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Abstract-The present work describes a new approach to in-
tegrating structural knowledge into the image classification
process.  First, a fuzzy classifier produces a fuzzy partition of
the image.  Then, the defuzzified (crisp) partition is tried to be
improved.  According to the membership degrees in the fuzzy
partition, the system selects a set of pixels and associates a set of
candidate classes with each of them.  The initial crisp partition is
improved by reassigning each selected pixel to one of the classes
it may belong to.  This is performed by a combinatorial optimi-
zation strategy.  The aim is to maximize the adequacy between
the regions defined by the crisp partition and the available
structural knowledge.  First experiments on synthetic data as
well as on simple real data show the applicability of our ap-
proach.

I. INTRODUCTION

In remote sensing image classification, integration of addi-
tional data into conventional spectral analysis-based approaches
has been investigated with the aim of achieving higher accuracy.
The multisource classification model relies on pixel-by-pixel
classification techniques that combine spectral information
with various forms of data related to individual pixels (e.g.,
multisensor data, multitemporal data, ancillary data li ke
digital elevation models, geological and topographic maps,
symbolic data such as model-based knowledge represented
by if-then rules, etc.) [1][2][3].  In particular, data fusion
methods relying on Dempster-Shafer’s theory and fuzzy set
theory have been successfully employed for combining data
with uncertain and incomplete information from different
sources [4][5][6].  However, as expressed by the contextual
classification model, the pixels should not be classified
independently from their neighbors [7].  Relaxation methods
are representative of this concept [8].  Nevertheless, human
photo interpreters also implicitly use structural knowledge in
the manual classification process.  They not only consider
contextual information but also information about the shape
of and the spatial relations between the image regions.  This
type of knowledge has not been utilized in former systems.

The present work is part of our ongoing investigation about
the integration of structural knowledge into the image classi-
fication process [9][10].  Essentially, we are faced with three
fundamental problems: (1) How to represent the expert
knowledge?  (2) How to measure the adequacy between an
image region and the knowledge that is supposed to concern
it?  (3) How to exploit such a measurement in the classifica-
tion process?  The first two problems are discussed briefly in
Section II .  Our main interest here is in the third problem.  In
Section II I, we describe a Region Modification Approach by
Simulated Annealing.  The approach is validated in Section
IV with some experimental results.

II . KNOWLEDGE REPRESENTATION

Expert knowledge contains uncertain, incomplete and
vague information.  Consequently, the use of a fuzzy infer-
ence system appears to be justified.  Fuzzy production rules
for image classification are typicall y of the following form
(although the premise and consequent are sometimes reversed)
[3][4][7]:

If ( class c ),
then ( V1 is A1 ) and ... and ( Vi is Ai ) and ... and ( VN is AN ).

The consequent term characterizes the environmental context
of the class.  It is composed of elementary propositions such
as “Vi is Ai ,”  where Vi denotes a variable and Ai a fuzzy set.
These propositions are connected by logical ANDs (ORs are
also admitted).  When the Vi ’ s are related to pixels (i.e., when
each pixel can be considered independently of the others), the
production rule represents pixel-related knowledge.  It involves
pixel-related features (e.g., spectral data, alti tude) [4].

Now, consider the following expert knowledge: “class 1
appears principally in the shape of li ttle circular regions.”  At
this point the pixels can no longer be classified independently
from the others.  This type of knowledge is called structural
knowledge.  In the example above, there are two elemental
knowledge terms, “circular region” and “ little region,” which
implicitly involve specific features (e.g., aspect ratio, area).
In the present paper, we assume that we know how to relate
an appropriate set of variables to all of the elemental struc-
tural knowledge, and further, how to measure these variables.
A multisource fuzzy inference system can be used to repre-
sent structural knowledge, and to measure its adequacy with
image objects [2][7].  For example, in the framework of
hierarchical fuzzy production rules, the structural knowledge
SKc about the class c is represented as follows:

Upper level rule:
If (class c),
then (ESK1) and ... and (ESKj) and ... and (ESKN).

Lower level rule:
If (ESKj),
then (V1

j is A1
j) and ... and (Vi 

j is Ai
j) and ... and (VMj

j is AMj

j).

