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Abstract

It is often diÆcult to come up with a well-principled
approach to the selection of a spatial indexing mech-
anism for medical image databases. Spatial informa-
tion about lesions in medical images is critically im-
portant in disease diagnosis and plays an important
role in image retrieval. Unfortunately, the images are
rarely indexed properly for clinically useful retrieval.
One example is the well-known R-tree and its vari-
ants which index image objects based on their physical
locations in an \absolute" way. However, such infor-
mation is not meaningful in medical content-based im-
age retrieval systems, and the approaches above su�er
from problems caused by variations in object size and
shape, imprecise image centering, etc. A more appro-
priate approach, which does not require object registra-
tion, is to model the spatial relationships between the
lesions and anatomical landmarks. To convey diagnos-
tic information, lesions must exist in certain locations
with regard to the landmarks. In this paper, we show
that the histogram of forces (which represents the rela-
tive position between two objects) provides an eÆcient
spatial indexing mechanism in the medical domain.

Keywords: Spatial indexing, force histograms,
medical image databases, content-based image re-
trieval.

1 Introduction

Examples now abound of medical content-based im-
age retrieval systems (CBIR) that retrieve database
images by characterizing textures of pathologies [23]
[11], shapes of tumors [12], shapes of cardiac boundary
curves [19] and symmetric properties of the brain ven-
trical line [4]. However, in addition to those isolated
�ndings in medical images, physicians also look for
the locations of lesions for supporting their diagnoses.
More speci�cally, the related locations of lesions with
respect to organ boundaries and to certain signi�cant
anatomical landmarks. Therefore, clinically meaning-

ful spatial indexing on lesions is an urgent need for the
existing medical CBIR systems.

To open our discussion on spatial indexing, a brief
introduction on traditional database indexing is given
in this section. Over the years, the following meth-
ods have become popular for the purpose of indexing
in multi-dimensional feature spaces and for objects in
two to three dimensional spaces: B-trees [5], R-trees
[8], and their variants [2, 20, 21, 1]. These data struc-
tures fall into two groups: The �rst group contains
tree structures created by partitioning the attributes
on the basis of the values of image features such as
texture, shape, gray-scale, etc. These tree structures
include K-D-B tree [18], Metric tree [25] and Multi-
hash indexing [23]. The common approach for these
tree structures is to partition the attribute space into
disjoint hyper-cubes, each containing a small number
of pointers linking to a subset of images.

The second group also contains tree structures.
Unlike the previous tree structures carving high-
dimensional feature spaces, tree structures in this
group partition the image space itself. In this type,
a two- or three-dimensional image space is partitioned
into several bounding rectangles or spheres to describe
the locations of the extracted objects in the image.
This approach includes R-tree [8], R+-tree [21], R�-
tree [1], bounding spheres SS-tree [27], and bounding
spheres and rectangles SR-tree [10]. Indexing methods
in the second group were designed speci�cally for the
purpose of localizing the extracted objects in an im-
age. These methods are used when the locations of the
extracted objects are invariate to scaling, translation,
and rotation.

In addition to the traditional spatial indexing ap-
proaches, many CBIR researchers have made signif-
icant contributions for the modeling of spatial rela-
tionships for image retrieval. One of the promising
examples is the SaFe system developed by Smith and
Chang [24]. In this system, a 2-D string approach



[3] was applied to capture spatial relations, e.g., adja-
cency, neareness, overlap, and surround. However, the
2-D string approach is not enough when a retrieval en-
gine requires numeric measurement beyond symbolic
and logic spatial relationships.

From the standpoint of content-based image re-
trieval (CBIR), the challenge posed by medical im-
ages is that the lesions of the same diagnosis tend to
be highly related to their spatial relationships with
certain anatomic landmarks, often a�ecting the exact
pixel location only minimally. For this reason, the
traditional spatial indexing mechanism is no longer
meaningful in medical CBIR systems. For example,
in the domain of high resolution computed tomogra-
phy (HRCT) lung images, a �nding of two images with
similar visual abnormalities is not enough to conclude
that these two images bear the same disease, unless
the following regional information can be con�rmed:
1) central or peripheral, 2) upper or lower, 3) anterior
or posterior, 4) unilateral or bilateral, and 5) the lobes
where lesions are located [26].

