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Abstract-The present work describes a new approach to in-
tegrating structural knowledge into the image classification
process. First, a fuzzy classifier produces a fuzzy partition of
theimage. Then, the defuzzfied (crisp) partition istried to be
improved. According to the membership degrees in the fuzzy
partition, the system selects a set of pixels and associates a set of
candidate classes with each of them. Theinitial crisp partition is
improved by reassigning each selected pixel to one of the classes
it may belong to. Thisis performed by a combinatorial optimi-
zation strategy. The aim is to maximize the adequacy between
the regions defined by the crisp partition and the available
structural knowledge. First experiments on synthetic data as
well as on simple real data show the applicability of our ap-
proach.

|. INTRODUCTION

In remote sensing image dassfication, integration of add-
tional data into conventional spedral anaysis-based approaches
has been investigated with the aim of achieving higher acauracy.
The multisource dassfication model relies on pixel-by-pixel
clasgfication techniques that combine spedral information
with various forms of data related to individual pixes (e.g.,
multisensor data, multitemporal data, ancillary data like
digita devation models, geological and topographic maps,
symboalic data such as model-based knowledge represented
by if-then rules, etc.) [1][2][3]. In particular, data fusion
methods relying on Dempster-Shafer’s theory and fuzzy set
theory have been successfully employed for combining data
with uncertain and incomplete information from different
sources [4][5][6]. However, as expressed hy the contextual
clasdfication model, the pixels should not be dassfied
independently from their neighbars [7]. Relaxation methods
are representative of this concept [8]. Nevertheless human
photo interpreters also implicitly use structural knowledge in
the manual clasdfication process They not only consider
contextual information but also information about the shape
of and the spatial relations between the image regions. This
type of knowledge hasnot been utilized in former systems.

The present work is part of our ongoing investigation about
the integration of structural knowledge into the image dass-
fication process [9][10]. Essntially, we are faced with three
fundamental problems. (1) How to represent the expert
knowledge? (2) How to measure the adequacy between an
image region and the knowledge that is supposed to concern
it? (3) How to exploit such a measurement in the dassfica-
tion process? The first two problems are discussed briefly in
Sedion Il. Our main interest hereisin the third problem. In
Sedion II1, we describe a Region Modification Approach by
Simulated Annealing. The approach is validated in Sedion
IV with some experimental results.

Il. KNOWLEDGE REPRESENTATION

Expert knowledge contains uncertain, incomplete and
vague information. Consequently, the use of a fuzzy infer-
ence system appeasto be justified. Fuzzy production rules
for image dasdfication are typically of the following form
(although the premise and consequent are sometimes reversed)

[3I041[7]:

If (classc),
then (VyisA;)and...and (Vi isA)and..and ( VyiSAy).

The mnsequent term characterizes the environmental context
of the class It is composed of e ementary propositi ons such
as“V, is A, whereV, denotes a variable and A a fuzzy set.
These propositions are onneded by logical ANDs (ORs are
also admitted). When the V, 's are rdated to pixels (i.e, when
each pixel can be mnsidered independently of the others), the
production rule represents pixel-related knowledge. It involves
pixd-related feaures (e.g., spectral data, atitude) [4].

Now, consider the following expert knowledge: “class 1
appeas principally in the shape of little circular regions.” At
this point the pixels can no longer be dasdfied independently
from the others. This type of knowledge is called structural
knowledge. In the example above, there ae two elemental
knowledge terms, “circular region” and “little region,” which
implicitly involve specific features (e.g., asped rétio, area).
In the present paper, we assume that we know how to relate
an appropriate set of variables to al of the demental struc-
turad knowledge, and further, how to measure these variables.
A multisource fuzzy inference system can be used to repre-
sent structural knowledge, and to measure its adequacy with
image objeds [2][7]. For example, in the framework of
hierarchical fuzzy production rules, the structural knowledge
XK, abaut the classc is represented as foll ows:

Upper level rule
If (classc),
then (ESK,) and ...and (ESK)) and...and (EXKy).
Lower level rule:
If (ESKJ-P, , S , ,
then (V¢ isA) and...and (V;'isA') and...and (VMJ.J isAMjJ).