The consequent term of the upper level rule is composed of
elemental knowledge terms ESKj connected by logical ANDs
(ORs are also admitted).  In the lower level rule, each ESKj is
represented by measurable variables Vi

j and fuzzy sets Ai
j.

Note that the Vi
j’ s are not concerned with pixels but with

regions.  Consider a region R that may be assigned to class c.
The membership degree in Ai

j of the value Vi
j obtained at R



corresponds to the degree of truth µAi
j(R) of the proposition

“Vi
j is Ai

j.”   The logical combination of the µAi
j(R)'s gives

qESKj(R), which is the degree of adequacy between the region
R and the elemental structural knowledge ESKj.  Finall y, at
the upper level, the logical combination of the qESKj(R) gives
qSKc(R), the degree of adequacy between R and SKc.  Con-
sider, for instance, the knowledge SK2: “ If (class 2), then
(ESK1) and (ESK2)”  where the lower level rules are “ If (ESK1),
then (V1

1 is A1
1) or (V2

1 
is A2

1)”  and “If (ESK2), then (V1
2 
is A1

2).”
We get:  qSK

2(R) = min{ max{  µA1
1(R), µA2

1(R) } , µA1
2(R) } . In the

following, we assume we are able to evaluate any adequacy
degree.

III . KNOWLEDGE INTEGRATION

Let Xinit be a crisp partition of the studied image. Xinit is
composed of crisp regions.  Consider any region R. It has
been assigned to some class. If structural knowledge about
this class is available, then a degree of adequacy can be
computed and associated with R (Section II ).  We define a
global adequacy degree Q(Xinit)—the degree of adequacy
between Xinit and all the available structural knowledge—as
follows: Q(Xinit) = F(q1, ..., qr, ..., qn), where F denotes a
combination operator, qr the adequacy degree associated with
the r-th region, and n the total number of regions on which
knowledge is available.  For our experiments (Section IV),
we used the classical arithmetic mean. However, other
operators can be considered (e.g., min).

The aim of the Region Modification Approach (RMA)
presented here is to improve classification accuracy by
exploiting the abil ity to evaluate global adequacy degrees.
More precisely, the RMA strives to increase the global
adequacy degree of Xinit by reassigning some pixels.  The
problem corresponds to a combinatorial optimization prob-
lem.  It aims at finding an optimal reassignment of pixels,
i.e., a partition X that maximizes Q(X).  Three heuristic
iterative methods are well known as eff icient methods for
answering optimization problems and have been successfull y
applied to clustering and image classification [11][12][13]:
Simulated Annealing (SA), Tabu Search, and Genetic Algo-
rithm.  In a previous study [9], we tested the RMA on a
simple image, and compared the use of the three heuristic
methods.  SA seemed to be the most appropriate.  Therefore,
in this paper, we focus on the RMA by SA.  Here is the
algorithm:

Initialization:  Select a value for maxLoop1 (maximum
number of iterations for loop 1), maxLoop2 (maximum
number of iterations for loop 2), and T0 (initial temperature).
Select a cooling schedule α(T) (in Section IV we use the
classical α(T)=T0/t).  Initialize the iteration counter t and the
current partition Xnow (i.e., t←1 and Xnow←Xinit).   

Iteration loop 1
Iteration loop 2

1. From Xnow, generate a candidate partition Xcand.
2. Calculate δ=Q(Xnow)−Q(Xcand). If δ<0, replace Xnow by

Xcand. Otherwise, select a random number r∈[0,1], and
if r<exp(δ/Τ ), then replace Xnow by Xcand.

Repeat loop 2 maxLoop2 times.
Update the counter (t←t+1) and the temperature (T←α(T)).

Repeat loop 1 until t exceeds maxLoop1 or Q(Xnow) reaches a
predefined value.  Xnow is the final partition.

