CIS 3210 Computer Networks

4 I
‘ Socket API '

The Socket API was created as part of Berkeley
UNIX BSD4.2 in 1983. Its variants, such as
WinSOCK, exist for all serious systems.

From the start, it was a library of C functions
that allowed application—layer programs to
communicate with transport—layer protocols TCP
and UDP. The API uses IP addresses and port

numbers, so it is Internet—oriented.

Hence, the Socket API is a pair of communication
protocols: application software to TCP/IP or
UDP/IP (with responses coming back).

There is plenty of literature on the Socket API;
my favourites are Beej’s Guide and
Spencer’s Socket site. Also: Java Socket Class,

wikipedia and more.

o /

http://retran.com/beej
http://www.lowtek.com/sockets
http://java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html
http://en.wikipedia.org/wiki/Berkeley_sockets

CIS 3210 Computer Networks

4 N

‘Overview of Socket API'

The Socket API uses virtual links called sockets.
A socket is

e an imaginary point—point link between TLs
on two machines (Transmission Control
Protocol—TCP). This link exists only for the

duration of a session.

e an imaginary omni-directional receiver
combined with a point—to—point sender (User
Datagram Protocol—UDP). This “device”
exists either permanently or is activated and
deactivated when needed.

o /

CIS 3210 Computer Networks

4 N
TCP Client/Server I

Typically, the API is a client—server interface. Its

library covers the functionality of both of them.

TCP

Client Server
socket () socket ()
bind() (?) bind()
listen()

connect() accept()

[send() + recv()]” | [send() + recv()]"

close() close()

The server closes not the socket created by
socket(), but the one given by accept().

o /

CIS 3210 Computer Networks

4 N

Client Server

(socket()
bind()

listen()
\accept()

§<_<

Other clients
+ WAIT

socket/() —>
connect () —y

WAIT —

send () —

recv()

WAIT —

CIS 3210

Computer Networks

-~

Client Server

§<_<

(socket()

socket
bznd

connect
—

send

recv()

WAIT —

\accept()

~

bind()

listen()

Other clients
+ WAIT

recv()

Other clients
+WAIT

CIS 3210 Computer Networks

4 N
‘ UDP Server/Server I

In UDP there is no real distinction between servers and clients,

other than the vague persistent/dormant behaviour (a client will
become dormant if it issues a close() request).

UDP
Client Server
socket|() socket /()
bind() bind()

[Sendto() + recvfrom()]* [sendto() + recvfrom()]*

close()

There is no separate data socket, so the server has nothing to close.

- /

CIS 3210 Computer Networks

/ UI?Pl UI?Pz \
socket()}_;
bind()
i

r——recvﬂrnn()

recvirom()

fmUD%%é
sockaddr_in‘\;

sendto()

sendto() —>. r recvirom()

i(—recvfrom()

\/ \/

recvfrom() accepts datagrams from anyone and
returns the address of the sender.

N /

CIS 3210 Computer Networks

4 N

‘ Socket API '

desc = socket(protocolfamily , type , protocol) ;

protocolfamily: PF_INET (for Internet) etc.

type: SOCK_STREAM, SOCK_DGRAM etc.

protocol 0 (normally) or a pointer to a struct manufactured by
getprotobyname("tcp”) or similar (see /etc/protocols).

- /

CIS 3210 Computer Networks

‘Assigning a port to a Socketl

returncode = bind(desc , localaddress , addresslength) ;

The second argument is of type (struct sockaddr x*:
struct sockaddr {

short sa_family /« protocol family */
char sa_data[l14] ; /x address %/

b

The address field is protocol-dependent.

- /

CIS 3210 Computer Networks

Protocol description of address ﬁeld'

This is the sockaddr structure for TCP:
struct sockaddr_in {

short sin_family ; // = AF_INET = PF_INET
u_short sin_port ; // port number
struct in_add sin_addr ; // IP address - 4 bytes
char sin_zero[8] ; // nothing

}

An IP address INADDR_ANY should be used

(unless the machine has several IP addresses and

we want to restrict incoming messages only to
those using one of the addresses). Likewise,
INADDR_ANY can be used in the port field.

o /

10

CIS 3210 Computer Networks

4 N

‘Starting a TCP server'

listen(desc , queuesize) ;

The queuesize argument gives the maximum

number of pending connect() requests.

listen() activates the port and makes it wait for
incoming connect() requests. Note that listen()
terminates as soon as it activates the port.

If the protocol is connectionless, listen() does not

do anything good.

o /

11

CIS 3210 Computer Networks

a N
A new TCP session'

A session has to be started by creating a virtual circuit, so listen()
should be followed by a handshake.
newsocket = accept(desc , client_addr , int xcl_addr_len) ;

client_addr is of type (struct sockaddr *). accept() returns in it the
address of the client (with its length returned in cl_addr_len).

Now the server process is ready to accept messages from this
particular client using the newsocket socket returned by accept().
When the circuit is closed, this is the socket to be closed, not the
one created by socket().

- /

12

CIS 3210 Computer Networks

4 N

The code in the server'

A connection—oriented server works like this:
getprotobyname(...) ;

s_sock = socket(...) ;

bind(s_sock , ..) ;

listen(s_sock , ..) ;

// server is running now
cl_sock = accept(s_sock , ..) ;
recv(cl_sock , ...) ;

send(cl_sock , ...) ;

close(cl_sock) ;

The part between accept() and close() is a

complicated loop, often involving a call to select().

o /

13

CIS 3210 Computer Networks

4 N

‘Client starts TCP session'

returncode = connect(sock , server_address , server_addresslen) ;

14

CIS 3210 Computer Networks

a N
Client side I

sock = socket(protofamily , type , protocol) ;

struct sockaddr_in server_address ;

server_address.sin_family = AF_INET ;

// fill the IP address here

server_address.sin_port = htons(SRV_TCP_PORT) ;

returncode = connect(sock , server_address , server_addresslen) ;

send(sock , data_address , length , flags) ;

connect() is needed for connection—oriented sessions only. It also
works for connectionless service allowing to use send() instead of

sendto() (unclear what for).

- /

15

CIS 3210 Computer Networks

4 D
Byte ordering I

The Internet protocols require numeric values to

be passed in a specified byte order which happens
to be different than the host ordering of many
machines (e.g. Intel).

To convert from/to host to/from network order
use:

u_long htonl(u_long hostlong) ;
u_short htons(u_short hostshort) ;
u_long ntohl(u_long netlong) ;
u_short ntohs(u_short netshort) ;

These functions always work; for portability, they
cannot be omitted.

o /

16

CIS 3210 Computer Networks

4 N

Names and addresses'

struct hostent xgethostbyname(char xhost) ;

struct xgetservbyname(char xservname , char xprotocol) ;

17

CIS 3210 Computer Networks

4 N

shutdown() I

Another function that belongs to the Socket API
is shutdown() which was designed to allow closing
one direction of the two—directional stream

between the two hosts.

18