The onsequent term of the upper level rule is composed of
elemental knowledge terms ESK; conneded by logical ANDs
(ORs are al'so admitted). In the lower level rule, each ESK; is
represented by measurable variables V' and fuzzy sets A/
Note that the Vs are not concerned with pixels but with
regions. Consider aregion R that may be assgned to classc.
The membership degreein A’ of the value V; obtained at R



corresponds to the degree of truth pai(R) of the proposition
“V/ is A" The logicd combination of the pa/(R)'s gives

F¥i(R), which is the degreeof adequacy between the region
R and the demental structural knowledge ESK;. F|naIIy,
the upper level, the logical combination of the F¥(R) gives
q*«(R), the degree of adequacy between R and K. Con-
sider, for instance, the knowledge SK,: “If (class 2), then
(EXy) and (ESKZ) Where thelower level rulesare “ If (ESKl)
then (Vl |sA1) or (V2 |sA2) and “If (EKy), then (Vl |sA1)
Weget: q¥(R) = min{max{ paiR), iR }, aiR) } . In the
following, we assume we ae able to evaluate any adequacy
degree

I11. KNOWLEDGE INTEGRATION

Let X" be a crisp partition of the studied image. X™' is
composed of crisp regions. Consider any region R. It has
been assgned to some class If structural knowledge about
this class is available, then a degree of adequacy can be
computed and associated with R (Sedion Il). We define a
global adequacy degree Q(X"™)—the degree of adequacy
between X™ and al the avail able structura knowledge—as
follows: QX™) = F(qy, ..., G, ..., On), Where F denotes a
combination operator, the adequacy degreeassciated with
the r-th region, and n the total number of regions on which
knowledge is available. For our experiments (Sedion V),
we used the dasdcd arithmetic mean. However, other
operators can be mnsidered (e.g., min).

The am of the Region Modification Approach (RMA)
presented here is to improve dassfication accuracy by
explaoiting the ability to evaluate global adequacy degrees.
More predsdy, the RMA dtrives to increase the globel
adequacy degree of X™ by reassgning some pixels. The
problem corresponds to a combinatorial optimization prob-
lem. It aims at finding an optimal reassgnment of pixels,
i.e, a patition X that maximizes Q(X). Three heuristic
iterative methods are well known as efficient methods for
answering optimization problems and have been successfully
applied to clustering and image dassfication [11][12][13]:
Simulated Annealing (SA), Tabu Seach, and Genetic Algo-
rithm. In a previous gudy [9], we tested the RMA on a
simple image, and compared the use of the three heuristic
methods. SA seamed to be the most appropriate. Therefore,
in this paper, we focus on the RMA by SA. Here is the
algorithm:

Initialization: Sded a value for maxLoopl (maximum
number of iterations for loop 1), maxLoop2 (maximum
number of iterations for loop 2), and Ty (initiad temperature).
Sdled a coding schedule a(T) (in Sedion IV we use the
classcal a(T)=Ty/t). Initialize the iteration counter t and the
current partition X" (i.e,, t 1 and X" < X™).

Iteration loop 1
Iteration loop 2
1. From X", generate a cadidate partition
2. Calculate 3=Q(X"™")-Q(X®"). If <0, replace X" by
X@ Otherwise, seled arandom number rJ[0,1], and
if r<exp(d/T), then replace X™" by X%,
Repeat loop 2 maxLoop?2 times.
Update the counter (t — t+1) and the temperature (T — a(T)).
Repeat loop 1 until t exceals maxLoopl or Q(X™") reaches a
predefined value. X™" isthe final partition.