It is assumed that the crisp partition Xinit is obtained by
defuzzifying the partition X

~
 issued from some fuzzy pre-

classification.  From a crisp partition Xnow (current solution,
equal to Xinit at the first iteration), an alternative crisp parti-
tion Xcand is generated by reassigning a randomly chosen
pixel, P

_
  , to a randomly chosen class, C

_
  .  For any pixel p and

any class c, let µc(p) be the membership value of p to class c
in X

~
, let Xinit(p) be the class of p in Xinit and Xnow(p) the class

of p in Xnow.  We have: µXinit(p)(p)≥µc(p).  It is obvious that a
pixel p satisfying µXinit(p)(p)>>µc(p) for any c≠Xinit(p) would
not constitute a judicious choice for P

_
  .  Similarly, a class c

such that µXinit(P
_  

)(  P
_
  )>>µc( P

_
  ) would not constitute a good choice

for C
_
  .  Let γ(p) be the value min c≠Xinit(p) {µXinit(p)(p)−µc(p)}.

“Random” choices can be restrained so that the lower γ(p),
the higher the probabilit y of setting P

_
   to p, and then, the

higher µc( P
_
  ), the higher the probabilit y of setting C

_
   to c.

Therefore, the crisp partition Xcand is generated as follows
(with σ being a predefined threshold between 0 and 1):

[Step 1] Select P
_
   by a weighted random choice: the probabil-

ity of choosing a given pixel p0 is set to  γ*(p0)/Σp γ*(p),
where γ*(p) equals 1−γ(p) if γ(p)≤σ, and equals 0 otherwise.

[Step 2] Select C
_
   by a weighted random choice: the probabil-

ity of choosing a given class c0 is set to  µ*
c0( P

_
  )/Σc µ*

c ( P
_
  ),

where µ*
c ( P

_
  ) equals µc( P

_
  ) if µXinit(P

_  
)(  P

_
  )−µc( P

_
  )≤σ and equals 0

otherwise.
[Step 3] If C

_
   is equal to Xnow( P

_
  ), return to Step 1. Otherwise,

modify Xnow by reassigning  P
_
   to class C

_
  , and call Xcand the

partition that results from this modification.

Note that the fuzzy partition X
~

 can be either probabili stic,
as in [14], or possibili stic, as in [15].  In the second case,
Σc µ*

c( P
_
  ) is not necessaril y equal to 1, even if σ=1.  Finally,  if

the pre-classification process is crisp, its output Xinit can be
fuzzified and used to produce X

~
.  Let p be a pixel, and let R

be a region assigned to class c in Xinit.  If p belongs to R, we
can give µc(p) a value directly proportional to the distance of
p from the boundary of R.  Otherwise, we can give µc(p) a
value inversely proportional to the distance of p from all
regions assigned to class c.  Then, the RMA would tend to
round the regions which are expected to be round, to elongate
those which are expected to be elongated, etc.  

IV. EXPERIMENTAL RESULTS

A. One-Dimensional Synthetic Data

The fuzzy partition shown in Fig. 1(a) classifies 161 or-
dered elements into 7 classes.  The crisp partition Xinit associ-
ated with this fuzzy partition is shown in Fig. 1(b).  Fig. 1(c)
presents the product of manual classification by human
expert.  It is the control partition.  We consider the following
structural knowledge: “classes 1, 2 and 7 appear as little
regions; classes 4 and 6 appear as medium size regions;
classes 3 and 5 appear as big regions; for each c≠1, a region
of class c appears next to and on the right-hand side of a
region of class c−1.”   This synthetic set of data and knowl-
edge is inspired by the geomorphological classification of an
atoll [17].  The data represents the pixels of a cross section of
the atoll rim.  Along the cross section, from the ocean to the
lagoon, the geomorphological classes are not situated in
random order.  The class reef front appears first, then the
class outer reef flat, and the class coral reef conglomerate,
etc.  To represent this knowledge, we chose a hierarchical set
of fuzzy production rules (Section II) , where two-level rules



are associated with each class.  In the upper level we have
two elementary propositions.  One concerns the size of
regions and the other concerns the spatial relations between
regions.  For instance, this is SK2: “ If (class 2), then (ESK1:
“ lit tle region” ) and (ESK2: “ the neighboring region on the
right-hand side is of class 1”).”  In the lower level, the vari-
able size (i.e., number of pixels) is attached to the first ele-
mental knowledge ESK1.  For any region R, the variable size
is used to evaluate qESK

