
CIS 4210 Telecommunications'

&

$

%

Error detection and recovery

Errors occur because the signal is corrupted during its trip

from the transmitter to the receiver. While some errors can

be detected immediately by the receiver (PL), most result in

the signal being incorrectly decoded.

Besides jamming the transmitter, the PL has no means of

telling the transmitter that a frame was not received correctly

(and even jamming does not guarantee that the transmitter

will take notice).

The typical arrangement is that the PL passes a complete

frame to the DLL (even if it clearly is incorrect) and it is the

DLL’s task to validate it.

1

CIS 4210 Telecommunications'

&

$

%

Validation is based on two tests:

Header : the body of the frame must correspond to the

header of the frame (especially the length).

Checksum : the checksums calculated for the received

frame must match the checksums sent together with the

frame.

The term checksum is acquiring a narrower meaning: to

denote a non–cyclic checksum; cyclic checksums are

increasingly called CRC and not considered “checksums”

anymore.

2

CIS 4210 Telecommunications'

&

$

%

Detection and correction

A first step is to determine whether the transmission was

error–free. If it was not, three possibilities exist:

• Discard the frame. This works if the communication

protocol requires positive acknowledgments (the

transmitter will retransmit the frame) or in real–time

communication (there is no use for another copy of the

frame).

• Ask for retransmission (negative acknowledgment). This

is called backward error correction .

• Attempt to correct the frame (and, if not successful,

resort to one of the other two options). This is forward

error correction (FEC).

Note that a frame is deemed error–free is it passes a

statistical test which is not the same as containing no errors.

3

CIS 4210 Telecommunications'

&

$

%

Redundant bits

The simplest idea is to treat the whole frame as one unit.

The sender adds to the transmitted frame a sequence of bits

that are a coding function of the contents of the frame. That

is, a frame of n bits is interpreted as one very long n–bit

integer in binary notation F and a well–chosen function C is

applied to it. The result is C(F), an integer which can be

viewed as a sequence of r bits.

Thus, instead of sending the frame F of n bits the

transmitter sends the n+r bit sequence Fc where

c = C(F) is the redundant part of the frame.

The receiver sees this sequence as Frcr.

The receiver performs the computation of C(Fr) and

compares the result with cr . If the two match, the frame is

assumed intact. Otherwise, the frame contains bit errors.

If C was chosen well, it can give us hints about the location

of the error(s) which leads to a potential FEC.

4

CIS 4210 Telecommunications'

&

$

%

Block coding

The method used in practice applies the above idea not to

whole frames (which are of variable lengths) but to

fixed–size chunks of frames.

The frame is divided into blocks of fixed size (n bits) (the last

block is padded if too short). A suitable function C is used;

this function takes an n bit integer as argument and

produces an r bit result.

The frame block of length n is called a dataword while the

corresponding sequence of n+r bits is called a codeword .

One immediate observation: since we construct codewords

out of legal datawords only, there can be only 2n legal

codewords. There are 2n+r codewords in all, hence a

randomly chosen codeword is legal with probability 1

2r
.

5

CIS 4210 Telecommunications'

&

$

%

Some math

Consider arithmetic with 0 and 1 being the only numbers

allowed (no multi–digit numbers). It is called arithmetic

modulo 2 (because it gives the same result as “normal”

arithmetic with only the remainder from division by 2 kept).

⊕ is the addition and ⊖ the subtraction symbol for this

arithmetic:

Operation Result

0 ⊕ 0 0

0 ⊕ 1 1

1 ⊕ 0 1

1 ⊕ 1 0

6

CIS 4210 Telecommunications'

&

$

%

Note that ⊖ is the same as ⊕:

Operation Result

0 ⊖ 0 0

0 ⊖ 1 1

1 ⊖ 0 1

1 ⊖ 1 0

7

CIS 4210 Telecommunications'

&

$

%

2–bit parity block code

A simplistic 2–bit block code: n = 2 and C is the sum of

bits using ⊕ (hence r = 1).

Dataword C Codeword

00 0 000

01 1 011

10 1 101

11 0 110

All the legal codewords in this simple code have an even

number of 1s. This is sufficient to detect all single–bit errors

within one block (parity check).

8

CIS 4210 Telecommunications'

&

$

%

Hamming distance

Consider two binary strings α = {αi} and β = {βi} (both

strings must have the same length).

The Hamming distance d between α and β is defined as

the number of bits where αi 6= βi.

More formally:

d(α, β) =
n∑

i=1

αi ⊕ βi

where the summation is a simple addition and n is the length

of the strings.

9

CIS 4210 Telecommunications'

&

$

%

Minimum Hamming distance

Consider a set of codewords W = {Wi}i=1..n. The

minimum Hamming distance dmin for this set is the smallest

distance between all pairs of codewords in the set:

dmin(W) = min
i=1..n,j=1..n,i 6=j

d(Wi, Wj)

For the 2–bit parity block code, dmin = 2 because

d(1, 2) = 2, d(1, 3) = 2, d(2, 3) = 2 and d(3, 4) = 2.

