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Abstract 

In this paper, we show how linguistic expressions can be generated to describe the spatial relations between a 

mobile robot and its environment, using readings from a ring of sonar sensors.  Our work is motivated by the study of 

human-robot communication for novice robot users.  The ultimate goal is to exploit these linguistic expressions for 

navigation of the mobile robot in an unknown environment, where the expressions represent the qualitative state of the 

robot in terms that are easily understood by humans.  The notion of the histogram of forces was presented in previous 

work and used to generate linguistic descriptions of relative positions in digital images.  Here, we demonstrate that it also 

permits fast processing of vector data and can be applied to a robot with range sensors moving in a dynamic 

environment.  We introduce a new method for detecting partially and completely surrounded conditions, and we show 

that detailed descriptions can be obtained as well as coarse ones.  Numerous examples are included, illustrating a variety 

of situations.   
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1.  Introduction 

 
Our work is motivated by the study of human-robot interaction and, in particular, the investigation of human-robot 

communication.  The ultimate goal is to provide easy and intuitive interaction by novice users, so that they can guide, 

control, and/or program a robot to perform some purposeful task.  We consider the communication between the human 

user and the robot to be crucial to intuitive interaction by non-robotics experts.  We further argue that good 

communication is essential not only from the human to the robot but also from the robot to the human (so that the user 

can monitor the robot’s current state or condition).  See (Morik et al., 1999) and (Skubic and Volz, 2000) for further 

motivation and examples on task-oriented dialogues. 

In this paper, we are not attempting to build an exact model of the robot’s environment, nor to generate a 

quantitative map.  However, we do want to generate linguistic expressions that represent the state of the robot with 

respect to its environment in terms that are easily understood by human users.  These expressions provide a symbolic link 

between the robot and the user, thus comprising a navigation language for human-robot interaction, and can be utilized 
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for two-way communications.  First, in robot-to-human communication, they provide a qualitative description of the 

robot’s current state (e.g., “ there is an object on the left,”  or “ there is an object on the front-right” ).  Second, in human-to-

robot communication, the human can command the robot to perform navigation behaviors based on spatial relations (e.g., 

“while there is an object on the left, move forward,”  or “ if there is an object on the front-right, turn left,”  or even a high-

level and very human-like directive such as “ turn left at the second intersection” ).  The following examples are 

representative scenarios in which robot-generated linguistic spatial descriptions may prove useful: 

 
1. Semi-autonomous control of a robot, where control may alternate between varying levels of 

autonomous robot control and direct human control (i.e., adjustable autonomy). 

2. Supervisory control, where the user issues high-level commands, allowing control with a low 

bandwidth communication channel. 

3. Programming the robot to perform some navigation-related task in an unstructured 

environment with some landmarks. 

 
Cognitive models suggest that people use relative, egocentric spatial reasoning to perform day-to-day navigation 

tasks (Previc, 1998) (Schunn and Harrison, 2001).  Thus, it seems natural to incorporate such spatial language into an 

interface for a mobile robot.  We assume the robot has low-level navigation behaviors (either pre-programmed or pre-

learned) that allow it to move safely around its unstructured and dynamic environment.  However, task-level navigation 

is represented and described as a sequence of navigation behaviors that are segmented by qualitative “states”  based on 

spatial relations.  That is, each navigation behavior has a corresponding termination state that transitions the robot to the 

next behavior; the sequence describes the entire navigation task.  This model is consistent with hierarchical methods 

proposed for topological navigation, e.g., (Kuipers, 1998) (Krieg-Brückner et al., 1998).  To accomplish this model of 

navigation and to provide communication with a human user, the robot must be able to recognize its state in terms of 

egocentric spatial relations between itself and objects in its environment, and it must be able to describe these relations in 

natural language.   

The idea of relying on linguistic spatial expressions to communicate with a semi-autonomous robot has been 

proposed previously.  Gribble et al. (1998) use the framework of the Spatial Semantic Hierarchy for an intelligent 

wheelchair.  Perzanowski et al. (1999) utilize a combination of gestures and linguistic directives such as “go over there.”   

In (Shibata et al., 1996), positional relations are used to overcome ambiguities in the recognition of landmarks.  In (Stopp 

et al., 1994), the user communicates with a 2-arm mobile robot performing assembly tasks.  He selects an object from the 

robot’s environment model by expressing relational spatial descriptions.  Finally, Moratz and Fischer (2000) have 

conducted experiments to investigate the spatial references preferred by users when directing a small mobile robot 

between obstacles.  Results indicated that the robot’s point of view was consistently adopted.  Furthermore, to obtain the 

desired trajectory, about half of the study’s participants described the trajectory as a sequence of primitive actions (e.g., 

“move forward, and turn left” ).   

The main focus of this paper is the creation of linguistic expressions that describe the spatial relations between a 

mobile robot and its environment using readings from a ring of range sensors such as sonar sensors.  Our work relies on 

spatial analysis tools previously applied to image data (Matsakis et al., 2001).  It develops and extends a preliminary 
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study presented in (Skubic et al., 2001).  Background material as well as new spatial analysis tools are examined in 

Section 2.  In Section 3, we show how these tools can be interfaced with the robot’s sonar readings.  Specific test cases 

are shown in Section 4.  Concluding remarks along with a discussion of future work are found in Section 5.   

2.  Using the Histogram of Forces 

Freeman (1975) proposed that the relative position of two objects be described in terms of spatial relationships 

(such as “above,” “surrounds,” “includes,” etc.).  He also proposed that fuzzy relations be used, because “all-or-nothing” 

standard mathematical relations are clearly not suited to models of spatial relationships.  Moreover, “although the human 

way of reasoning can deal with qualitative information, computational approaches of spatial reasoning and object 

recognition can benefit from more quantitative measures” (Bloch, 1999).  By introducing the notion of the histogram of 

angles, Krishnapuram et al. (1993) and Miyajima and Ralescu (1994) developed the idea that the relative position 

between two objects can have a representation of its own and can thus be described in terms other than spatial 

relationships.  However, the representation proposed shows several weaknesses (e.g., requirement for raster data, long 

processing times, anisotropy).   