The following questions remain: What is an ap-
propriate spatial indexing mechanism in the medical
domain? How to retrieve images with lesions bearing
the same pathology and having similar spatial loca-
tions simultaneously? To answer the latter question,
we have combined our recently developed CBIR en-
gine for HRCT images of the lung with the spatial
indexing mechanism. To answer the former question,
we have applied the histogram of forces to model the
spatial relationships between lesions and anatomical
landmarks. Such a histogram represents the relative
position between two objects [13] [14]. It is sensitive to
their shape, orientation and distance. It has nice ge-
ometric properties, o�ers solid theoretical guarantees,
and lends itself, with great exibility, to the de�nition
of fuzzy directional spatial relations (such as \to the
right of", \to the south of", etc.) [15].

The paper is organized as follows. In Section 2, we
describe the objects we are dealing with and we cate-
gorize the spatial relationships between these objects.
Section 3 discusses the use of the histogram of forces to
measure the spatial information. The measurements
are the degrees of truth for spatial relationships among
lesions and anatomical landmarks. In Section 4, a
multi-dimensional indexing mechanism for fast image
retrieval is presented. In addition, query methods are
discussed which feature distance measurement from
the spatial relationships among multiple lesions and
chambers. Experimental results are then reported in
Section 5 and the overall conclusion is in Section 6.

2 Objects and Relationships

Although our approach can be applied to di�erent
modalities of medical images, we focus here on HRCT
images of the lungs. In our spatial model, there are
two major object abstractions: lesions L and cham-
bers C. These objects can be obtained by human de-
lineation, automatic region extraction algorithms, or
contour extraction algorithms (e.g., [23]). In this pa-
per, we assume these objects are successfully extracted
and ready for spatial indexing.

A lesion is a pathological region identi�ed by a
physician. A chamber is part of a lung. It is de�ned by
anatomical landmarks, such as the lung boundary and
the �ssures that are present in each lung. The left lung
has one �ssure, \left-oblique" (LO), and the right lung
has two that are \right-horizontal" (RH) and \right-
oblique" (RO). The �ssures divide each of the lungs
into chambers. The left side of an HRCT lung image
would ideally show two �ssures and the right side one
because the right lung has three chambers and the left
lung two. Only a subset of these �ssures is visible in
most images in our database. Fissure may or may not
be visible depending on where exactly a lung cross-
section is taken. In Fig. 1(a), there is only one �ssure
RH that divides right lung into two chambers. Each
of these chambers thus generated carries a unique la-
bel as shown in Table 1. The fourth column of this
table lists the number of cases archived in our current
database.

As mentioned before, the location of pathology
plays an important role in disease diagnosis, and, as a
consequence, also plays an important role in image
retrieval. The pathology bearing pixels must exist
in certain locations with regard to a chosen set of
anatomical landmarks in order to convey diagnostic
information. For example, both centrilobular emphy-
sema (CLE) and paraseptal emphysema (PSE) show
low-attenuation areas in HRCT images. However,
CLE is always interior to a chamber and PSE is al-
ways adjacent to either the lung boundary or one of
the �ssures. The spatial relations between lesions (L)
and chambers (C) can be categorized by the following
operators (op):

1. L op L! direction (left, right, above, below)

2. L op L! touch (meet, apart)

3. L op C ! areas (intersection)

4. L op C ! direction (left, right, above, below)

5. L op C ! adjacency (adjacent, interior, cover)



(a) (b)

Figure 1: (a) Two chambers, CH
RU and CH

RL appear
in the right lung and two chambers, CO

LU and CO
LL in

the left lung. A lesion is marked adjacent to CH
RU . (b)

Only one chamber C�
R in right lung and two chambers,

CO
LU and CO

LL in the left lung. A lesion is marked
interior to CO

LU .

Table 1: Chambers of lungs.
Chambers Landmarks label No. of cases

left � C
�
L 457

left upper Oblique CO
LU 2690

left lower Oblique CO
LL 2690

right lung � C
�
R 636

right upper Horizontal CH
RU 1781

right upper Oblique CO
RU 2311

right middle Both CB
RM 124

right lower Horizontal CH
RL 2380

right lower Oblique CO
RL 1132

3 Measuring Spatial Information

3.1 The Histogram of Forces

Knowing how to apprehend the spatial organiza-
tion of 2-D objects is essential to computer vision (for
pattern recognition, image understanding, scene de-
scription in natural language, etc.). Freeman [6] pro-
posed that the relative position of objects be described
in terms of primitive spatial relations (e.g., \below",
\near", and \surround"). He also proposed that fuzzy
relations be used. By introducing the notion of the
histogram of angles, Miyajima and Ralescu [17] devel-
oped the idea that the relative position between two
objects can have a representation of its own and can
thus be described in terms other than spatial relations.
In [13] [14], Matsakis and Wendling introduced the no-
tion of the histogram of forces, which generalizes and
supersedes that of the histogram of angles. The rela-
tive position of a 2D object A with regard to another