Xcand

It is asumed that the aisp partition X™ is obtained by
defuzzfying the partition X issued from some fuzzy pre-
classification. From a crisp partition X™" (current solution,
equal to X" at the first iteration), an alternative crisp parti-
tion X®™ is generated by reassgning a randomly chosen
pixel, P, to arandomly chosen class C. For any pixel p and
any « classc, let t(p) be the membersh|p value of p to classc
in X, let X'”"(p) be the dassof p in X" and X"**(p) the dass
of p in X" We have: Mxinitpy (P)=He(p). It is obvious that a
pixel p satisfying pxinitg (p)>>uc(p) for any c£X"(p) would
not constitute ajud|C|ous choice for P. Smilarly, a dassc
such that pyinit(P)>>u(P) would not constitute a goad choice
for C. Let y(p) be the value minguinitp) { Hxinitp)(P) Hc(P)}-
“Random” choices can be restrained so that the lower y(p),
the higher the probability of setting P to p, and then, the
higher p(P), the higher the probability of setting C to c.
Therefore, the crisp partition X®™ is generated as foll ows
(with o being a predefined threshold between 0 and 1):

[Step 1] Seled P by a weighted random choice the probahbil-
ity of choosing a given pixel po is set to Y (Po)/Zp Y (D),
wherey (p) equals 1-y(p) if y(p)<o, and equals O otherwise.

[Step 2] Sded C by a weighted random choice the probab|l-
ity of choosing a given classc, is set to "o(PVZc W (P),
where e (P) equals i(P) if piinte(P)-p(P)<o and equals 0
otherwise.

[Step 3] If Cisequal to X”°W(_) return to Step 1. Otherwise,
modify X" by reassgning P to classC, and cal X®™ the
partition that results from this modification.

Note that the fuzzy partition X can be dther probebili stic,
as |n [14], or posshiligtic, as in [15]. In the second case,
2. W «(P) is not necessarily equal to 1, even if o=1. Findly, if
the pre-dassfication process is crisp, its output X™ can be
fuzzfied and used to produce X . Let p be apixd, and let R
be a region assgned to classc in X" 'If p belongsto R, we
can gve L(p) a value diredly proportional to the distance of
p from the boundary of R. Otherwise, we @an give L (p) a
value inversely proportional to the disance of p from all
regions assgned to classc. Then, the RMA would tend to
round the regions which are expeded to be round, to e ongate
those which are expected to be e ongated, etc.

IV. EXPERIMENTAL RESULTS
A. One-Dimensional Synthetic Data

The fuzzy partition shown in Fig. 1(a) classfies 161 or-
dered elementsinto 7 classes. The crisp partition X" asoci-
ated with this fuzzy partition is shown in Fig. 1(b). Fig. 1(c)
presents the product of manual classfication by human
expert. Itisthe mntrol partition. We consider the foll owing
structural knowledge: “classes 1, 2 and 7 appea as little
regions, clases 4 and 6 appea as medium size regions,
classes 3 and 5 appea as big regions; for each c£1, a region
of class ¢ appeas next to and on the right-hand side of a
region of classc—1." This synthetic set of data and knowl-
edgeisinspired by the geomorphological classfication of an
atoll [17]. The datarepresents the pixels of a cross gaion of
the atall rim. Along the cross £dion, from the ocean to the
lagoon, the geomorphological clases are not situated in
random order. The dass reef front appeas first, then the
class outer reef flat, and the dasscoral reef conglomerate,
etc. Torepresent this knowledge, we chose a hierarchical set
of fuzzy production rules (Sedion Il), where two-level rules