Matsakis (1998) introduced the histogram of forces.  Contrary to the angle histogram, it permits processing of 

vector data as well as raster data, offers solid theoretical guarantees, allows explicit and variable accounting of metric 

information, and lends itself, with great flexibility, to the definition of qualitative directional spatial relations such as “to 

the right of,” “in front of,” etc. (Matsakis and Wendling, 1999) (Matsakis et al., 1999, 2001).  For our purposes, the 

histogram of forces also allows for a low-computational handling of heading changes in the robot’s orientation and 

makes it easy to switch between a world view and an egocentric robot view. 

2.1.  Handling of Vector Data 

In previous work, force histograms were generated using raster image data.  The present paper describes the first 

application of histograms that uses vector data, i.e., a boundary representation of the objects.  Here, we show how vector 

data are handled.  In the framework of our experiments with the robot, the objects that we consider are naturally quite 

simple. In the following, A  and B  denote two disjoint and polygonal 2D objects, as in Fig. 1a.  Note, however, that no 

theoretical issue prevents them from intersecting, having holes, being non-connected or with uncertain boundaries (i.e., 

fuzzy).  French-speaking readers can find more details in (Matsakis, 1998).  

Consider any direction θ .  The objects A  and B are partitioned by drawing straight lines through their vertices, at 

the angle of θ (Fig. 1b).  Two consecutive lines determine pairs (I,J) of trapezoids (or triangles, which are particular 

trapezoids) with I included in A and J in B.  Seven non-negative values may be used to characterize such a pair: X1, Y1, 

Z1, X2, Y2, Z2 and ε (Fig. 1c).  Now, assume I and J are flat plates of uniform density and constant and negligible 

thickness (this kind of objects is commonly considered in physics, see, e.g., (Cutnell and Johnson, 2001)).  If I is located 

“after” J in direction θ  (which is the case in Fig. 1c), then there exist elementary gravitational forces, exerted by the 

points of I on those of J, that each tend to move J in direction θ.  The scalar resultant Γg
IJ

  of these forces is 

 Γg
IJ

  = ε[λ(X1+Y1,X2+Y2)− λ(Y1,Y2)+λ(Y1+Z1,Y2+Z2)− λ(X1+Y1+Z1,X2+Y2+Z2)], (1) 

where λ  denotes the function defined by: 
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for any positive real numbers s  and t , if ts ≠  then )/()]ln()ln([),( stssttts −−=λ , 

                  else )ln(1),(lim),( stsss st +== → λλ . 

The sum of all Γg
IJ, when processing all pairs (I,J), is denoted by Fg

AB
(θ).  It represents the total weight of the arguments 

that can be found in order to support the proposition “A is in direction θ of B.”   The function Fg
AB  

| θ →  Fg
AB

(θ) is called 

the histogram of gravitational forces associated with (A,B).  It models the position of A relative to B.  The object A is the 

argument, and the object B the referent.  

In lieu of gravitational forces, constant forces can also be considered (i.e., the elementary force exerted by one 

material point on another does not depend on the distance between the two points; like gravitational forces, constant 

forces are commonly encountered in physics).  Γg
IJ

  is then replaced by Γc
IJ

 : 

 Γc
IJ

  = ε[ (X1+X2)(Z1+Z2)+X1Z1+X2Z2] /[6 cos2(θ)] . (2) 

The sum of all Γc
IJ, when processing all pairs (I,J), is denoted by Fc

AB
(θ).  The function Fc

AB  
| θ →  Fc

AB
(θ) is the 

histogram of constant forces associated with (A,B).  It is another representation of the position of A relative to B.  As 

shown in (Matsakis and Wendling, 1999), the histograms Fc
AB and Fg

AB satisfy various geometric properties and have 

interesting characteristics.  Fc
AB provides a global “view”  of the situation.  It considers the closest parts and the farthest 

parts of the objects equally, whereas Fg
AB focuses on the closest parts.   

The practical computation of a histogram of forces can be summarized by the algorithm below.  The computation 

time is obviously proportional to the number of directions that are considered.  For our experiments, in Section 4, we 

chose 180 directions—an appropriate choice according to (Matsakis and Wendling, 1999).  The assessment of each 

value, Fc
AB

(θ) or Fg
AB

(θ), is of complexity ))log(( nnO , where n denotes the total number of object vertices.  Histogram 

computation is extremely fast.  The mobile robot considered in Sections 3 and 4 describes its environment in real time.  

  

Algorithm for computing the histogram of forces: 

     Choose a number d of directions; 

     FOR each θ in the set {0, 2π/d, 4π/d, … , 2(d-1)π/d} of evenly distributed directions DO 

     F
AB

(θ) ← 0 ; 

     Partition the objects into trapezoids by drawing lines through A and B’s vertices at the angle of θ  (Fig. 1b); 

     FOR each trapezoid (or triangular) region I of object A DO 

    FOR each trapezoid (or triangular) region J of object B DO 

     IF  I and J are delimited by the same lines AND I is “after”  J in direction θ  THEN 

      Compute the scalar resultant Γ 
IJ (Fig. 1c and formula (1) or (2)); 

       F
AB

(θ) ← FAB
(θ) + Γ 

IJ
; 
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Fig. 1.   The computation of a histogram value like Fg
AB(θθθθ) is based on the par titioning of the objects into trapezoids.  (a) Two 

disjoint polygonal objects A and B.  (b) (I ,J) is one of the five pairs of trapezoids that support the proposition “ A is in direction θθθθ 
of B” :  I  and J are delimited by the same parallel lines; I  is included in A and J is included in B; I  is located “ after”  J in 
direction θθθθ.  Note that (I ’ ,J) is not one of these five pairs: since I ’  is located “ before”  J in direction θθθθ, the pair  (I ’ ,J) does not 
support at all the proposition “ A is in direction θθθθ of B”  (it supports, however, the proposition “ A is in direction θθθθ +ππππ of B”  and 
will be considered when computing Fg

AB(θθθθ+ππππ)).  (c) ΓΓΓΓg
IJ is the scalar  resultant of elementary forces (black arrows).  Each one 

tends to move J in direction θθθθ.  The computation of ΓΓΓΓg
IJ requires seven values to be determined. 

