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Abstract-In computer vision, object recognition and spatial
relationship evaluation are useful in creating a scene identifica-
tion system.  This paper examines object pair matching within
LADAR (Laser Radar) imagery.  By manipulating the three-
dimensional data contained within a LADAR range image, it is
possible to create a version of the scene as seen from above.  In
the transformed view, a fuzzy region represents each object, and
the spatial relationship between two objects is represented by a
force histogram.  Matching two scenes then comes down to
comparing force histograms.  Each comparison gives a degree of
similarity between the two object pairs considered, as well as an
assessment of the pose parameters.  These values can finally be
combined to find a correct scene matching. Experiments on
synthetic data as well as on real data demonstrate the applica-
bility of our approach.

I. INTRODUCTION

In order to identify a scene, it is useful to examine the
components that make up the scene, as well as the relation-
ships between these components.  Earlier work in scene
matching, using gray scale correlation, or Fourier space
correlation [1] lack the power to use high-level concepts such
as objects’ spatial relationships.  These systems, while very
fast [2], do not expect the dramatic difference that can occur
in most practical 3D applications, and require similar scenes
to start with.  Existing high-level systems such as those using
descriptions [3] or relation graphs [4] do not use three-
dimensional information and can not identify the same scene
as viewed from two dramaticall y different angles.  In this
paper, we tackle this problem, and we examine scene
matching in LADAR (Laser Radar) imagery.  By manipulat-
ing the three-dimensional data contained within a LADAR
range image, we create a version of the scene as seen from
above.  Rather than using model-based reconstruction such as
[5], which would not be able to handle all of the possible
variations of objects that might occur in real world scenes,
systems that require multiple view angle sources [6], or
systems that make assumptions based on interpolations about
occluded regions [7], the areas of uncertainty in the trans-
formed view are fill ed in with fuzzy regions based on what is
known about the scene.

The force histogram introduced by Matsakis and Wendling
in [8] is a valuable tool in representing the relative position
between two 2D objects.  In a preliminary study [9], we
showed that this tool could be used to determine the similari-
ties of object spatial relationships, and to identify objects
transformed by rotation and dilation (i.e., scaling).  However,
when comparing different bird' s-eye views of some scene,
the approach presented in [9] basically ignores distortions
caused by declination and three-dimensional objects.  An in-
depth study was conducted in [10].  To identify relationships,
a search is done through rotation space, dilation space, and
also stretching (i.e., declination) space.  This constitutes a

vast improvement, but dramatic distortions caused by 3D
objects stil l cannot be handled.

In this paper, segmented LADAR images are used in
conjunction with the range data. The goal is to reconstruct
each scene so that it is independent of the third dimension
and the tilt (or declination) of the camera.  In other words, the
three-dimensional information is used to determine the
declination angle, and to transform the segmented scene to a
position as viewed from above.  Matching is then performed
by comparing the relationships between the objects in the
transformed scenes.  For rotations and scaling, we use the
same search methods described in [10].

II . TRANSFORMING A SCENE

TO A DECLINATION INDEPENDENT VIEWPOINT

To achieve the goals of this study, it was necessary to
modify the images so that the comparisons between two
scenes would be simpli fied.  The most obvious way to
achieve this was to eliminate the angle by which the scenes
are declined so that two images only differ in their rotation
and scaling.  We used a set of range data from the power
plant at China Lake, CA.  This data set was provided by the
Naval Air Warfare Center (NAWC), and generated by a laser
radar system mounted on a surveill ance plane flying above
the power plant complex.  Since the range data, from which
the segmented images were created, was available, the
images were modified using the three-dimensional informa-
tion contained within to create a version of the image as seen
from above.

The range data had many artifacts and noise points that
would potentiall y throw off the results of any transformation.
A median filter with a three by three window cleans the range
data suff iciently.  This corrects inaccuracies in the range data,
but there are still problems with the segmented data.