1(R), the degree of adequacy between
ESK1 and R (Fig. 1(d)).  The value qESK

2(R) is obtained in a
simpler way.  Let c be the class to which R is assigned:
qESK

2(R)=1 if R appears next to a region of class c−1 (on the
right-hand side), and qESK

2(R)=0 otherwise.  Finall y, the
adequacy degree qSK

2(R) is min{ qESK
1(R), qESK

2(R)} .  At this
stage, for any partition X, it is possible to evaluate Q(X), the
degree of adequacy between X and the whole available
structural knowledge (Section III ).  For the control partition
(Fig. 1(c)), we obtain Q=0.96.  For Xinit (Fig. 1(b)), we get
Q=0.32.  The percentage of well classified pixels is 82.6%.

The RMA by SA has been tested 200 times: 100 times with
σ=0.03, maxLoop2=10, T0=0.001, and 100 times with σ=0.1,
maxLoop2=500, T0=0.01.  With the first threshold, 66 pixels
are candidate for reassignment (out of 161), and each one can
be reassigned to 2 candidate classes (out of 7).  In other
words, there are 266=7.38×1019 possible solutions in the
search space.  With each iteration, the global adequacy
degree increases (Table 1). Some tests output the control
partition after 50 iterations only: Q is 0.96, and the percent-
age of well classified pixels is 100%.  They also output other
partitions with Q=0.96.  After 400 iterations, every test gives
Q=0.96, and on average, the percentage of well classified
pixels is 98.9% (+16.3%, in 776.4 ms of CPU time on a P300
MMX laptop). Table 2 shows the results obtained with the
second set of parameters. When σ=0.1, 126 pixels are candidate
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Fig. 1.  Synthetic data.  (a) Fuzzy partition (pre-classification output).
(b) Corresponding crisp partition.  (c) Control partition issued from
manual classification.  (d) Linguistic values for size.

for reassignment: 86 pixels can be reassigned to 2 candidate
classes each, and 40 pixels to 3 candidate classes each.  This
time, there are 9.41×1044 possible solutions in the search
space.  The convergence is much slower.  After 10 iterations
(computation of 5000 partitions since maxLoop2=500), some
tests output partitions for which Q=1.  After 100 iterations,
72 tests out of 100 produce partitions for which Q is higher
than 0.96.  However, on average, the percentage of well
classified pixel is only 84.6% (+2.0% only, in 8367.4 ms of
CPU time).  Note that the system always tries to find a
partition that maximizes Q, even if the degree of adequacy
attached to the control partition is not maximum (which is the
case here).  As a result, even if the system succeeds in
reaching a global maximum (Q=1), the output may not
correspond to the control partition, and the percentage of well
classified pixels may not be 100%.

B. Two-Dimensional Real Data

At this time, we are preparing a series of tests on LAND-
SAT 7 multispectral images of atoll s.  To classify this type of
image, the human photo interpreter implicitly utilizes struc-
tural knowledge.  In this paper, and for our first experiments
on 2D real data, a very simple image is considered.  Its
manual classification does not require specific expertise.  It is
a very small RGB image (115×54) that represents a knife
handle with three rivets, as shown in Fig. 2(a).  There are four
classes: background, shadow, handle and rivet.  The defuzzi-
fication of the fuzzy partition generated by some supervised
classifier produced the crisp partition shown in Fig. 2(b).
This pre-classification stage was based on the spectral analy-
sis of individual pixels, and wil l not be described here.  In the
crisp partition, 33% of the rivet pixels (51 pixels out of 156)
are misclassified.  We can clearly see anomalies on the right
and left rivets.  With the aim of improving this pre-
classification result, the following structural knowledge is
considered: “a rivet appears as a little circular region.”  To
represent this knowledge, we utilize the linguistic variable
area (for “ little region,” see Fig. 2(f)), and the variables
aspect ratio and density (for “circular region,” see Fig.
2(d)(e)).  The degree of adequacy between the initial crisp
partition and the knowledge is Q=0.23.

backgroundhandle

Fig. 2.  Real data.

