
CIS 4210 Telecommunications'

&

$

%

Data Link Layer

The DLL is responsible for controlling the flow of data in a

single link. Unlike the PL which moves individual symbols

(bits ot codewords), the DLL controls the movement of a

frame as a single unit.

The DLL and the PL typically reside on the same card

making the boundary between the two a bit fuzzy.

Functionally, one may delineate the two layers by assuming

that the role of the PL is:

Transmitter: takes one dataword from the output buffer and

inserts it into the link.

Receiver: accepts one codeword, converts it back into a

dataword and places the dataword in the input buffer.

Some error correction and recovery is also done there.

1

CIS 4210 Telecommunications'

&

$

%

With this description of the role of the PL, the role of the DLL

is:

Transmitter: takes a datagram, converts it into one or more

frames and places a frame in the output buffer (one

framse at a time).

Receiver: takes the contents of the input buffer and

attempts to interpret it as a valid frame. If successful it

reconstructs a datagram and passes it to the NL.

Otherwise, it rejects the invalid frame and initiates error

recovery (FEC or BEC) if desired.

PL

DLL frame

bits
PL

DLL

2

CIS 4210 Telecommunications'

&

$

%

Data Link Layer

The DLL moves NL datagrams over an individual link. The

DLL protocol encapsulates a datagram (preceding it with its

own header) into a frame and passes the frame to the

Physical Layer which sends them as independent symbols

(e.g. bits) through the physical medium.

There are two types of DLL links:

• A point–to–point link has only one nodea at each end.

• A shared broadcast link (“multiple access”) to which

several nodes are attached. These nodes have equal

rights to the link, even if their actual role may differ (e.g.

router vs. host).

The PL is not aware that a link is a broadcast link. It is a

responsibility of the DLL to resolve any problems related to

the multi–point nature of a broadcast link.

aNode = host, router, switch, etc.

3

CIS 4210 Telecommunications'

&

$

%

MAC protocols

Every link is controlled by a DLL protocol. All these protocols

are called Medium Access Control protocols. The same

protocol must be obeyed by all the nodes on one link,

although the same node may use several different MAC

protocols if connected to more than one link.

When using a p2p link both nodes connected to it must be

compatible but are not always the same, as in 802.11b,

802.11g and 802.11n or in “Fast Ethernet”. Modems and

switches usually handle that by trying to use various

protocols (mainly transmission rates) until they can

recognise the signal coming from the other side.

4

CIS 4210 Telecommunications'

&

$

%

DLL and PL

CPU RAM

Controller

Transceiver

NIC

Software is here

Medium (coax, fibre ...)

5

CIS 4210 Telecommunications'

&

$

%

Framing

Framing is performed at both ends of a link:

• A NL datagram is framed at the transmitter end. It

involves encapsulating a datagram (after possibly

fragmenting it first).

• An input buffer submitted by the PL is interpreted as a

frame at the receiver end. Validation is main task at this

stage.

6

CIS 4210 Telecommunications'

&

$

%

Framing a datagram

The DLL starts by deciding whether to fragment a datagram.

If so, it turns it into 2 (or more) datagrams and treats each of

them separately (but not independently because enough

common information must be forwarded to the receiver to

allow the datagram to be reassembled). Fragmentation is

required when the DLL suports fixed–size frames only, as in

ATM or DQDB which both require frames to be 53–bytes long.

A datagram is then framed; the MAC protocol used may call

for byte–oriented or bit–oriented framing protocols.

7

CIS 4210 Telecommunications'

&

$

%

A frame

there is little difference between byte and bit oriented

protocols. All of them require a similar frame structure:

Contents

Flag Flag

Header

Trailer

The flags usually are identical sequences of 8 bits (or 1 byte,

as desired). Many protocols use 01111110 as a flag, but

Ethernet uses 10101011 instead (and no trailer).

8

CIS 4210 Telecommunications'

&

$

%

Escaping and stuffing

The existence of bit control bit sequences poses an obvious

problem: what if an identical pattern appears in the

datagram coming from the NL?

Two similar solutions are used:

Escaping used mainly in byte–oriented protocols identifies

a specific byte called ESC which is placed in front of a

data byte identical to a control byte (also in front of a

data byte that looks like an ESC).

Bit stuffing used mainly in bit–oriented protocols calls for

the insertion of extra bits into undesired data bit

sequences.

9

CIS 4210 Telecommunications'

&

$

%

Escape

Flag ESC

ESC Flag ESC ESC

Flag

• • •

10

CIS 4210 Telecommunications'

&

$

%

Stuffing

If the frame delimiter is 01111110 it is common to require that the sending DLL

stuffs (inserts) a 0 after every 5 consecutive data 1s, so that the only possible

sequence of 6 1s is the flag sequence.