are asociated with each class. In the upper level we have
two elementary propositions. One concerns the size of
regions and the other concerns the spatial relations between
regions. For ingance this is K,: “If (class 2), then (EKy:
“little region”) and (ESK,: “the neighboring region on the
right-hand side is of class1").” In the lower level, the vari-
able sze (i.e, number of pixds) is attached to the first ele-
mental knowledge ESK;. For any region R, the variable size
is used to evaluate F¥4(R), the degree of adequacy between
ESK; and R (Fig. 1(d)). The value f*(R) is obtained in a
smpler way. Let ¢ be the class to which R is assgned:
gF*2(R)=1 if R appeas next to a region of classc-1 (on the
right-hand side), and gF(R)=0 otherwise. Findly, the
adequacy degree g¥(R) is min{ d¥4(R), gF*2(R)}. At this
stage, for any partition X, it is possble to evaluate Q(X), the
degree of adequacy between X and the whole available
structural knowledge (Sedion 111). For the control partition
(Fig. 1(c)), we obtain Q=0.96. For X" (Fig. 1(b)), we get
Q=0.32. The percentage of well classfied pixelsis 82.6%.

The RMA by SA has been tested 200 times: 100 times with
0=0.03, maxLoop2=10, T,=0.001, and 100 times with 0=0.1,
maxLoop2=500, T,=0.01. With the first threshold, 66 pixels
are candidate for reassgnment (out of 161), and each one can
be reassgned to 2 candidate clases (out of 7). In other
words, there ae 2°°=7.38x10" posshle solutions in the
search space With each iteration, the global adequacy
degree increases (Table 1). Some tests output the antrol
partition after 50 iterations only: Q is 0.96, and the percent-
age of well classfied pixelsis 100%. They also autput other
partitions with Q=0.96. After 400 iterations, every test gives
Q=0.96, and on average, the percentage of well classfied
pixelsis 98.9% (+16.3%, in 776.4 ms of CPU time on a P300
MM X laptop). Table 2 shows the results obtained with the
seoond set of parameters. When 0=0.1, 126 pixels are candidate
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Fig. 1. Synthetic data. (a) Fuzzy partition (pre-classfication output).

(b) Corresponding crisp partition. (c) Control partition issued from
manual classification. (d) Linguistic valuesfor size.

for reassgnment: 86 pixels can be reassgned to 2 candidate
classs each, and 40 pixdsto 3 candidate classes each. This
time, there ae 9.41x10™ possble solutions in the seach
space The mnvergenceis much slower. After 10 iterations
(computation of 5000 partitions since maxLoop2=500), some
tests output partitions for which Q=1. After 100 iterations,
72 tests out of 100 produce partitions for which Q is higher
than 0.96. However, on average, the percentage of well
classfied pixel is only 84.6% (+2.0% only, in 8367.4 ms of
CPU time). Note that the system aways tries to find a
partition that maximizes Q, even if the degree of adequacy
attached to the control partition is not maximum (which isthe
case here). As a result, even if the system succeeals in
reaching a global maximum (Q=1), the output may not
correspond to the control partition, and the percentage of well
classfied pixels may not be 100%.

B. Two-Dimensional Real Data

At thistime, we ae preparing a series of tests on LAND-
SAT 7 multispedral images of atolls. To classfy thistype of
image, the human photo interpreter implicitly utilizes struc-
tura knowledge. In this paper, and for our first experiments
on 2D rea data, a very simple image is considered. Its
manual classfication does not require spedfic expertise. Itis
a very small RGB image (115x54) that represents a knife
handle with threerivets, as shown in Fig. 2(a). Thereare four
classs: background, shadow, handle and rivet. The defuzzi-
fication of the fuzzy partition generated by some supervised
classfier produced the crisp partition shown in Fig. 2(b).
This pre-classfication stage was based on the spedra analy-
sisof individua pixds, and will not be described here. In the
crisp partition, 33% of the rivet pixels (51 pixels out of 156)
are misclassfied. We can clealy seeanomalies on the right
and left rivets.  With the am of improving this pre-
clasgfication result, the following structural knowledge is
considered: “a rivet appeas as a little circular region.” To
represent this knowledge, we utilize the linguistic variable
area (for “little region,” see Fig. 2(f)), and the variables
aspect ratio and density (for “circular region,” see Fig.
2(d)(e)). The degree of adequacy between the initial crisp
partition and the knowledge is Q=0.23.
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Fig. 2. Red data.