 

2.2.  Describing Directional Relationships 

In previous work on image analysis, Matsakis et al. (2001) have presented a system that produces linguistic spatial 

descriptions.  The description of the relative position between any 2D image objects A  and B  is generated from Fc
AB 

(the histogram of constant forces associated with ),( BA ), and Fg
AB (the histogram of gravitational forces).  The linguistic 

description produced by the system relies on the four primitive directional relationships: “to the right of,” “above,” “to 

the left of” and “below” (imagine that the objects are drawn on a vertical surface).  First, eight values are extracted from 

the analysis of each histogram: α(RIGHT), β(RIGHT), α(ABOVE), β(ABOVE), α(LEFT), β(LEFT), α(BELOW) and 

β(BELOW).  They represent the “opinion” given by the considered histogram.  For instance, according to Fc
AB the degree 

of truth of the proposition “ A  is to the right of B ” is some value αc(RIGHT).  This value is a real number greater than 

or equal to 0 (proposition completely false) and less than or equal to 1 (proposition completely true).  Moreover, 
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according to Fc
AB the maximum degree of truth that can reasonably be attached to the proposition (say, by another source 

of information, like Fg
AB) is βc(RIGHT) (which belongs to the interval [αc(RIGHT),1]).  Fc

AB and Fg
AB’s opinions (i.e., the 

sixteen values) are then combined.  Four numeric and two symbolic features result from this combination.  They feed a 

system of 27 fuzzy rules and meta-rules that outputs the expected linguistic description.  The system handles a set of 16 

adverbs (like “mostly,” “perfectly,” etc.) that are stored in a dictionary, with other terms, and can be tailored to individual 

users.  A description is generally composed of three parts.  The first part involves the primary direction (e.g., “ A  is 

mostly to the right of B ”).  It is often supplemented by a second part that involves a secondary direction (e.g., “but 

somewhat above”).  The third part indicates to what extent the four primitive directional relationships are suited to 

describing the relative position of the objects (e.g., “the description is satisfactory”).  In other words, this assessment 

indicates to what extent it is necessary to turn to other spatial relations (e.g., “surrounds”).  All details can be found in 

(Matsakis et al., 2001). 

 

2.3.  Describing “ Surrounds”  

2.3.1.  Existing Methods 

The spatial relationships “surrounds” and “is surrounded by” have an important role in the interpretation of an 

image scene or an environment.  Many quantitative definitions have been proposed.  There are two main approaches.  

The first approach uses the fact that according to most families of directional relations, an object can be in many 

directions with respect to another.  This feature is questionable: usually, people do not combine more than two spatial 

prepositions when translating visual information into natural language descriptions (Gapp, 1995) (Retz-Schmidt, 1988).  

However, some authors (Miyajima and Ralescu, 1994) (Bloch, 1999) support the idea that it allows “surrounds” (and “is 

surrounded by”) to be derived.  Knowing that A  is somewhat above, below, to the right and to the left of B  as well, one 

could conclude that A  surrounds B .  In fact, drawing such a conclusion is not reasonable, unless it is known that the 

argument A  does not intersect the convex hull of B  (Fig. 2).  In other words, “ A  surrounds B ” can be assessed only if 

it is known that B  does not surround A  at all.  The reason is that the directional relations are tied by the semantic 

inverse principle (Freeman, 1975) (e.g., A  is to the left of B  as B  is to the right of A ).  Therefore, without constraints 

on the objects, there is no way to know which one surrounds (or includes!) the other. 

 

B A BA B A

 
 

(a)  (b) (c) 

Fig. 2.   The directional relations cannot substitute for the spatial relation “surrounds.”  In each case, according to most families 
of directional relations, object A  is somewhat above, below, to the right and to the left of object B  as well.  It does not mean 
that A  surrounds B .  (a) A  is surrounded by B .  (b) A  surrounds B .  (c) A  is included in B . 
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The second approach derives from Rosenfeld’s visual surroundedness (Rosenfeld and Klette, 1985).  It is based on 

the computation of a histogram of angles.  It supposes that the argument A  is connected and does not intersect B .  For 

any pixel P  of B , let Pθ  be the angle made by the two tangents from P  to A  as in Fig. 3.  To each element θ  of 

]2,0[ π , the histogram associates the number of pixels P  such that Pθ  is equal to θ .  In (Wang and Keller, 1997), the 

degree of truth for “ A  surrounds B ” is produced by a multilayer perceptron fed by the histogram values and trained on 

aggregate responses from a panel of people.  Other authors resort to a decreasing membership function µ  from ]2,0[ π  

into ]1,0[ , where µ  is chosen such that )(θµ  is 1 if θ  is 0, and is 0 if θ  is greater than π .  In (Miyajima and Ralescu, 

1994), the histogram of angles is assimilated to a fuzzy set and matched to µ , using the compatibility notion (Dubois 

and Prade, 1980).  The degree of truth for “ A  surrounds B ” is obtained as the center of gravity of the compatibility 

fuzzy set.  In (Krishnapuram et al., 1993), the histogram is used to compute the aggregated value (e.g., the arithmetic 

mean, or the generalized mean (Klir and Folger, 1988)) of all the )( Pθµ .  The degree of truth for “ A  surrounds B ” is 

set to this value.  The second approach to defining surroundedness is interesting.  Compared with the first one, it gives 

results which are much more consistent with human perception (Wang and Keller, 1997).  However, the computing cost 

is very high, and vector data cannot be handled.   