From NL

01111110 011111111110

011111010 01111101111100

01111110

• • •

To PL

Several variations exist; they all are based on the same basic idea.

11

CIS 4210 Telecommunications'

&

$

%

Link control

Three terms are used in describing the role of the DLL:

Error control : Error control is done in every layer up to

layer 4. Layer 2 (DLL) is responsible for error correction

which comes in three forms:

1. BEC, called ARQ (Automatic Repeat Request) when

done by DLL.

2. FEC (when possible). This task is done jointly by the

PL and the DLL (no clear boundary).

3. Ignoring the incorrect frames or replacing them with

earlier frames (this works for synchronous media,

such as video).

Flow control : to prevent the sender from overwhelming

the receiver (buffer overflow, wrong bit rate).

Link control : is the combined task of error and flow control.

12

CIS 4210 Telecommunications'

&

$

%

Automatic Repeat Request

The frame header must contain a frame sequence number

that can be used in a repeat request. The minimum length of

the sequence number field is well researched but real–life

protocols ignore this body of research and use either a

16–bit or a 32–bit field.

The basic idea is to have the receiver send back (to the

transmitter) an ACK frame containing the sequence number

of the frame expected next.

To take care of lost frames (which cannot be acknowledged

because the receiver is not aware of their existence), a

timeout scheme is added.

The ARQ mechanism is best described in terms of an

abstract sliding window made of the range of frames that

are of current interest.

13

CIS 4210 Telecommunications'

&

$

%

Sliding window

The sender and the receiver maintain separate sliding

windows:

Sender’s window : is made of frames that are outstanding ,

i.e. sent but not known to have been received (no ACK

came back).

Sender’s pending window : is made of frames that are

pending , i.e. could be sent but were not because they

do not exist.

Receiver’s window : is made of slots to be filled by frames

that have not been successfully acknowledged yet. The

simplest case is a window of size 1: a buffer for the next

frame; this will do for all protocols not using selective

acknowledgments.

14

CIS 4210 Telecommunications'

&

$

%

The size of the Sender’s Window reflects the two aspects of

link control:

• Outstanding frames are kept for error control. The

window is made of frames in transit that can only be

discarded after they are acknowledged.

• Pending frames are empty frame slots waiting for

submissions from the NL.

• Not–in–window frames are existing frames that cannot

be sent because of the limits imposed by flow control.

One frame can be in a transition state between being

outside the window and inside the window when it is in the

process of being sent.

15

CIS 4210 Telecommunications'

&

$

%

Variants of sliding window protocols

Blast : The sizes of both windows are infinite.

Stop–and–Wait : The sizes of both windows are 1.

Go–Back–N : The size of the Send Window is N and the

size of the Receive Window is at least 1 and no more

than N.

Selective Acknowledgments : The size of the Send

Window is N and the size of the Receive Window is M

where 1 < M ≤ N .

Negative Acknowledgments : Same as the previous case,

differs in the interpretation of the acknowledgment

frames.

16

CIS 4210 Telecommunications'

&

$

%

The BLAST protocol

The sender transmits without any consideration for the

receiver. This protocol works if the receiver’s buffer space is

unlimited.

Obviously it is widely used in synchronous media

transmissions because the sender must empty its buffers in

a synchronous way.

Otherwise it has no merit.

17

CIS 4210 Telecommunications'

&

$

%

Stop–and–Wait

This is the simplest protocol with feedback. The sender’s

window being of size 1, the sender can send only 1 frame

and must then wait for an acknowledgment.

IF an acknowledgment comes, the sender slides its window

by one frame and continues on. If a timeout occurs before

the acknowledgment arrives, the sender retransmits the

outstanding frame and waits for an acknowledgment.

18

CIS 4210 Telecommunications'

&

$

%

Stop–and–Wait in a noiseless channel

Sender Receiver

Frame−→

ACK

Frame−→

ACK

19

CIS 4210 Telecommunications'

&

$

%

Stop–and–Wait in a noisy channel

Sender Receiver

Frame−→

←−ACK

Frame−→

Timer

Resend−→

←−ACK

20

CIS 4210 Telecommunications'

&

$

%

Another Stop–and–Wait scenario

Sender Receiver

Frame−→

←−ACK

Frame−→

Resend−→
←−ACK

←−ACK

The length of the timer fuse is an important parameter: too

short causes unnecessary retransmissions; too long

reduces the throughput of a noisy channel.

21

CIS 4210 Telecommunications'

&

$

%

The only drawback of Stop–and–Wait is its inefficiency.

Sender Receiver

Frame−→

WAIT−→ ACK

←−WAIT
Frame−→

WAIT−→ ACK

←−WAIT

An obvious improvement is to allow pipelining, i.e. sending

several frames while acknowledgments are moving in the

reverse direction.

