
CIS 3210 Computer Networks'

&

$

%

Transmitting without acknowledgments

The basic idea of an acknowledgment is to have the receiver

send back (to the transmitter) an ACK segment containing

the sequence number of the segment expected next.

To take care of lost segments (which cannot be

acknowledged because the receiver is not aware of their

existence), a timeout scheme is added.

The Automatic Retransmit Request mechanism was

designed to allow the transmitter to send more than one

segment before getting them acknowledged.

The ARQ mechanism is best described in terms of an

abstract sliding window made of the range of segments

that are of current interest.

1

CIS 3210 Computer Networks'

&

$

%

Sliding window

The sender and the receiver maintain separate sliding

windows:

Sender’s window : is made of segments that are

outstanding , i.e. sent but not known to have been

received (no ACK came back).

Sender’s pending window : is made of segments that are

pending , i.e. could be sent but were not because they

do not exist.

Receiver’s window : is made of space to be filled by

segments that have not been successfully

acknowledged yet. The simplest case is a window of

size 1 (MSS): a buffer for the next segment; this will do

for all protocols not using selective acknowledgments.

2

CIS 3210 Computer Networks'

&

$

%

The size of the Sender’s Window reflects the two aspects of

link control:

• Outstanding segments are kept for error control. The

window is made of segments in transit that can only be

discarded after they are acknowledged.

• Pending segments are empty segment slots waiting for

submissions from the AL.

• Not–in–window segments are existing segments that

cannot be sent because of the limits imposed by flow

control.

One segment can be in a transition state between being

outside the window and inside the window when it is in the

process of being sent.

3

CIS 3210 Computer Networks'

&

$

%

Variants of sliding window protocols

Blast : The sizes of both windows are infinite.

Stop–and–Wait : The sizes of both windows are 1.

Go–Back–N : The size of the Send Window is N and the

size of the Receive Window is at least 1 and no more

than N.

Selective Acknowledgments : The size of the Send

Window is N and the size of the Receive Window is M

where 1 < M ≤ N.

Negative Acknowledgments : Same as the previous case,

differs in the interpretation of the acknowledgment

segments.

4

CIS 3210 Computer Networks'

&

$

%

The BLAST protocol

The sender transmits without any consideration for the

receiver. This protocol works if the receiver’s buffer space is

unlimited.

It is widely used in synchronous media transmissions

because the sender must empty its buffers in a synchronous

way.

Otherwise it has no merit.

5

CIS 3210 Computer Networks'

&

$

%

Stop–and–Wait

This is the simplest protocol with feedback. The sender’s

window being of size 1, the sender can send only 1 segment

and must then wait for an acknowledgment.

If an acknowledgment comes, the sender slides its window

by one segment and continues on. If a timeout occurs before

the acknowledgment arrives, the sender retransmits the

outstanding segment and waits for an acknowledgment.

6

CIS 3210 Computer Networks'

&

$

%

Stop–and–Wait in a noiseless channel

Sender Receiver

Segment−→

ACK

Segment−→

ACK

7

CIS 3210 Computer Networks'

&

$

%

Stop–and–Wait in a noisy channel

Sender Receiver

Segment−→

←−ACK

Segment−→

Timer

Resend−→

←−ACK

8

CIS 3210 Computer Networks'

&

$

%

Another Stop–and–Wait scenario

Sender Receiver

Segment−→

←−ACK

Segment−→

Resend−→
←−ACK

←−ACK

The length of the timer fuse is an important parameter: too

short causes unnecessary retransmissions; too long

reduces the throughput of a noisy channel.

9

CIS 3210 Computer Networks'

&

$

%

The only drawback of Stop–and–Wait is its inefficiency.

Sender Receiver

Segment−→

WAIT−→ ACK

←−WAIT
Segment−→

WAIT−→ ACK

←−WAIT

An obvious improvement is to allow pipelining, i.e. sending

several segments while acknowledgments are moving in the

reverse direction.

10

CIS 3210 Computer Networks'

&

$

%

Go–Back–N

The Stop–and–Wait protocol is a special case of the Go–Back–N for N = 1.

Consider a Go–Back–3 protocol. The sequence number field is 5 bits long (for

illustration only), so the sequence numbers range from 0 to 31.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1

Acknowledged OW

ACK expected last sent end of segments

Segments 31, 0, and 1 do not exist yet; they will be created if more datagrams are

submitted by the AL.