 

B

A

P

θP

 

Fig. 3.  Defining surroundedness.  Second approach (derived from Rosenfeld and Klette, 1985). 

 

2.3.2.  New Method 

Let µ  be a membership function as above, and let (θ1,θ2) be the largest open interval on which the histogram  Fc
AB 

(or Fg
AB) is zero.  Fig. 5 illustrates the meaning of angles θ1 and θ2.  The range for θ 1 is (−π,π] and the range for θ 2 is 

[θ 1,θ 1+2π].  The degree of truth for “ A  surrounds B ” is set to µ(θ2−θ1).  The definition is quite simple, but compares 

with the others (see Fig. 4 and Table 1).  The main advantages of the force histogram-based method are that it ensures 

much faster processing of raster data, and it is able to handle vector data as well.  Moreover, it can be used concurrently 

to assess the directional relations.  In particular, it can easily be incorporated into the system described in (Matsakis et al. 

2001).  Let a  and b  be two real numbers such that 10 ≤≤≤ ab , and, for any θ , let )(θδ  be the multiple of 4/π  

which is the closest to θ  (the value )(θδ  corresponds to one of the eight directions “right,” “above-right,” “above,” 

etc.).  The linguistic description that relies on the four primitive directional relationships is considered first (see Section 

2.2).  If its self-assessment is not “satisfactory,” and if θ2−θ1 is lower than πa , then the extended system turns to the 
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spatial relation “surrounds.”  If θ2−θ1 belongs to ],[ ππ ab , the output is “ A  surrounds B  on the right side ” (or “on the 

top-right side,” “on the top side,” etc., depending on the value of )2/)(( 21 θθπδ ++ ).  If θ2−θ1 belongs to the open 

interval ),0( πb , “ A  surrounds B , but leaves an opening on the right side” (or “on the top-right side,” “on the top side,” 

etc., depending on the value of )2/)(( 21 θθδ + ).  If 12 θθ −  is 0, “ A  completely surrounds B .”   

For all our experiments (see Table 1 and Sections 3 and 4), we used the most natural and simplest µ, i.e., a linear 

membership function: for any θ  in [0,π], µ(θ)=1−θ/π.  The thresholds a and b were determined empirically, according to 

our intuition.  The linguistic descriptions in Fig. 5 and Sections 3 and 4 have been obtained by setting a to 2/3 and b to 

1/3.  Note that some non-linear functions, like µ(θ)=cos(θ/2), produce degrees of truth for “ A  surrounds B ” that are 

much closer to human average rating than those exhibited in Table 1.  However, it can easily be shown that the same 

linguistic descriptions can be generated with any µ, provided that the thresholds a and b are appropriately chosen. 

 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 
(d) 

 
(e) 

 
Fig. 4.   Some images used for training and testing the neural network-based model of “surrounds” (Wang and Keller, 1997). 

 

TABLE 1 

RESULTS OF DIFFERENT METHODS USED TO ASSESS THE “SURROUNDS” RELATION FOR FIG. 4 

In (Wang and Keller, 1997), 63 people were shown images with two objects and asked to rate the relation “surrounds.”  
HUMAN represents the average rating.  NN is the neural network-based method (Wang and Keller, 1997), AGG the 
aggregation method (Krisnapuram et al., 1993), and COM the compatibility method (Miyajima and Ralescu, 1994).  FH denotes 
the method that uses force histograms.  The associated membership function is linear: for any θ  in ],0[ π , πθθµ /1)( −= .  The 
value 1.00 means that the proposition “ A  surrounds B ” is assessed to be completely true, and the value 0.00 that it is 
completely false. 

 Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 4e 
HUMAN 0.01 0.36 0.49 0.60 0.99 

NN 0.03 0.41 0.49 0.62 0.99 

FH 0.00 0.23 0.47 0.43 1.00 

AGG 0.00 0.03 0.30 0.22 0.90 
COM 0.00 0.02 0.20 0.14 1.00 

 

Finally, the histogram of forces can easily be employed to assess surroundedness.  However, there is the following 

assumption: the argument is connected (like in the second approach), and does not intersect the convex hull of the 

referent (like in the first approach).  Also note that the degree of truth for “ A  surrounds B ” does not really use the 

histogram values but rather considers only the binary conditions of zero or non-zero.  This has two important 
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consequences.  First, the results do not depend on the choice of the force histogram.  Second, the method is not extremely 

robust.  Slight changes in the object shapes (especially at the two “ends” of the argument) may have a noticeable impact 

on the degrees of truth.  In fact, similar comments can be addressed to any method that derives from Rosenfeld’s visual 

surroundedness; the results are not sensitive to the thickness of the argument, only to tangency points.  The above-

mentioned limitations (constraints on the objects, low robustness) are not an issue in the present framework of human-

robot communication because of the type of objects that are handled (see Section 3.1) and the fact that the degrees of 

truth are only used for generating linguistic descriptions (whose granularity is much coarser).  This may not be the case 

for other applications (or other sensor configurations).  Two promising avenues still remain to be explored: (i) redefining 

the degree of truth for “A surrounds B ” using the histogram values (and not only the fact that these values are either zero 

or non-zero), and (ii) introducing a new type of histogram of forces, dedicated to surroundedness (the idea is to adopt a 

new set of axiomatic properties, and to change the way the longitudinal sections are handled (Matsakis, 1998) (Matsakis 

and Wendling, 1999)). 