The scenes used in this experiment were hand-segmented.
The LADAR range data was processed to be easier to
segment, by “ lighting” the scenes.  It makes the scenes look
more natural to the human eye and easier to segment.  A
normal for each pixel is calculated from the three-
dimensional positions in the range data of the pixel, the pixel
above, and the pixel to the right of it.  The dot product of this
normal, and a light vector are then calculated to find an
intensity value for the pixel.  The result of this filter is seen in
Fig. 1.  The median and “ lighting” filters are followed by the
hand segmentation resulting in a rough approximation of the
objects’ edges.

To transform the segmented scenes, it is necessary for the
boundaries of the segmented image, and the range data to be
aligned.  If this were not done correctly, some pixels would
be separated from their objects.  Fig. 2 demonstrates this
problem.  Fig. 2a shows what might be a single column of



one of the scene images.  Mapped onto the column are the
labels resulting from hand segmentation.  The X’ed blocks
represent background pixels, and the O’ed blocks represent
the object.  Empty blocks are not visible from the original
point of view, and are therefore not labeled.  If no correction
were performed on the boundaries, Fig. 2c results.  From the
original view, everything seems to be labeled correctly, but
when the image is rotated to an overhead view, the inaccura-
cies in the segmentation become apparent.  Notice the one
O’ed block that becomes separated from the object.  This
block will cause inaccuracies in later procedures.

To correct this problem, range information is used.  First, a
search is performed on the segmented image to find the back
edges of all objects.  Next, these edges are adjusted to
correlate with the best possible “real” edge on the range data
by shifting the edge in one of the four cardinal directions.
This does not eliminate all of the error caused by inaccurate
segmenting, but does clean up the resulting image nicely.

Fig. 1.  The first image shows a range image from LADAR data.
The second has had “ l ighting“ applied to it.

  

 

Fig. 2.   A demonstration of segmentation problems.

A Hough-li ke transform is used to determine the angle of
declination from the range data.  An accumulator represent-
ing the different degrees of declination is created.  We
assume that the most commonly found angle between two
data points in all of the columns of the data is the declination
angle.  Thus, the method only works on data that represents a
relatively flat landscape with objects.  The arctangent of the
difference in range over the distance between a pair of data
points in a given column provides the angle of the two points
in space, which is used to increment the accumulator.  After

each pair of points in each column has been processed, the
maximum value of the accumulator is used to indicate the
most common declination angle in the entire scene.  Since
the images were mostly level, it was not necessary to find an
angle to describe the “roll ” of the scene, although a similar
method could be used.

After the angle of declination has been determined, the
labels of the segmented images are mapped to the three-
dimensional positions of the range data.  These positions are
then rotated by the angle of declination.  The intensity values
of the three-dimensional points are projected down, so that
the resulting image is the seen as viewed from above.  The
image resulting from this process has many gaps in it, due to
a general spreading out of the points and three-dimensional
objects that obscured points in the original image.

III . RECONSTRUCTING THE IMAGE

 Once an accurate overhead image was created, it was
possible to begin filling the “holes” caused by the rotation.
There are two types of holes created.  The first is a hole
caused by the general spreading of the pixels caused by the
rotation.  The second is a hole caused by an object obscuring
either another object, or the background.  These two types of
holes are handled differently to create an accurate description
of the overhead view of the scene.  If a single column of the
image is examined, the type of hole can be determined by the
two bounding pixels.  If the two pixels have the same label,
the hole type is caused by general spreading, or an object
obscuring itself.  Thus it is safe to assume that all of the
pixels between the two have the same values as the bounding
pixels.  In the second case, the two bounding pixels belong to
two different objects (or an object and the background).
Then, there is really no way to determine what would lie
between the two objects.  For this reason, we have decided to
“fill ” these gaps by constructing fuzzy regions.  To best
represent the uncertainty, two types of boundaries were
considered.  If a hole occurs on the front side (the side closest
to the camera) of an object, and there is significant evidence
that that side is obscured by another object closer to the
camera, then the fuzzy region associated with the object is
constructed with the front-end membership function, scaled
to fit the length of the uncertainty area (Fig. 3b).  Hence, the
uncertainty area is filled in smoothly, and the obscured object
is “reconstructed” in a coherent manner.  If a hole occurs on
the backside of the object, and if enough evidence exists to
support the conclusion that the object stretches out into the
uncertainty area, then the fuzzy region is constructed using
the back-end membership function (Fig. 3a).  Fig. 4 shows an
example of object reconstruction.