11

CIS 3210 Computer Networks'

&

$

%

Go–Back–N

Another possibility; this time the receiver has lots of buffer space; knowing this

(see TCP) the sender expanded the window to 7, but currently does not have

enough segments to fill the window.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1

Acknowledged

ACK expected last sent end of segments

12

CIS 3210 Computer Networks'

&

$

%

Go–Back–N

Another possibility; this time the sender has plenty to send but the receiver is

facing a buffer overrun and asked to slow down.

SSW

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected end of segments

13

CIS 3210 Computer Networks'

&

$

%

Go–Back–N

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of segments

An ACK arrived with the sequence number 28 (implying that 28 is expected next).

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged

ACK expected
sending

end of segments

14

CIS 3210 Computer Networks'

&

$

%

Timer

A timer fuse is set whenever a segment is sent in full. Obviously, the oldest ticking

fuse expires first; it is associated with the segment waiting for an

acknowledgment.

When that happens, the sender retransmits the whole window:

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of segments

After the timeout:

15

CIS 3210 Computer Networks'

&

$

%

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of segments

16

CIS 3210 Computer Networks'

&

$

%

Situation during retransmission

A timeout starts a procedure called Fast Retransmit . All the unacknowledged

segments that are inside the window are retransmitted one after another. This

causes a temporary inconsistent state.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of segments

What to do if an ACK 28 arrives at this very moment? Officially the segments

25–27 have not even been sent and yet they already are acknowledged. The

outcome depends on the implementation.

17

CIS 3210 Computer Networks'

&

$

%

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of segments

Note that the situation above differs little from the situation when in the following

state the TL was suddenly handed 8 segments by the AL.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged

last sent

18

CIS 3210 Computer Networks'

&

$

%

Receiver in Go–Back–N

The receiver’s behaviour is simple: acknowledge every

segment that is correct; ignore everything else.

S = isn ;

while(1) {

wait() ; // will be interrupted by NL’s interrupt

while(Segmentcount > 0) {

Segment = GetSegment() ;

if(!Corrupted(Segment) && Segment→seq == S) {

Accept(Segment) ;

S++ ;

Acknowledge(S) ;

}

Segmentcount−− ;

}

}

S is the expected sequence number.

19

CIS 3210 Computer Networks'

&

$

%

Segmentcount is needed in case the sender manages to

deliver more than one segment while the inside of the while

loop executes.

There must be some form of mutual exclusion around

operations on Segmentcount .

20

CIS 3210 Computer Networks'

&

$

%

Selective acknowledgments

When selective acknowledgments are used, the receiver’s

window must be of the same size as the sender’s window.

There are two ways to use selective acknowledgments:

• Send an ACK segment with a list of segments that are

acknowledged.

• Send both positive and negative acknowledgments. The

timeout mechanism can become quite elaborate in this

scheme.

Both approaches rely on a fundamental property of a direct

link between a sender and a receiver (TL handles a single

direct virtual link):

Segments must arrive in the same order in which

they were sent, if they arrive at all.

21

CIS 3210 Computer Networks'

&

$

%

Selective acknowledgments

The receiver uses an algorithm similar to the one used in

Go–Back–N but acknowledges any correctly received

segment, even if its sequence number is not consecutive.

Unlike “normal” ACKs, the acknowledgment specifies the

segment number of the segment that was correctly received

(not the one expected next).

Note that acknowledging an out–of–sequence segment is an

implicit negative acknowledgment for all the segments with

preceding sequence numbers that were not acknowledged

earlier.

Example: the sender receives the following sequence of

acknowledgments:

21 , 22 , 23 , 26

Clearly, segments 24 and 25 must have been either lost or

rejected (if they arrived, they did so before 26 arrived).

22

CIS 3210 Computer Networks'

&

$

%

Selective acknowledgments

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of segments

An ACK arrived with the sequence number 27 (stating that 27 was correctly

received).

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

To be resent last sent end of segments

23

CIS 3210 Computer Networks'

&

$

%

Timers

The sender must have a separate timer ticking for each

outstanding segment. when a timer expires, only one

segment is resent—the segment corresponding to the

expired timer.

24

CIS 3210 Computer Networks'

&

$

%

Suppose the timer corresponding to segment 29 expired in this situation:

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

last sent end of segments

There is no way to tell whether segment 25 was resent before segment 29 was

sent or after. One cannot even tell how many times segment 25 was transmitted

so far. Segment 25 has its own timer, so there is no need to resend it now.