 

B

A

θ2

θ1

π
+

(θ +
θ  )/2

 
 

 
 

2
1

 
(a) 

 

A

B
θ2

θ1

(θ + θ  )/2  21

 
(b) 

 

A

B

 
(c) 

 
Fig. 5.   Linguistic descriptions and surroundedness.  (a) “ A  surrounds B  on the left side.”  (b) “ A  surrounds B , but leaves an 
opening on the bottom-right side.”  (c) “ A  completely surrounds B .”  The parameter a  was set to 2/3 and the parameter b  to 
1/3. 

 

3.  Egocentric Spatial Relations from Range Sensor Readings  

 
In this section, we describe the application of the histogram of forces for extracting egocentric spatial relations from 

the range sensor readings of a mobile robot.  Here, the referent object (B) is always the robot, and a few simplifying 

assumptions are made, namely that the robot can be modeled as a convex object and is not touching its environment (i.e., 

it is not allowed to jam itself into obstacles).  Our test robot is a Nomad 200 with 16 sonar sensors evenly distributed 

along its circumference.  The sensor readings are used to build an approximate polygonal representation of the 

surrounding obstacles.  The histograms of constant and gravitational forces, Fc and Fg, are then computed as described in 

Section 2.1, and linguistic descriptions of relative positions between the robot and the environment objects are generated 

as in Section 2.2.  The process is outlined in Fig. 6, and we examine each step in the sections below.  Note that, although 

we illustrate the process using a ring of 16 sonar sensors, there is no theoretical limitation on the sensor type or the 

configuration.  In fact, our implementation is parameterized to support any number of range sensors with varying cone 

sizes.  The sensor type and configuration affect the sensing resolution. 
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Fig. 6.  Synoptic diagram.  (a) Sonar readings.  (b) Modeling the sensed environment.  (c) Describing proximity relationships.  
(d) Computation of the histograms of forces.  (e) Turning to the spatial relation “surrounds.”  (f) Extraction of numeric 
features.  (g) Fusion of information.  (h) Describing directional relationships. 

 

3.1.  Modeling the Sensed Environment 

The first step in recognizing spatial relations from sensor signals is to model the obstacles around the robot by 

polygonal objects.  Consider the simple case illustrated by Fig. 7.  The solid rectangle represents an obstacle.  For 

computational simplicity, our test robot, although circular in shape, is assimilated to a rectangular object with a heading.  

The sonar sensor S is the only one that returns a range value (i.e., a range value less than the maximum), indicating that 

an obstacle has been detected.  Thus, a single trapezoid object is built in the center of cone S.  Note that the thickness of 

the obstacles cannot be determined from the sonar readings, so we assign a constant arbitrary thickness when building 

the polygonal models.   

 

 

Fig. 7.  A single trapezoid object is formed from a single sonar reading. 

 

In the case of adjacent sonar returns, an assessment must be made on whether they are from a single obstacle or 

multiple obstacles.  Our solution to this issue is to compute whether the robot can fit between two adjacent returns. 

(Here, each sonar reading is assimilated to a point on the axis of the corresponding cone, and its distance to the cone 

vertex is determined by the returned range value.  See Fig. 8.)  If the robot cannot fit, then we consider the two readings 

to be from the same obstacle.  Even if there are actually two obstacles, they may be considered as one for navigation 

S

robot

obstacle

sonar sensors

no return no return

S

robot

obstacle

sonar sensors

no return no return
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purposes.  If the robot can fit, we model the environment as separate objects.  Whether the robot can fit or not is 

determined by the following distance measure: 

 
s1

2 + s2
2 − 2s1s2 cos(2π / c)  , 

where s1 is the reading from sonar sensor S1, 

 s2 is the reading from S2 (adjacent to S1), 

 and 
c

π2
 is the angle between the axes of two adjacent sonar cones. 

The above formula simply corresponds to the distance between two points in polar coordinates.  Although our test 

robot has 16 sensors, in our experiments (Section 4) we use c = 24 and not c = 16, i.e., we intentionally underestimate the 

distance between adjacent sonar returns.  This effectively produces extra clearance to make sure that the robot can easily 

fit between the obstacles that are perceived. 

For example, consider the case illustrated by Fig. 8.  The distance between the returns is rather large, and we cannot 

determine whether a single obstacle continues across the three sonar cones, or we have three different obstacles.  

Therefore, three different objects are built.  In the same figure we show the distance computed for c = 16, which is the 

distance between A and B, and for c = 24, which is the distance between C and D.  In Fig. 9, the robot is closer to the 

obstacle.  We now have a better resolution, and five adjacent sonar sensors indicate returns.  All returns are close 

together, and the robot cannot pass through.  We join the five points and model the environment as one single object. 

 

Fig. 8.  Three different objects are formed from 3 
different sonar readings, if the readings are not “close” 
enough, according to the distance measure. 

 

 
 
Fig. 9.  A single object is formed from 5 different sonar 
readings, if the readings are “close” enough, as 
determined by the distance measure. 

 

3.2.  Directional Descriptions 

After the surrounding obstacles are modeled by polygonal objects, the position of each object relative to the robot is 

represented by histograms of forces and described by a three-part linguistic expression, as explained in Section 2.  Note 

that the linguistic term set is stored in a dictionary file, thus providing an easy way of modifying the descriptor clauses or 

even translating them into a different language.  In this work, we have chosen a terminology that is appropriate for robot 

navigation.  For instance, instead of using the words “above” and “below” as in Section 2, we use “in front of” and 

“behind.”  Moreover, the linguistic descriptions are from the robot’s point of view and depend on the robot’s heading.  