This is true for any n–bit parity block code.

10

CIS 4210 Telecommunications'

&

$

%

Error detection and Hamming distance

A block code with dmin = s + 1 guarantees the

detection of all errors within the block involving

no more than s bits.

Examples:

• All errors of 1 bit or 2 bits can be detected in a block

code with dmin = 3. Some errors involving more bits

might also be detectable, but not all.

• Any n–bit parity code has dmin = 2. Hence single–bit

errors can be detected. In fact all errors involving an odd

number of bits (within a single block) can be detected.

11

CIS 4210 Telecommunications'

&

$

%

Correction of errors

A block code with dmin = 2s + 1 guarantees

the correction of all errors within the block

involving no more than s bits.

This implies that block codes with an odd minimum

Hamming distance should be considered more efficient that

those with an even dmin.

12

CIS 4210 Telecommunications'

&

$

%

Polynomial arithmetic

Again, the only allowable values are 0 and 1.

A polynomial P (x) of degree n is defined as:

P (x) =

n∑

i=0

aix
i

where ai ∈ {0, 1}.

Note that a polynomial of degree n can be viewed as a

pattern of n+1 bits that looks identical but should not be

confused with a binary–encoded integer which also is, in

fact, a polynomial (x = 2) similarly represented.

The difference is in the way operations on them are defined.

13

CIS 4210 Telecommunications'

&

$

%

Polynomial addition

The sum of two polynomials P1(x) =
∑n

i=0
aix

i and

P2(x) =
∑m

i=0
bix

i is (assuming that n ≥ m):

P1(x) ⊕ P2(x) =
n∑

i=0

(ai ⊕ bi)x
i

(x6 + x2 + 1) ⊕ (x5 + x2 + 1) = x6 + x5

In bit representation:

1000101 ⊕ 0100101 = 1100000

while

1000101 + 0100101 = 1101010

Polynomial subtraction is the same as addition.

14

CIS 4210 Telecommunications'

&

$

%

Polynomial multiplication

Polynomials are multiplied term by term. Then the

coefficients are summed using ⊕.

(x6 + x3 + x) ⊗ (x2 + x + 1) = x8 + x5 + x3

⊕

x7 + x4 + x2

⊕

x6 + x3 + x

= x8 + x7 + x6 + x5 + x4 + x2 + x

15

CIS 4210 Telecommunications'

&

$

%

Polynomial division

Division is done in a manner similar to “normal” division but

is a bit easier.

When P (x) =
∑n

i=0
aix

i of degree n is divided by Q(x)

of degree r, a sequence of n − r + 1 operations is

performed.

• Each operation subtracts Q(x) ⊗ xi from P (x) if the

leading bit of P (x) is a 1

(for i = n − r, n − r − 1, ..., 0).

• If the subtraction was performed, a xi is appended to

the quotient.

At the end we have an n − r + 1 bit quotient and an r bit

remainder.

16

CIS 4210 Telecommunications'

&

$

%

Division

P (x) = x6 + x5 + x2 + x (n = 6) is divided by

Q(x) = x3 + 1 (r = 3).

Q(x) ⊗ x3

x6 + x5 + x2 + x ⊖ x6 + x3 = x5 + x3 + x2 + x

and the quotient is x3 (and counting).

Q(x) ⊗ x2

x5 + x3 + x2 + x ⊖ x5 + x2 = x3 + x

and the quotient is x3 + x2 (and counting).

Q(x) ⊗ x1

x3 + x vs. x4 + x

no subtraction is performed in this step.

Q(x) ⊗ x0

x3 + x ⊖ x3 + 1 = x + 1

and the quotient is x3 + x2 + 1.

The result is x3 + x2 + 1 with a remainder of x + 1.

17

CIS 4210 Telecommunications'

&

$

%

Cyclic Redundancy Codes

A CRC code is one computed using polynomial calculations.

Given is a set of n bit datawords W = {Wi}. We want to

create a corresponding set of n + r bit codewords that form

a CRC code.

We need a polynomial of degree r. We will use this

polynomial to divide datawords and append the division

remainders to the datawords to form codewords.

18

CIS 4210 Telecommunications'

&

$

%

CRC

Given is a block code of size n (i.e. each dataword is n bits

long). We want to have CRC codewords of length n + r so

we pick a suitable polynomial of degree r called generator

G(x).

To compute the codeword for dataword W the algorithm

does the following:

• W is interpreted as a polynomial W (x) and is

multiplied by xr . Let D(x) = W (x) ⊗ xr .

• D(x)⊘G(x) is performed and the remainder is stored

in R(x). R(x) (which must have r bits) is added to

D(x) to form a codeword.

19

CIS 4210 Telecommunications'

&

$

%

Example: n = 4, the dataword is 1001 (W (x) = x3 + 1)

and G(x) = x3 + x + 1 (implies r = 3).