Fig. 3.  Two membership functions used to construct the fuzzy regions.
          a) The back-end membership function. b) The front-end function.
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Fig. 4.  The first image (left) shows the original scene.  The second image

(middle) shows the scene after being transformed to an overhead view (the
light gray regions are the areas of uncertainty).  The final image (right)

shows the fuzzy region used to represent the furthest most object
(the l ighter the pixel, the more it belongs to the object).

IV. OBJECT PAIR RELATION ANALYSIS AND

SCENE MATCHING

 Once the two scenes to match have been transformed to a
declination independent angle, the histograms of constant and
gravitational forces [8] are calculated for each individual
fuzzy region pair.  At this point, when comparing two
histograms not coming from the same scene, the rotational
difference and scaling ratio of the images can be assessed and
varied to maximize a similarity measure (for our experi-
ments, we used the classic sigma-count of the intersection
over the union).  Rotational difference is calculated as the
distance between the centroids of the two histograms, and
can be varied by shifting one of the histograms along the
horizontal axis.  The scaling ratio is calculated by comparing
the histogram averages, and can be varied by stretching one
of the histograms vertically.  Detail s can be found in [10].

For the experiments, it was assumed that the object con-
tents of each scene were the same, thus for a scene with four
objects, 720 possible scene matches must be considered.  For
each possible matching, an overall “matching degree” is
derived from the computed maximum similarity measures,
scale ratios, and rotational differences.

V. RESULTS

For the first set of experiments, several artificial three-
dimensional scenes of buildings on a flat plane were created
to demonstrate the functionality of the system, as well as
some of its strengths and weaknesses.  The first pair of
scenes to be compared demonstrates the merits of recon-
structing the front edge of an object using a fuzzy region.
The two scenes are displayed in Fig. 5.  Note that the objects
have been labeled consistently.  For each scene, the declina-
tion angle is recovered and the overhead view is computed
(see Sections 2 and 3). When the objects' edges are not
reconstructed (i.e., no fuzzy regions), the similarity measures
using the histograms of gravitational forces are found to be as
in Table 1.  When the objects are reconstructed using fuzzy
regions, there is a very noticeable improvement, as shown by
Table 2.

Table 1 has one very notable mistake.  As seen in row 0_2,
the pair was identified as 0_1.  This mistake is due to the fact
that the occlusion of object 2 makes it look li ke object 1.  In
the results based on the fuzzy reconstruction of the occluded
region, the correct pairs are matched.  In all experiments, the

results of the histograms of constant and gravitational forces
were quite comparable.

The images used in the second experiment are those dis-
played in Fig. 6.  Object 0 has a structure that is obscured in
the first image (left), but visible in the second (right).  The
pairs’ similarities in the crisp case were found to be as in
Table 3.  Table 4 shows that with the fuzzy regions there is
again a notable improvement.

   
Fig. 5.  These two images are of the same scene.

The first has a rotation of 10 degrees and a declination of 10 degrees.
The second has a rotation of 0 degrees and a declination of 60 degrees.

TABLE I
  SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 5 USING CRISP REGIONS.

0_1 0_2 1_2

0_1 0.956 0.73 0.663

0_2 0.974 0.717 0.677

1_2 0.495 0.349 0.705

TABLE II
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 5 USING FUZZY REGIONS.