This is easily accomplished by shifting the force histograms along their horizontal axis.   

. BDA C. .. .. BDA C. .. . . . . .. . . . ..
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Consider the simple case illustrated by Fig. 10.  Fig. 10a shows the bounding rectangle that represents the robot, 

and the trapezoid model built from the sonar readings.  The readings are displayed in Fig.10b and the generated 

description in Fig. 10c.  The linguistic expression appears in its three-part form: (1) “An object is mostly in front of the 

robot” (primary directional relationship), (2) “but somewhat to the left” (secondary directional relationship), and (3) “the 

description is satisfactory” (self-assessment). 

 

Fig. 10.  Directional descriptions.  (a) The robot detects one object.  (b) The corresponding sonar sensor readings.  (c) The 
generated linguistic directional description. 

 

3.3.  Distance Descriptions 

In addition to directional information, the linguistic descriptions include distance information.  For each object 

detected by the robot, the distance description is based on the range values returned by the sonar sensors.  The number of 

distance relationships and the thresholds used for defining these relationships are also dictionary-driven for flexibility.  

Let s be the lowest sonar reading for the considered object, expressed in percentage of the maximum range value.  In our 

experiments (Section 4), we use the four following relationships: “very close” if s belongs to [0,25], “close” if s belongs 

to (25,50], “far” if s belongs to (50,75],  and “very far” if s belongs to (75,100]. 

Fig. 11 shows a more complex example in which the distance descriptions have been added.  The obstacle from Fig. 

10 remains at the same position (Object 1).  A new obstacle has been introduced behind the robot.  It is recognized as a 

single object (Object 2).  The obstacle to the right of the robot however, is modeled as three different objects (Objects 3 

to 5), as determined by the distance measure (see Section 3.1).  Fig. 11c shows the five individual linguistic descriptions.  

In each case, the self-assessment indicates an adequate description.  Using the thresholds above, Object 2 is classified as 

“very close” and the remaining objects are designated as merely “close.” 

3.4.  Surrounds Descriptions 

In the examples shown thus far, the self-assessment has always been: “the description is satisfactory.” In the case 

where an assessment is not satisfactory, we consider whether the surrounds description is appropriate.  The technique used 

to determine the possibility of surroundedness is described in Section 2.3.2.  Since the robot is modeled as a convex object 

and is not allowed to jam itself into obstacles, the requirements mentioned in that section are met.  We consider all types of 

surrounds descriptions, as explained in Fig. 5.  The three cases are illustrated with the robot in Figs. 12, 13, and 14, where 

part (a) shows the robot in the environment, part (b) shows the sonar sensor readings, and part (c) shows the generated 

description.  Note that the environment must be close enough so that a single polygonal object is built from the sonar readings.  

Also, there is no self-assessment for surroundedness. 

An object is mostly in front of the robot, 
but somewhat to the left 
(the description is satisfactory). 
 

(a)  (b)  
(c)  
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Fig. 11.  Distance descriptions.  (a) The robot detects five objects.  (b) The corresponding sonar sensor readings.  (c) The 
generated detailed linguistic spatial descriptions.   

     
 

 

Fig. 12.  Surrounds descriptions.  First case. 

 

Fig. 13.  Surrounds descriptions.  Second case. 

 

(a)  

(b)  

An object is mostly in front of the robot, 
but somewhat to the left 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is behind-left of the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is mostly on the right of the robot, 
but extends forward relative to the robot 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is on the front-right of the robot 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is mostly in front of the robot, 
but somewhat to the right. 
(the description is satisfactory) 
The object is close to the robot. 

(c)  

The robot is surrounded, 
but there is an opening on the rear-right. 
 

(a) (b) (c) 

 

(a) (b) (c) 

The robot is surrounded on the front-right. 
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Fig. 14.  Surrounds descriptions.  Third case. 

 

3.5.  Coarse Descriptions 

Generating a detailed description for each detected object may not be useful in all cases.  Different levels of 

abstraction may be required for different types of tasks.  Detailed, individual descriptions may be necessary for 

navigating in a cluttered environment (e.g., navigating through a corridor with many obstacles), whereas coarser 

descriptions may be more appropriate for reasoning about the environment or depicting an orientation within it (e.g., “I 

am in a corridor, facing a wall”).  Moreover, if many objects are detected, the human user may be overwhelmed with the 

flow of information.   

We provide two levels of abstraction.  The higher level is obtained by first mapping the objects into 16 symbolic 

spots evenly distributed around the robot (Fig. 15).  Note that an object is not mapped if it surrounds the robot (the 

associated description is then the same in both levels of abstraction).  Spots are assigned according to the primary and 

secondary directional relationships from each detailed (low-level) linguistic description.  Each object will have a 

corresponding primary and secondary direction depending on its position relative to the robot.  For example, an object that 

is mostly left but somewhat forward will have a primary direction of left and a secondary direction of front.  An object that 

is mostly in front but somewhat to the left will have a primary direction of front and a secondary direction of left.  Self-

assessments and range information are ignored.  As shown in Fig. 15, two or more objects may be assigned to the same 

spot. 

front

robot

1

1

1

1 1

1

2

 

Fig. 15.  Object mapping.  Sixteen symbolic spots are oriented around the robot.  Each one may be “occupied” by one or more 
objects, depending on the primary and secondary directional relationships.  The shaded spots correspond to the primitive and 
compound directions. 

The robot is surrounded. 
 

An object is mostly on the 
left of the robot, but 
somewhat forward. 

An object is on the 
front-left of the robot. 

An object is on the 
left of the robot. 

An object is mostly in front of the 
robot, but somewhat to the right.

An object is on the right of the 
robot, but extends forward 

relative to the robot. 

An object is behind-right 
of the robot. 

An object is mostly behind the 
robot, but somewhat to the left. 

