question 1

Routing table entries do not have an explicit expiry algorithm: once an entry is in the table, it will stay there forever unless deleted by ICMP (or manually, etc.). List 2 relevant pros and cons of adding an additional column in the table:

Time last used

Pro 1:

Pro 2:

Con 1:

Con 2:

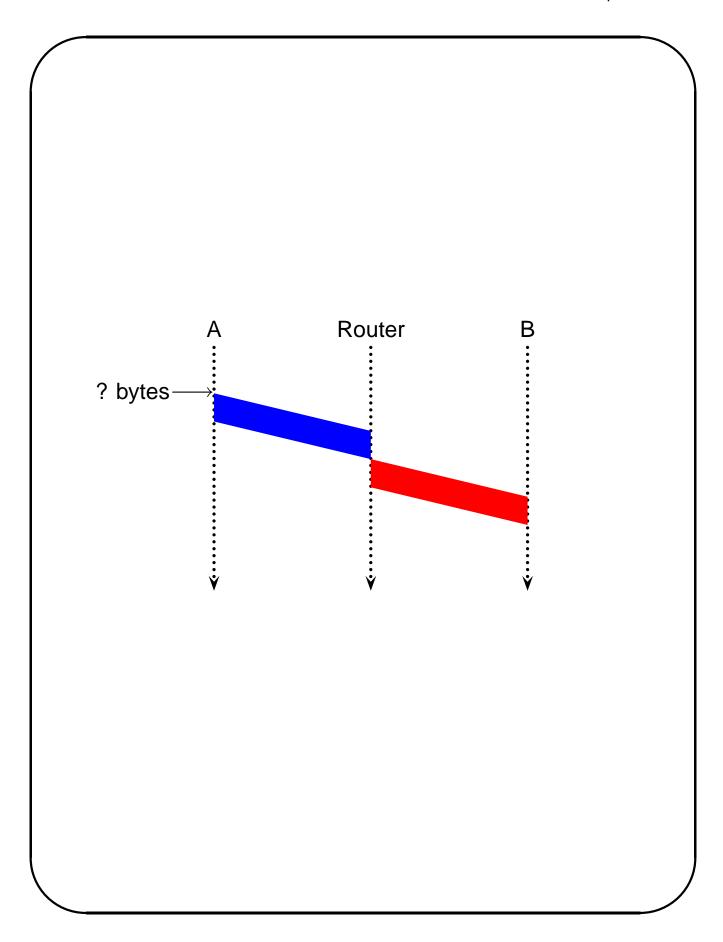
True or false:	
() IPv4 has addresses that are 4-byte long.
() IPv6 has addresses that are 6-byte long.
() The subnet mask of $202.33.44.128/25$ is $255.255.255.128$.
() There are two variants of the silly window scenario: sender produces data too slowly or receiver removes data from buffers too slowly.
() ICMP sends a report when a datagram is dropped because the destination host is unreachable.
() CSMA/CD is a protocol used by the Physical Layer.
() IPv6 has addresses long enough so that there is no need to specify port numbers in IPv6.
() ICMP sends its reports inside UDP datagrams.
() Datagrams are reassembled at the destination host and never by intermediate routers.

- () A router must have at least 2 different IP addresses.
- () the MF flag is part of a TCP header and it means that the connection must be terminated immediately.

I.P. Veafore proposes to add a special flag to **IP**. This flag, using the reserved (i.e. unused) flag bit next to **DF** and **MF** will be called **RST** and will signal abandoning (and restarting) the transfer of the currently transmitted multi–fragment datagram.

Comment on the usefulness of this idea.

CIS 3210 Computer Networks


Question 4

Suppose two nodes, \mathcal{A} and \mathcal{B} are connected by a sequence of 2 links, operating at 100 Mb/s and 300 Mb/s, respectively. The length of each link is 200m (the propagation delay is $10^{-6}s$ for each link). There is a router between the two links links; the router uses store—and—forward to route packets. The router has very large buffers and is infinitely fast.

A sends a file of length 10,000 bytes using **UDP**. The TL protocol enforces a maximum segment size of 1008 bytes (header included). The sender's IP protocol allows datagrams up to 2000 bytes long; the intermediate router fragments datagrams longer than 576 bytes into fragments of size not exceeding 576 (**including the fragment header!!!**).

If all the transmissions are successful, how many bytes will reach \mathcal{B} ? How much time will elapse before \mathcal{B} can start to reassemble the original file?

Assume that there are no processing or queuing delays.

A router receives a datagram with a destination address of 123.123.123.123. The router's routing table does not have a matching entry for this address. What can the router do (besides dropping the datagram)?

A program decides to read a **UDP** datagram but wants to make sure that the function returns after no more than 30 seconds.

How can one implement that?