object B is represented by a function FAB from <
into <+. For any direction �, the value FAB(�) is
the scalar resultant of elementary forces. These forces
are exerted by the points of A on those of B, and
each tends to move B in direction � (Fig. 2). FAB

is called the histogram of forces associated with (A,B)
via F, or the F-histogram associated with (A,B). The
object A is the argument, and the object B the refer-
ent. FAB encapsulates a large amount of information
about A and B. It is sensitive to their shape, orien-
tation and distance. Moreover, it has nice geometric
properties: when a translation is applied to A and B,
the histogram does not change; when a rotation is ap-
plied, the histogram is simply shifted along the x-axis;
when a dilation is applied, the histogram is stretched.
After applying some translations and/or dilations to
A and B, the normalized F-histogram associated with
the transformed objects A' and B' is equal to the nor-
malized F-histogram associated with A and B. This is
natural, since the relative position between A' and B'
and the relative position between A and B are obvi-
ously the same. The inverse problem is complex and
remains to be solved. However, if the F-histograms
associated with two pairs of objects are the same, the
two pairs are most likely the same (up to a translation
and/or a dilation).

Figure 2: Computation of FAB(�).

In practice, of course, a histogram is represented by
a limited number of values. Each value is the scalar re-
sultant of forces exerted in some direction. Its compu-
tation translates into the assessment of predetermined
algebraic expressions. In the case of raster data, each
assessment corresponds to the process of a pair of seg-
ments (more precisely, a batch of pairs of pixels). The
generation of these segments is based on the rasteri-
zation of a group of parallel lines by means of Bresen-
ham's algorithm in integer arithmetic. The maximum
complexity of F-histogram computation is O(kn

p
n),

where n denotes the number of pixels of the processed
image and k the number of directions in which forces
are computed. This complexity drops to O(kn) for



convex objects. Note that F-histogram computation is
highly parallelizable, and that Bresenham's algorithm
is commonly circuit coded in visualization systems.

3.2 Computing Degrees of Truth

The histogram of forces is a powerful tool of rep-
resentation. It lends itself, with great exibility, to
the de�nition of directional spatial relations (such as
\to the right of", \above", etc.). Let A and B be two
objects, i.e., lesions, chambers or lungs. As shown in
[15], the degree of truth of the proposition \A is in
direction � of B " can be extracted from the analysis
of FAB , for any angle �. The degree of truth is a real
number greater than or equal to 0 (proposition com-
pletely false) and less than or equal to 1 (proposition
completely true).

We now introduce a model of \inner-adjacency",
which is another clinically meaningful spatial rela-
tionship. We consider histograms of constant forces
(the elementary force exerted by one point on another
is independent of the distance between these points
[13][14]). We represent each one by 64 bins (with
smaller bins, comparable results would be achieved,
and the computation time would get higher). As a
matter of fact, in this paper, we describe the position
of A relative to B by the force histogram associated
with (A,B-A), and not by FAB . Some histogram val-
ues may thus be null even when A and B intersect.
This property allows us to model \inner-adjacency"
as follows: the degree of truth of the proposition \A
is inner-adjacent to B" is set to max( i

b
;min( i

a
; 1 �

hmin

hmean
)), where a denotes the size of A and b the size

of B (in pixels), i is the intersection of A and B, and
hmin and hmean are the minimum and average values
of the histogram. Figure 3 shows 8 con�gurations and
the degrees of truth obtained for the two propositions
\A is inner-adjacent to B" and \A is to the right of
B" (i.e., \A is in direction 0 of B"). Note that the
degrees of truth of \A is above B" (i.e., \A is in di-
rection 90 degrees of B"), \A is to the left of B", and
\A is below B" are all null.

Table 2: Elements in spatial vector.

number description data type and domain
1 Chamber label labels from Table 1
2 0o degree of truth [0.0,1.0]
3 90o degree of truth [0.0,1.0]
4 180o degree of truth [0.0,1.0]
5 270o degree of truth [0.0,1.0]
6 Principal direction [0,360]
7 Intersection [1, size(lesion)]
8 Interior Adjacent [0.0,1.0]

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 3: The degree of truth
for (Inner-Adjacent,To The Right): (1) (0.34,0.00)
(2) (0.15,0.00) (3) (0.55,0.31) (4) (0.83,0.84) (5)
(0.21,0.99) (6) (0.00,1.00) (7) (1.00,0.82) (8)
(1.00,0.96)

4 Spatial Indexing and Retrieval
Each lesion LIDB in a database image IDB is repre-

sented by one or more eight dimensional spatial vec-
tors fLIDB . For lesions shown in Fig. 1, only one
feature vector is needed to represent each lesion from
both cases since each of them resides in only one cham-
ber. For lesions present in multiple chambers, multiple
feature vectors will be formed. Table 2 lists the de-
scription and data types for those eight elements in
fLIDB .