D(x) = W (x) ⊗ x3 = x6 + x3 and

x6 + x3 = (x3 + x + 1) ⊗ G(x) ⊕ (x2 + x)

so the remainder of D(x) ⊘ G(x) is x2 + x and the

codeword is:

x6 + x3 + x2 + x

or 1001110 as a sequence of 4+3 bits.

20

CIS 4210 Telecommunications'

&

$

%

Beauty of ⊖

The codeword D(x) ⊕ R(x) was produced as after

calculating that: D(x) = Q(x) ⊗ G(x) ⊕ R(x) (where

Q(x) is the quotient).

The codeword equals

D(x) ⊕ R(x) = Q(x) ⊗ G(x) ⊕ R(x) ⊕ R(x). It so

happens that the result of ⊕ is the same as the result of ⊖

so R(x) ⊕ R(x) = 0 for any R(x) and

D(x) ⊕ R(x) = Q(x) ⊗ G(x)

which means that the codeword is divisible by the generator

without a remainder.

21

CIS 4210 Telecommunications'

&

$

%

CRC and error detection

When a codeword sent as C(x) is received, it has the form

C(x) + E(x) where E(x) is the error introduced during

transmission.

Detection consists of determining whether E(x) = 0.

Dividing C(x) + E(x) by G(x), one gets a remainder

(ignore the quotient) which is equal to:

remainder(E(x) ⊘ G(x))

because C(x) is divisible by G(x).

The CRC test:

A received codeword is correct if it is divisible by

G(x).

Implication: errors divisible by G(x) are not caught by the

CRC test; all other errors are caught.

22

CIS 4210 Telecommunications'

&

$

%

A good generator

• Any generator with at least 2 terms will catch all one–bit

errors.

Proof: a single–bit error has E(x) = xk for some k.

No polynomial of the form xi + xj divides xk as long

as i 6= j.

• A polynomial with an odd number of terms cannot be

divisible by x + 1.

Proof: the subtraction step in ⊘ division subtracts

xi+1 + xi; it reduces the number of terms by either 2

or 0, keeping it odd, hence never equal to 0 (terms).

Moral: a generator divisible by x + 1 will catch all errors

involving an odd number of bits.

• Any generator of degree r will detect all burst errors

(errors in consecutive bits) involving no more than r bits.

Several other interesting observations can be made.

23

CIS 4210 Telecommunications'

&

$

%

Some useful polynomials

Name Polynomial

CRC–8 x8 + x2 + 1

CRC–16 x16 + x12 + x5 + 1

CRC–32 x32 + x26 + x22 + x16 + x12 + x11

+x10 + x8 + x7 + x5 + x4 + x2 + x + 1

24

CIS 4210 Telecommunications'

&

$

%

1’s complement arithmetic

In modulo–n binary arithmetic the result can be computed in

two different ways:

2’s complement notation, i.e. the result is the remainder

after truncating the carry bits. For example,

1010 ⊕16 1001 = 1 | 0011 =2 11

(10 + 9 mod16 = 3).

1’s complement notation, with the result being equal to the

remainder plus the carry. The same example:

1010 ⊕16 1001 = 1 | 0011 =1 100

(hmmm, 10 + 9 = 4? Yes, 10 + 9 mod15 = 4).

1’s and 2’s complement exist to express negative numbers.

Humans (and computers) use 2’s complement arithmetic,

mainly because it has only one zero (in 1’s complement

there are two zeros: +0 and −0).

25

CIS 4210 Telecommunications'

&

$

%

Traditional checksum

A checksum was originally defined as the sum of all the

datawords.

The transmitter divides the frame into n bit datawords. All

the datawords are added using 1’s complement modulo–n

arithmetic. The result, called checksum , is then negated

and appended to the frame.

The receiver also computes the checksum over all the bits it

received (sender’s checksum included). The result must be

−0 if there are no transmission errors; if there are errors, it

might still be −0 (with a tiny probability).

26

CIS 4210 Telecommunications'

&

$

%

Checksum and the Internet

Checksums are used by several protocols, most notably by:

IP: uses a 16–bit checksum (i.e. n = 16).

UDP: also uses an optional 16–bit checksum. The existence

of 2 zeros is cleverly used: if the checksum field is a +0

(all zeros), it means that no checksum was sent (if a

checksum of 0 was sent, it must have been encoded as

the other zero: −0 which is all ones).

27

CIS 4210 Telecommunications'

&

$

%

Error correction

The methods used nowadays are fairly complex. They are

based on complex block codes or on convolution(al) codes

which are an extension of the polynomial approach to block

codes.

The most common is the Reed–Solomon block code. In its

variant used in CDs, DVDs (and many other applications)

uses datawords of size 223 bytes which it converts into

255–byte codewords. The (223,32) variant allows to correct

any 16 byte–errors per block.

Error correction algorithms require guesswork, because they

attempt to reconstruct the most probable legal codeword

from a given illegal codeword. The classic (and standard)

algorithm is Viterbi’s.

28