22

CIS 4210 Telecommunications'

&

$

%

Go–Back–N

The Stop–and–Wait protocol is a special case of the Go–Back–N for N = 1.

Consider a Go–Back–3 protocol. The sequence number field is 5 bits long, so the

sequence numbers range from 0 to 31.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1

Acknowledged OW

ACK expected last sent end of frames

Frames 31, 0, and 1 do not exist yet; they will be created if more datagrams are

submitted by the NL.

23

CIS 4210 Telecommunications'

&

$

%

Go–Back–N

Another possibility; this time the receiver has lots of buffer space; knowing this

(see TCP) the sender expanded the window to 7, but currently does not have

enough frames to fill the window.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1

Acknowledged

ACK expected last sent end of frames

24

CIS 4210 Telecommunications'

&

$

%

Go–Back–N

Another possibility; this time the sender has plenty to send but the receiver is

facing a buffer overrun and asked to slow down.

SSW

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected end of frames

25

CIS 4210 Telecommunications'

&

$

%

Go–Back–N

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of frames

An ACK arrived with the sequence number 28 (implying that 28 is expected next).

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged

ACK expected
sending

end of frames

26

CIS 4210 Telecommunications'

&

$

%

Timer

A timer fuse is set whenever a frame is sent in full. Obviously, the oldest ticking

fuse expires first; it is associated with the frame waiting for an acknowledgment.

When that happens, the sender retransmits the whole window:

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of frames

After the timeout:
Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of frames

27

CIS 4210 Telecommunications'

&

$

%

Situation during retransmission

A timeout starts a procedure called Fast Retransmit . All the unacknowledged

frames that are inside the window are retransmitted one after another. This

causes a temporary inconsistent state.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of frames

What to do if an ACK 28 arrives at this very moment? Officially the frames 25–27

have not even been sent and yet they already are acknowledged. The outcome

depends on the implementation.

28

CIS 4210 Telecommunications'

&

$

%

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

resent last sent? end of frames

Note that the situation above differs little from the situation when in the following

state the DLL was suddenly handed 8 frames by the NL.

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged

last sent

29

CIS 4210 Telecommunications'

&

$

%

Receiver in Go–Back–N

The receiver’s behaviour is simple: acknowledge every

frame that is correct; ignore everything else.

S = isn ;

while(1) {

wait() ; // will be interrupted by PL’s interrupt

while(Framecount > 0) {

Frame = GetFrame() ;

if(!Corrupted(Frame) && Frame→seq == S) {

Accept(Frame) ;

S++ ;

Acknowledge(S) ;

}

Framecount−− ;

}

}

S is the expected sequence number. Framecount is

needed in case the sender manages to deliver more than

one frame while the inside of the while loop executes (there

30

CIS 4210 Telecommunications'

&

$

%

should be some form of mutual exclusion around

Framecount).

31

CIS 4210 Telecommunications'

&

$

%

Selective acknowledgments

When selective acknowledgments are used, the receiver’s

window must be of the same size as the sender’s window.

There are two ways to use selective acknowledgments:

• Send an ACK frame with a list of frames that are

acknowledged.

• Send both positive and negative acknowledgments. The

timeout mechanism can become quite elaborate in this

scheme.

Both approaches rely on a fundamental property of a direct

link between a sender and a receiver:

Frames must arrive in the same order in which they

were sent, if they arrive at all.

32

CIS 4210 Telecommunications'

&

$

%

Selective acknowledgments

The receiver uses an algorithm similar to the one used in

Go–Back–N but acknowledges any correctly received frame,

even if its sequence number is not consecutive. Unlike

“normal” ACKs, the acknowledgment specifies the frame

number of the frame that was correctly received (not the one

expected next).

Note that acknowledging an out–of–sequence frame is an

implicit negative acknowledgment for all the frames with

preceding sequence numbers that were not acknowledged

earlier.

Example: the sender receives the following sequence of

acknowledgments:

21 , 22 , 23 , 26

Clearly, frames 24 and 25 must have been either lost or

rejected (if they arrived, they did so before 26 arrived).

33

CIS 4210 Telecommunications'

&

$

%

Selective acknowledgments

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

ACK expected last sent end of frames

An ACK arrived with the sequence number 27 (stating that 27 was correctly

received).

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

To be resent last sent end of frames

34

CIS 4210 Telecommunications'

&

$

%

Timers

The sender must have a separate timer ticking for each

outstanding frame. when a timer expires, only one frame is

resent—the frame corresponding to the expired timer.

35

CIS 4210 Telecommunications'

&

$

%

Suppose the timer corresponding to frame 29 expired in this situation:

Sender’s Sliding Window

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

Acknowledged OW

last sent end of frames

There is no way to tell whether frame 25 was resent before frame 29 was sent or

after. One cannot even tell how many times frame 25 was transmitted so far.