0_1 0_2 1_2

0_1 0.966 0.715 0.679

0_2 0.618 0.875 0.425

1_2 0.645 0.455 0.911

    
Fig. 6.  These two images are of the same scene.

The first has a rotation of 0 degrees and a declination of 50 degrees.
The second has a rotation of 0 degrees and a declination of 20 degrees.

TABLE III
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 6 USING CRISP REGIONS.

0_1 0_2 1_2

0_1 0.755 0.853 0.862

0_2 0.681 0.969 0.788

1_2 0.832 0.828 0.963

TABLE IV
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 6 USING FUZZY REGIONS.

0_1 0_2 1_2

0_1 0.921 0.814 0.903

0_2 0.806 0.943 0.808

1_2 0.847 0.773 0.97



There is an incorrectly matched object pair in row 0_1 of
Table 3.  This is corrected when the occluded back-ends of
the objects are reconstructed.  Hence, based on this experi-
ment, there are cases where there is merit to using a fuzzy
region to fill in the uncertainty area on the back-end of an
object.  However, we have found that in cases in which there
is no evidence that there are structures being obscured behind
the object, this assumption would decrease the performance
of the system as a whole.

In a final experiment, we examine how well the system
performs on a real world image.  The images are those
displayed in Fig. 7.  Only the four labeled objects were
considered.  The shapes of the objects and the distance
between a given pair in these scenes vary greatly.  By
“eliminating” the declination, these factors are ameliorated.
Note that even though the results with fuzzy regions are
calculated, the effects of the occluded regions are minimal
due to the nature of the scenes and the lack of obscuration.
The similarity measures are found to be as in Table 5.

These results are not suff icient to match object pairs, or the
entire scene.  In every row, except for 0_3, the highest
similarity measure does not correspond to the true matching.
Thus, it is necessary to use additional information, such as
the calculated rotational differences, and the scaling ratios.
Any combination of two of the three measures (similarity
measures, rotational differences, and scaling ratios) is
sufficient to identify the true matching, but a combination of
all three yields the widest margin between the correct and
next best matching.  That is why the matching degree
mentioned in Section 4 derives from the three measures.

As expected, the matching with the highest degree is found
to be the true matching, with a value of 0.997.  The next
closest matching swaps the relationships of objects 0 and 3,
with objects 1 and 3,  and only earns a matching degree of

 

Fig. 7.  These two images are from the same scene
shown from two different viewpoints.

TABLE V
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 7 USING FUZZY REGIONS.

0_1 0_2 0_3 1_2 1_3 2_3

0_1 0.484 0.484 0.925 0.736 0.928 0.363

0_2 0.52 0.525 0.808 0.817 0.824 0.386

0_3 0.457 0.451 0.896 0.689 0.86 0.345

1_2 0.329 0.322 0.699 0.514 0.665 0.255

1_3 0.308 0.3 0.644 0.479 0.613 0.242

2_3 0.733 0.701 0.384 0.491 0.407 0.696

0.976.  The high value is because objects 0 and 1 are both
about the same size and the relationships between them and
object 3 only differ by a few degrees.  Only 8 of the 720
matching possibiliti es achieve a matching degree above 0.9.

VI. CONCLUSIONS

We have shown that scene matching in LADAR (Laser
Radar) imagery can be performed by manipulating the scene
viewpoints and constructing fuzzy regions.  The approach
described in this paper is powerful because it combines the
robustness of force histogram comparison for two-
dimensional object pair identification with known informa-
tion about the three-dimensional structure of the scene.
These tools used with existing object recognition tools can
create a powerful scene recognition system.  One limitation
of our approach is that it does not handle perspective
distortion.  If this parameter could be found in an image, then
the transformed image would indeed be the scene as viewed
above.  The obvious next goal of this ongoing research will
be to use what has been learned here to apply to scene
recognition.
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