(a) Original image.

(b) Initial partition.

(c) Final partition,
      after 34 i terations.
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The RMA by SA has been tested 100 times, with σ=0.05.
With this threshold, 75 pixels are candidate for reassignment.
The 100 partitions that have been generated are all partitions
with Q=0.93.  However, they are all different, and the per-
centage of misclassified rivet pixels varies from 19% (30
pixels out of 156) to 22% (34 pixels out of 156).  Fig. 2(c)
shows one output.  The percentage of misclassified rivet pixels
has been reduced from 33 % to 21 %.  Despite the high
adequacy degree, the rivets obtained are not perfectly circular
(especiall y the left rivet that contains patches misclassified as
shadow).  It is obvious that the quality of the results produced
by RMA not only depends on the quality of the initial fuzzy
partition, but also on the quality of the structural knowledge,
and on the quality of its representation.  Note that the average
time for partitions with Q=0.93 to be generated was 38.1
seconds of CPU time on a P300 MMX laptop.

V. CONCLUSION

In this paper, we have introduced a novel approach that
aims at improving the automatic classification of remote
sensing images by exploiting expert structural knowledge.  It
is based on the computation of a fuzzy partition, and the use
of a combinatorial optimization strategy.  We have presented
first experiments on a 1D synthetic image, as well as on a
RGB real image of simple and strongly structured objects.
The results are encouraging.  The crisp partitions issued from
the pre-classification stage were coherently modified by
appropriately reassigning initially misclassified pixels.
However, many factors can affect the results (e.g., the quality
of the fuzzy partition, the qualit y of the knowledge, the way
to represent that knowledge and to evaluate its degree of
adequacy with image regions), and much work still has to be
done.  Also, the computational time is a practical issue that
cannot be ignored.  Remote sensing images often contain
millions of pixels.  For instance, how to choose the threshold
that is used to select candidate classes?  The lower the
threshold, the lower the computational time, but the less
significant the potential improvement over the initial crisp
partition.  Which value constitutes a good compromise?  We
intend to introduce a dynamic threshold controlled with a
decreasing function of the number of iterations.  We also
intend to integrate contextual information into the pixel
reassignment process.  At the moment, only one pixel differ-
entiates a candidate partition from its parent partition.  Many
pixels could be simultaneously reassigned, especiall y neigh-
bors with similar membership values.
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TABLE 1.   RESULTS OF 100 TESTS WITH PARAMETERS σ=0.03, maxLoop2=10, T0=0.001.

Time (ms.) Global adequacy degree, Q Percentage of well classified pixelsIteration # of
partitions Min Average Max Min Average Max Min Average Max

0 0 0 0 0 0.32 0.32 0.32 82.6 82.6 82.6
50 500 50 102.3 220 0.39 0.55 0.96 80.1 90.9 100

100 1000 160 205.9 330 0.43 0.71 0.96 81.4 93.7 100
200 2000 330 396.4 500 0.52 0.91 0.96 84.5 97.7 100
300 3000 540 587.6 720 0.63 0.94 0.96 90.1 98.6 100
400 4000 710 776.4 880 0.96 0.96 0.96 98.1 98.9 100

TABLE 2.   RESULTS OF 100 TESTS WITH PARAMETERS σ=0.1, maxLoop2=500, T0=0.01.

Time (ms.) Global adequacy degree, Q Percentage of well classified pixelsIteration # of
partitions Min Average Max Min Average Max Min Average Max

0 0 0 0 0 0.32 0.32 0.32 82.6 82.6 82.6
1 500 50 139.7 220 0.32 0.34 0.54 68.3 81.7 88.8

10 5000 870 1235.3 1490 0.36 0.65 1.0 50.3 73.0 96.8
50 25000 4180 4650.7 5000 0.64 0.94 1.0 59.6 83.7 96.9

100 50000 7850 8367.4 9390 0.73 0.96 1.0 69.6 84.6 96.9
200 100000 15210 15860.3 18340 0.73 0.96 1.0 69.6 84.6 96.9


