
CIS3210 Computer Networks Fall 2009 1

CIS3210 — Computer Networks

Assignment 2

Due October 23rd 2009 in/before midnight

You will create a client that will work with the server described below.

There is a TCP server that handles requests for documents. The server will
accept a connection and serve one request; then it will close the connection is
closed or it will timeout after 90 seconds.

In order to speed up the delivery of documents, the server will open N

parallel connections to the client and send the document in chunks through
all N sockets. One of the objectives is to see how the real–time delay depends
on N .

The application protocol

After your TCP client connects to the server, it sends one request to the server
with the following contents:

Request−→ N p document name
Length in bytes−→ 2B 2B variable

Where N is the number of circuits that the client wants to use and p is the
port number that the server is to connect to N times. The second line (not
part of the request) gives the size of the fields in bytes. Note that only the last
field is in ASCII; the other two are binary numbers in network byte ordering.

The server attempts to connect to the port N times, getting N parallel con-
nections. If unsuccessful, it closes the main connection without any response.

If the server successfully creates N connections, it divides the desired docu-
ment into N roughly equal parts and starts sending these parts in chunks over
the N connections (each part is permanently associated with one connection).

The first chunk of each part starts with a 4 byte value: the offset of this
part in the document, expressed as a binary integer in network byte ordering.

Example

1. The server receives from IP:1234 a message:



CIS3210 Computer Networks Fall 2009 2

03BBhttp://www.getrichfast.ca

where the first two bytes (“3”) state that 3 connections are to be opened,
followed by another 16–bit binary number in network byte ordering (if
BB = 12 138 then it is port number 3210). That is followed by the
name of the desired document.

2. The server decodes the port number: 12 × 256 + 138.

3. The server connects to IP:3210 three times, each time using a different
socket. If not all connections succeed, the server closes its connection
with IP:1234 and all the connections to IP:3210 established so far.

4. All connections succeeded so the server now checks if the desired docu-
ment is available. If not, the server closes the connection.

5. The server divides the document into 3 parts and starts sending it. This
document has 49.4 kB, so the server chooses to send bytes 0–24000 to
one connection, bytes 24001–48000 to another and bytes 48001–end to
third one.

6. And so it does remembering to insert 4 bytes before the first byte of each
part.

7. The server closes the connections.

The documents that can be requested

To reduce Internet traffic, you can ask only for one of a number of filenames
that are stored on the same machine where the server is. At this point, the
documents are kakuro1.pdf, kakuro2.pdf, kakuro3.pdf, kakuro4.pdf. This list
will change before the assignment is due.

No escape through multi–threading

The server and the client must be single scheduling units, without any threads
nor sub–processes. Threading or forking is not allowed, neither in your code
nor in the code of any libraries you reference.

Your task

Develop your client in steps (each step adds code to the previous one):

1. Create a client that accepts 1 connection.



CIS3210 Computer Networks Fall 2009 3

2. Upgrade your client to receive a document correctly. Make sure to find
a way to display it.

3. Upgrade your client to survive disappearing connections.

4. Ask for 3 connections and assemble the document from input you get
from all 3.

5. Be bold! Try 6 connections. Put a loop around your code so that it
repeats these steps “forever”:

(a) Connect to the server asking for a document sent using 6 connec-
tions.

(b) Receive the document.

(c) Close all the 7 connections.

6. Add a timeout mechanism to handle a lazy server.

Deliverables

Your code will be written in C or C++ (no Java this time). It will use the
Socket API function calls directly. All socket data traffic should be done
by issuing system calls from the send/receive or read/write families (no
wrappers).

You will submit a printout of your code with a self–evaluation page at-
tached (see appendix).

You will sign up for a demonstration of your code and successfully demon-
strate that your self assessment is correct.

Grading

You will receive marks for each step as listed above.

Step 1 2 3 4 5 6
Marks 4 2 2 6 4 2



CIS3210 Computer Networks Fall 2009 4

Assignment 2

Self evaluation form

Name: Student ID# Total:

Step Done Not done Other
correctly (explanation)

Code uses only If not,
send/recv final grade = 0
or read/write

1

2

3

4

5

6

Grading

1 2 3 4 5 6
4 2 2 6 4 2


