3210 Computer Networks'

&

$

%

Guess the port number

Many Operating Systems assign port numbers sequentially

(both Windows and Linux used to do so).

Launching a passive FTP connection to the client’s host

should then give a good starting point for guessing the port

number of the client’s end of the targeted connection (if the

FTP server returns port P , one should try ports P − 1 and

further down).

29



CIS 3210 Computer Networks'

&

$

%

Guessing a sequence number

RFC793 defines as valid a segment that has the correct

source and destination addresses and has a sequence

number that is no more than one window size away from the

last acknowledged sequence number.

If the window size is 216 the maximum number of attempts

needed to produce a fake sequence number that falls into

the window is 232/216 = 65, 536, which can be generated

in a matter of seconds (each attempt requires sending a

20–byte segment).

RFC793 asks to subject acknowledgment numbers to the

same window test, but real–life protocols tend not to do so.

30