An object is behind-right 
of the robot. 

(a) (b) (c) 
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Next, we associate a set of five adjoining spots to each primitive direction (right, front, left, behind) and to each 

compound direction (front-right, front-left, behind-left, behind-right).  The set is centered on the spot that corresponds to 

the considered primary or compound direction, as shown in Fig. 16.  The individual detailed descriptions for all objects 

that have been assigned to spots in the set are then replaced by a single linguistic description.  However, one or both of 

the following conditions must be met: 

1. There is at least one object in the center spot (Fig.  16b). 

2. There is at least one object in each one of the spots that are adjacent to the center spot (Fig.  16c). 

 

1

1

1 1

1

1 2
 

 
 

AB C

D E?
?

?
?

>1_

 
(b) 

>1_>1_

AB C

D E
?

?

?
 

(c) 
 
Fig. 16.  Object grouping from Figure 15.  First, a set of five symbolic spots is associated with each primitive direction and each 
compound direction.  (a) shows three such sets.  In a given primitive or compound direction, object grouping is performed if 
either (b) the center spot A is occupied, or (c) the spots B and C adjacent to A are both occupied.   

 

For each of the occupied spots that is not part of an assigned set after completing the above process, a separate 

description is produced.  If only one object is in the spot, then a simplified description for this object is generated with 

only the primary directional relationship from the detailed linguistic expressions (e.g., Fig. 16a, “There is an object 

behind the robot”).  If two or more objects are in the spot, then a single description is generated for all of them (e.g., 

“There are objects behind-right of the robot”).  In addition, any description that involves a compound direction is omitted 

if a description is generated for one of the adjacent primitive directions.  For instance, in Fig. 16a, the expression “There 

are objects on the front-left of the robot” will be ignored since “There are objects on the left of the robot.”  Fig. 17 shows 

an example of high-level linguistic abstraction. 

 

 

There are objects on the 
front-left of the robot. 

There are objects on the 
front-right of the robot. 

There are objects  
behind-right of the robot. 

There is an object 
behind the robot. 

There are objects 
on the left of the robot. 

(a) 
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There are objects on the left of
and on the right of the robot. 

     
 

Fig. 17.  Multi-level linguistic spatial descriptions.  (a) A top view of the environment shows that the robot senses four objects on 
the left and four objects on the right.  (b) Coarse description (high-level abstraction). 

 

4.  Experimental Results 

To test our approach for generating egocentric linguistic spatial descriptions, we imagined a more realistic 

navigation scenario and created an environment with corridors and doorways, as shown in Fig. 18.  For convenience in 

illustrating a variety of situations, the experiment was done using the Nomadic simulator. 

 

Fig. 18.  Test environment.  The robot starts in the upper left corner. 

 

The robot was moved along the corridor, and the spatial descriptions were generated at each time step along the 

trajectory.  Snapshots of the results are displayed in Figs. 19 through 26 for selected positions.  The figures show the 

robot position and heading with respect to the environment, the polygonal models built from the sensor readings, and 

both detailed and coarse descriptions.  These are listed according to a counterclockwise scanning around the robot; the 

objects in front are considered first.  The program runs fast enough for interactive, real-time execution, on a Pentium II 

or Pentium III PC.  The tasks of modeling obstacles, computing histograms, and generating expressions in natural 

language are executed faster than the robot can move, so there is no delay in the linguistic feedback displayed to the user. 

(a) 

(b) 
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The results show reasonable descriptions, given that the robot is trying to find a path through some occupied space.  

The detailed expressions are realistic for the models built from the sensor readings.  For example, in Fig. 19, five objects 

are detected and each description is assessed as being “satisfactory.”  One object is detected on the robot’s left because 

the left wall is close, whereas three others are detected on the right because the right wall is farther away.  One might 

argue that the objects are not always an accurate representation of the actual environment, and they do reflect the 

limitation of using a static view from the sixteen sonar sensors.  However, the polygonal models and the resulting 

descriptions are successful in capturing a static, qualitative image of the environment.  More resolution can be obtained 

by fusing sensor readings over time.  One possible technique is the occupancy grid map, in which evidence is 

accumulated from multiple sensors as the robot moves around the environment (e.g., Martin and Moravec, 1996).  Our 

initial work using evidence grid maps for generating spatial descriptions can be found in (Skubic et al., 2002). 

The figures also show the coarse descriptions generated.  For example, in Fig. 19, two groups of objects are 

mentioned: one on the right and one in the rear.  The one object on the left is listed by itself.  Note that distance 

information is ignored when grouping the objects, although this might be useful in some situations.  In Fig. 21 for 

instance, the coarse description states that “there are objects on the front-right of the robot.”  However, the object in front 

is quite close and the one on the right is quite far.   

The ability to detect whether the robot is surrounded illustrates high-level reasoning and provides a useful 

abstraction for navigation.  Figs. 23, 24, and 25 depict the three levels of surroundedness.  As explained in Section 3.4, 

this particular relationship is examined for a single object, and only if the self-assessment of the detailed description is 

less than satisfactory.  The condition is necessary but not sufficient.  Fig. 21 shows an example of a “rather satisfactory” 

assessment where the object does not quite enclose the robot enough to warrant a surrounds description. 

 

 

 

 

 

 

 

 

 

DETAILED DESCRIPTIONS: 
 
An object is on the left of the robot, 
but extends forward relative to the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is mostly behind the robot, 
but somewhat to the left 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is mostly behind the robot, 
but somewhat to the right 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is mostly on the right of the robot,
but somewhat to the rear 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is mostly on the right of the robot,
but somewhat forward 
(the description is satisfactory). 
The object is close to the robot. 
 

COARSE DESCRIPTIONS: 
 
There are objects behind and on the right of the robot. 
An object is on the left of the robot. 