For each database image, we compute the above
measurements for each lesion-chamber pair in the im-
age. We then build a metric tree [25] for fast retrieval.
This tree structure has been proven eÆcient for near-
est neighbor search in the context of CBIR [9]. Two
types of spatial queries are provided in our approach:
single-lesion retrieval and multiple-lesion retrieval.

Let Lqi be the i-th lesion in a query image Iq ,
1 � i � jLqj, and Lnj be the j-th lesion in the n-th
database image InD , 1 � j � jLnj. For a single lesion
query, jLqj = 1, the spatial features are computed
between the lesion and all intersecting chambers. A
three dimensional feature vector is then formed and
parsed to the metric tree. N nearest neighbors are
thus retrieved from the database. Fig 4 shows a query
lesion and its retrieval results.

To query multiple lesions, the system �rst retrieves
and ranks database lesions based on the similarities of
their spatial features to the query lesion(s) individu-
ally. Let Si be the set of retrieved database lesions
for query lesion Lqi and I idbs be the set of database
images that have lesions Si. Assuming we would like
to retrieve N best matching images. Ideally, retrieval

results can be obtained by \jLqj
k=1I

k
dbs. However, if there

is an insuÆcient number of images returned from the
conjunction set, the system could either increase N or



Query lesion 1st rank 2nd rank 3rd rank 4th rank

Figure 4: A single query lesion and its four best matching lesions.

relax the query by removing a set of lesions Sr from
the query.

5 Experimental Evaluation

In order to demonstrate the usefulness of our ap-
proach in the medical domain, we have collected 2; 080
HRCT images of lungs with 3; 980 lesions as our
testbed. One expert physician and three non-expert
users were asked to evaluate the retrieval results. A
list of guidelines and evaluation items is provided to
the users. The guidelines include: 1. A tutorial of im-
portant spatial relationships in HRCT lung images. 2.
Image examples from di�erent lesion spatial relation-
ships. 3. Examples from good retrieval results and
also bad retrieval results. The evaluation items are:
1. Correctness of chambers where the best matching
lesions are present. 2. Correctness of interior or ad-
jacent spatial relationships between lesions and cham-
bers from the retrieval results. 3. Correctness of prin-
cipal directions from the results, such as to the right,
to the top, to the bottom, and to the left. Each eval-
uation item has a scale from 0 to 10. A perfect re-
trieval result should get a 10. We conducted this eval-
uation by randomly selecting 20 query cases from the
database and retrieving the best 10 cases to the users.
Database images from the query patient's images were
not retrieved. The users were asked to evaluate each
retrieval result by assigning a score to each evalua-
tion item. Table 3 lists evaluations done by the users.
A full score from theses 200 retrieval results is 2000.
From the evaluations, the physician agrees with 90%
of the retrieval results with correct interior or adjacent
spatial relationships and 81% for the lesion's principal
direction with respect to the chambers. The evalua-
tions from three non-expert users vary. On average,
they agree with 89% of retrieval results in the rela-
tionship of interior or adjacent and 76% in principal
direction. Part of the reason for these unsatisfactory
results are unsuccessful chamber extractions or lesion
extractions. For a clinically useful spatial relationship,
such as interior or adjacent, our approach achieves a
90% accuracy rate.

Table 3: User's evaluations.

User's class Chamber Int or Adj Direction
Physician 1921/2000 1805/2000 1624/2000
Non-expert 1 1887/2000 1760/2000 1328/2000
Non-expert 2 1802/2000 1723/2000 1566/2000
Non-expert 3 1780/2000 1878/2000 1691/2000

6 Discussion and Conclusion
We presented a new lesion spatial indexing mech-

anism for lung HRCT image databases. Compared
to current existing spatial indexing methods, our ap-
proach is robust and able to achieve high accuracy
rates for spatial lesion retrieval. We intend to extend
our approach to di�erent medical image modalities,
such as brain MR images. Other interesting future
directions include: 1. studying of other features that
are also meaningful in medical domain, 2. modeling
spatial relationship between lesions, 3. standardizing
evaluation methods for retrieval results, and 4. in-
tegrating this work with medical CBIR systems that
retrieve images with similar pathologies.
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