Frame 25 has its own timer, so there is no need to resend it now.

What about frame 28? Since it is green, it must have already been retransmitted

(at least once) because it was originally sent before 29 was sent.

36

CIS 4210 Telecommunications'

&

$

%

Tricky cases

Consider the following sequence of events as observed by

the sender:

1. Frames 25, 26, 27, 28 were sent.

2. An ACK 27 arrived.

3. Frame 25 was resent (and 26 is marked for

retransmission).

4. The timer of frame 28 expired before the retransmission

of 26 started.

5. Frames 26 and 28 were resent (in some order).

Subsequently, frame 29 was sent.

6. An ACK 28 arrived.

7. (At least one frame is resent at this point.)

8. An ACK 29 arrived.

What to do now?

37

CIS 4210 Telecommunications'

&

$

%

Negative acknowledgments

The other method of using selective acknowledgments is to

combine them with explicit negative acknowledgments.

The idea is to delay positive acknowledgments until the

moment when a frame is ready to be delivered to the NL.

When the receiver accepts a frame as non–corrupted, it

checks whether it can forward it to the reassembly module

(which will deliver this frame to the NL). The reassembly

module requires that frames are given to it in order ; this rule

has to be obeyed even if it turns out that no reassembly is

needed in a given case.

38

CIS 4210 Telecommunications'

&

$

%

• If all the frames preceding the new frame have already

arrived, the frame is considered ready to be delivered to

the NL. While the exact delivery moment may lie in a

very distant future (reassembly), the DLL↔DLL

interaction is done (with respect to this frame).

• If some earlier frame is missing, the frame is not ready

to be delivered to the NL.

Note that even if reassembly is unnecessary and the NL is

connectionless, the above remains true because of the

fundamental principle of the network stack:

no layer may assume anything about the properties

of another layer, above or below.

39

CIS 4210 Telecommunications'

&

$

%

To ACK or to NACK

In principle, the receiver can react to every receiver frame by

sending back a frame:

ACK: if the received frame is ready. The frame number in

the ACK will indicate the frame expected next (the

“normal” acknowledgment).

NACK: if the received frame is not ready. The frame

number in the NACK will be the sequence number of the

earliest missing frame.

40

CIS 4210 Telecommunications'

&

$

%

In this example, the sender tries to send frames 21–26;

frame 22 is destroyed in the channel. The receiver

(±)acknowledges every frame.
Sender Receiver

21−→

22−→

23−→

24−→

25−→

22−→

26−→

happy!−→

←−ACK 22

←−NACK 22

←−NACK 22

←−NACK 22

←−ACK 26

←−ACK 27

41

CIS 4210 Telecommunications'

&

$

%

Saving on the number of (N)ACKs

The numerous NACKs are not needed if the channel is not

very noisy.

The first NACK should alert the sender and the rest will work

properly provided that there are no further losses in this

sequence. If there is another loss, expiring timers will force

additional retransmissions (too many of them) guaranteeing

a final success.

When NACKs are used, the timer fuse should be much

longer, because its role is restricted to a last–resort backup

for lost NACKs.

42

CIS 4210 Telecommunications'

&

$

%

Flow control

The receiver may be slower than the sender. This can be

caused by a number of factors, some of which are transient:

• The processor on the receiver’s card is too slow in

moving frames out of the input buffers.

• The receiver is fast enough but it is not able to deliver

datagrams to the NL fast enough (the NL does not

accept them fast enough, maybe because it is

congested with other traffic). Undelivered frames clutter

the DLL’s buffer space.

• A malfunction or a DoS attack cause the receiver to be

bothered with interrupts that must be handled, thus

preventing the receiver from emptying its input buffers

fast enough.

Whatever the reason, the receiver may face a situation

called buffer overrun in which there is no space in the input

buffer for newly arriving frames.

Flow control attempts to prevent buffer overrun by limiting

the the maximum number of genuinely outstanding frames.

43

CIS 4210 Telecommunications'

&

$

%

How to slow the sender

If the receiver is not fast enough, the sender must be told to

slow down. This can be done in two ways:

• By withholding acknowledgments: the sender will find

itself waiting for timeouts (sending nothing) and then by

sending duplicate frames (which the receiver can

partially ignore).

• By telling the sender to reduce the size of its sliding

window.

The second approach, used in TCP at the TL, leads to

dynamic window sizes.

44

CIS 4210 Telecommunications'

&

$

%

Piggybacking acknowledgments

If communication is bi–directional, it is natural to incorporate

acknowledgments in data frames sent in the opposite way.

the resulting protocols have to consider the option of

delaying an ACK in order to piggyback it; another timer must

be used to make sure that an acknowledgment is not

delayed for too long (thus causing a timeout at the other

end).

45