Fig. 19.  Snapshot 1.  



  

 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETAILED DESCRIPTIONS: 
 
An object is on the left of the robot, 
but extends forward relative to the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is behind the robot 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is mostly behind the robot, 
but somewhat to the right 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is on the right of the robot, 
but extends forward relative to the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 

COARSE DESCRIPTIONS: 
 
There are objects behind the robot. 
An object is on the left of the robot. 
An object is on the right of the robot. 

Fig. 20.  Snapshot 2.  

DETAILED DESCRIPTIONS: 
 
An object is loosely on the left of the robot 
and extends to the rear relative to the robot 
(the description is rather satisfactory). 
The object is very close to the robot. 
 
An object is mostly on the right of the robot, 
but somewhat forward 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is mostly in front of the robot, 
but somewhat to the right 
(the description is satisfactory). 
The object is very far from the robot. 
 

COARSE DESCRIPTIONS: 
 
There are objects on the front-right of the robot. 
An object is loosely on the left of the robot. 

Fig. 21.  Snapshot 3. 
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DETAILED DESCRIPTIONS: 
 
An object is in front of the robot 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is on the left of the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is behind the robot 
(the description is satisfactory). 
The object is far from the robot. 
 
An object is on the right of the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 COARSE DESCRIPTIONS: 

 
An object is in front of the robot. 
An object is on the left of the robot. 
An object is behind the robot. 
An object is on the right of the robot. 

Fig. 22.  Snapshot 4. 

DETAILED DESCRIPTIONS: 
 
The robot is surrounded on the front. 
 
An object is behind the robot 
(the description is satisfactory). 
The object is far from the robot. 
 

COARSE DESCRIPTIONS: 
 
The robot is surrounded on the front. 
An object is behind the robot. 

Fig. 23.  Snapshot 5. 

 

The robot is surrounded. 

Fig. 24.  Snapshot 6. In this case, the detailed  
and coarse descriptions are the same. 
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The robot is surrounded, 
but there is an opening on the rear-right. 

Fig. 25.  Snapshot 7. Again, the detailed  
and coarse descriptions are the same. 

DETAILED DESCRIPTIONS: 
 
An object is in front of the robot 
(the description is satisfactory). 
The object is far from the robot. 
 
An object is mostly in front of the robot, 
but somewhat to the left 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is on the left of the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is mostly behind the robot, 
but somewhat to the left 
(the description is satisfactory). 
The object is close to the robot. 
 
An object is on the right of the robot 
(the description is satisfactory). 
The object is very close to the robot. 
 
An object is mostly in front of the robot, 
but somewhat to the right 
(the description is satisfactory). 
The object is far from the robot. 
 

COARSE DESCRIPTIONS: 
 
There are objects in front of the robot. 
An object is on the left of the robot. 
An object is mostly behind the robot. 
An object is on the right of the robot. 
 

Fig. 26.  Snapshot 8. 
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5.  Concluding Remarks 

In this paper, we showed how linguistic spatial descriptions can be obtained from the sonar readings of a mobile 

robot.  First, the robot’s sensed environment is modeled by polygonal objects.  From the models, force histograms are 

computed, and then detailed descriptions are generated.  Each description includes directional and distance information 

about the object considered, as well as an assessment of its own adequacy.  If the self-assessment shows that the 

description is not adequate, the surrounded condition is examined.  Finally, objects are grouped around the robot, and a 

coarse description is also provided.  To illustrate our approach, we used a mobile robot equipped with a ring of sixteen 

sonar sensors; however, the methodology is applicable to any ringed configuration of range sensors.   

There are three significant contributions to this work.  First, we have demonstrated how force histograms can be 

generated from vector data, allowing real-time output to the user.  Second, we have proposed a new model of the spatial 

relationship “surrounds.” It gives us the ability to distinguish between several linguistic, qualitative degrees of 

surroundedness.  Finally, we have shown that different levels of abstraction can be considered in robot-to-human 

communication.  The motivation for this work is to facilitate interactive robot interfaces for novice robot users.  The 

histogram of forces offers an underlying mathematical framework for spatial reasoning and allows a mobile robot with 

sonar sensors to describe its environment in linguistic terms easily understood by any user, e.g., “there is an object on the 

right.”  In the future, we will incorporate human-to-robot communication and our system will support high-level 

directives like “move forward while there is an object on the right.”  Cognitive models show that this approach is 

consistent with human spatial reasoning for navigation. 

The experimental results provide some new insight into how spatial information can be utilized for human-robot 

interfaces.  In particular, we have begun investigating how the presented methodology might support an interactive 

dialog between a human user and a robot (Skubic et al., 2002).  Given the current limitations in real-time sensing, object 

recognition is still a very difficult problem.  However, in an interactive interface, the user can augment the robot’s 

sensing and perception capabilities by performing the difficult task of recognition and assigning labels to the objects.  

The dialog can then utilize spatial references and refer to an object by name.  We are also investigating the use of 

different reference frames, i.e., egocentric vs. allocentric ones (Klatzky, 1998).  Should the description say “There is an 

object on the left of the robot” (or “on the left of me”) or “There is an object west of the robot”?  Since our system is 

dictionary-driven, and given the geometric properties of the histogram of forces, the terminology and reference frame can 

easily be changed.  The question is which terminology and frame of reference are easier for a user and under what 

situations.  We are addressing some of these questions in a forthcoming study.  Finally, we are also planning to 

incorporate reasoning about the environment.  Rules can be formulated, e.g., if there is something on the left (that 

extends forward and to the rear), something on the right (that extends forward and to the rear), and nothing (close) in 

front or to the rear, then we are in a corridor.  Another option is to use the force histograms directly, as they represent a 

rich source of spatial information. 
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