What about segment 28? Since it is green, it must have already been

retransmitted (at least once) because it was originally sent before 29 was sent.

25

CIS 3210 Computer Networks'

&

$

%

Tricky cases

Consider the following sequence of events as observed by

the sender:

1. Segments 25, 26, 27, 28 were sent.

2. An ACK 27 arrived.

3. Segment 25 was resent (and 26 is marked for

retransmission).

4. The timer of segment 28 expired before the

retransmission of 26 started.

5. Segments 26 and 28 were resent (in some order).

Subsequently, segment 29 was sent.

6. An ACK 28 arrived.

7. (At least one segment is resent at this point.)

8. An ACK 29 arrived.

What to do now?

26

CIS 3210 Computer Networks'

&

$

%

Negative acknowledgments

The other method of using selective acknowledgments is to

combine them with explicit negative acknowledgments.

The idea is to delay positive acknowledgments until the

moment when a segment is ready to be delivered to the AL.

When the receiver accepts a segment as non–corrupted, it

checks whether it can forward it to the AL.

27

CIS 3210 Computer Networks'

&

$

%

• If all the segments preceding the new segment have

already arrived, the segment is considered ready to be

delivered to the AL. While the exact delivery moment

may lie in a very distant future, the TL↔TL interaction is

complete (with respect to this segment).

• If some earlier segment is missing, the segment is not

ready to be delivered to the AL and a NACK should be

sent, asking for the missing segment.

28

CIS 3210 Computer Networks'

&

$

%

To ACK or to NACK

In principle, the receiver can react to every receiver segment

by sending back a segment:

ACK: if the received segment is ready. The segment

number in the ACK will indicate the segment expected

next (the “normal” acknowledgment).

NACK: if the received segment is not ready. The segment

number in the NACK will be the sequence number of the

earliest missing segment.

29

CIS 3210 Computer Networks'

&

$

%

In this example, the sender tries to send segments 21–26;

segment 22 is destroyed in the channel. The receiver

(±)acknowledges every segment.
Sender Receiver

21−→

22−→

23−→

24−→

25−→

22−→

26−→

happy!−→

←−ACK 22

←−NACK 22

←−NACK 22

←−NACK 22

←−ACK 26

←−ACK 27

30

CIS 3210 Computer Networks'

&

$

%

Saving on the number of (N)ACKs

The numerous NACKs are not needed if the channel is not

very noisy.

The first NACK should alert the sender and the rest will work

properly provided that there are no further losses in this

sequence. If there is another loss, expiring timers will force

additional retransmissions (too many of them) guaranteeing

a final success.

When NACKs are used, the timer fuse should be much

longer, because its role is restricted to a last–resort backup

for lost NACKs.

31

CIS 3210 Computer Networks'

&

$

%

Flow control

The receiver may be slower than the sender. This can be

caused by a number of factors, some of which are transient:

• The receiver’s application does not ask for input.

• The receiver’s is not fast enough in processing

segments: the NL hands them at a faster rate than they

are handled.

• A malfunction or a DoS attack cause the receiver to be

bothered with other traffic that must be handled, thus

preventing the receiver from emptying its input buffers

fast enough.

Whatever the reason, the receiver may face a situation

called buffer overrun in which there is no space in the input

buffer for newly arriving segments.

Flow control attempts to prevent buffer overrun by limiting the

the maximum number of genuinely outstanding segments.

32

CIS 3210 Computer Networks'

&

$

%

How to slow the sender

If the receiver is not fast enough, the sender must be told to

slow down. This can be done in two ways:

• By withholding acknowledgments: the sender will find

itself waiting for timeouts (sending nothing) and then by

sending duplicate segments (which the receiver can

partially ignore).

• By telling the sender to reduce the size of its sliding

window.

The second approach is used in TCP; it leads to dynamic

window sizes.

33

CIS 3210 Computer Networks'

&

$

%

Piggybacking acknowledgments

If communication is bi–directional, it is natural to incorporate

acknowledgments in data segments sent in the opposite

way.

The resulting protocols have to consider the option of

delaying an ACK in order to piggyback it; another timer must

be used to make sure that an acknowledgment is not

delayed for too long (thus causing a timeout at the other

end).

34