TABLE 1. RESULTSOF 100 TESTSWITH PARAMETERS 0=0.03, maxLoop2=10, T=0.001.

Iteration # of Time (ms) Global adequacy degree, Q Percentage of well classified pixds
partitions Min Average Max Min Average Max Min Average Max

Q Q Q Q Q 0.32 0.32 0.32 82,6 82,6 82,6

50 500 50 1023 220 0.39 0.55 0.96 801 909 100

100 1000 160 2059 330 043 071 0.96 814 937 100

200 2000 330 3964 500 0.52 091 0.96 845 977 100

300 3000 540 587.6 720 0.63 094 0.96 90.1 98.6 100

400 4000 710 7764 880 0.96 0.96 0.96 981 989 100

TABLE 2. RESULTSOF 100 TESTSWITH PARAMETERS 0=0.1, maxLoop2=500, T,=0.01.

Iteration # of Time (ms) Global adequacy degree, Q Percentage of well classified pixels
partitions Min Average Max Min Average Max Min Average Max

(0] (0] (0] (0] (0] 032 0.32 0.32 826 826 826

1 500 50 1397 220 032 0.34 0.54 68.3 817 8838

10 5000 870 12353 1490 0.36 0.65 1.0 503 730 96.8

50 25000 4180 465Q7 5000 0.64 094 1.0 596 837 96.9

100 50000 7850 83674 9390 0.73 0.96 1.0 69.6 84.6 96.9

200 100000 15210 15860.3 18340 0.73 0.96 1.0 69.6 846 96.9

The RMA by SA has been tested 100 ti mes, with 0=0.05. ACKNOWLEDGEMENT

With this threshold, 75 pixels are candidate for reassgnment.
The 100 partitions that have been generated are all partitions
with Q=0.93. However, they are dl different, and the per-
centage of misclassfied rivet pixds varies from 19% (30
pixels out of 156) to 22% (34 pxels out of 156). Fig. 2(c)
shows one output. The percentage of misclassified rivet pixels
has been reduced from 33 % to 21 %. Despite the high
adequacy degreg therivets obtained are not perfedly circular
(espedally the | eft rivet that contains patches misclassfied as
shadan). Itisobviousthat the quality of the results produced
by RMA not only depends on the quality of the initial fuzzy
partition, but also on the quality of the structural knowledge,
and on the quality of its representation. Note that the average
time for partitions with Q=0.93 to he generated was 38.1
seconds of CPU time on a P300 MM X laptop.

V. CONCLUSION

In this paper, we have introduced a novel approach that
aims at improving the automatic dasdfication of remote
sensing images by exploiting expert structural knowledge. It
is based on the computation of a fuzzy partition, and the use
of a combinatoria optimization strategy. We have presented
first experiments on a 1D synthetic image, as well as on a
RGB real image of simple and strongly structured dbjeds.
Theresults are encouraging. The crisp partitions issued from
the pre-classfication stage were wherently modified hy
appropriately reassgning initially misclasdfied pixels.
However, many factors can affect the results (e.g., the quality
of the fuzzy partition, the quality of the knowledge, the way
to represent that knowledge and to evaluate its degree of
adequacy with image regions), and much work still hasto be
done. Also, the mmputationd time is a practical issue that
cannot be ignored. Remote sensing images often contain
millions of pixels. For instance how to choose the threshold
that is used to seled candidate dases? The lower the
threshold, the lower the computational time, but the less
significant the potentia improvement over the initial crisp
partition. Which value congtitutes a good compromise? We
intend to introduce a dynamic threshold controlled with a
deaeasing function of the number of iterations. We also
intend to integrate ntextual information into the pixe
reassgnment process At the moment, only one pixel differ-
entiates a candidate partition from its parent partition. Many
pixels could be simultaneously reassgned, espedally neigh-
bors with smilar membership values.

The authors wish to thank D. Dubais and H. Prade for their
predous advice and comments.
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