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Abstract-ln computer vison, object recognition and spatial
relationship evaluation are useful in creating a scene identifica-
tion system. This paper examines object pair matching within
LADAR (Laser Radar) imagery. By manipulating the three-
dimensional data contained within a LADAR range image, it is
possible to create a version of the scene as seen from above. In
the transformed view, a fuzzy region represents each object, and
the spatial relationship between two objects is represented by a
force histogram. Matching two scenes then comes down to
comparing force hissograms. Each comparison gives a degr ee of
similarity between the two object pairs consdered, aswell as an
assessment of the pose parameters. These values can finally be
combined to find a correct scene matching. Experiments on
synthetic data as well as on real data demonstrate the applica-
bility of our approach.

|. INTRODUCTION

In order to identify a scene, it is useful to examine the
components that make up the scene, as well as the relation-
ships between these cmponents. Earlier work in scene
matching, using gray scale orrelation, or Fourier space
correlation [1] lack the power to use high-level concepts such
as obeds gpatia relationships. These systems, while very
fast [2], do not exped the dramatic difference that can occur
in most practical 3D applicaions, and require similar scenes
to start with. Existing high-level systems guch as those using
descriptions [3] or relation graphs [4] do not use three
dimensional information and can not identify the same scene
as viewed from two dramatically different angles. In this
paper, we tackle this problem, and we eamine scene
matching in LADAR (Laser Radar) imagery. By manipulat-
ing the threedimensional data mntained within a LADAR
range image, we aede aversion of the scene as £en from
above. Rather than using model-based reanstruction such as
[5], which would not be able to hande al of the posshle
variations of objeds that might occur in real world scenes,
systems that require multiple view angle sources [6], or
systems that make assumptions based on interpolations about
occluded regions [7], the aeas of uncertainty in the trans-
formed view arefill ed in with fuzzy regions based on what is
known about the scene.

The force higogram introduced by Matsakis and Wendling
in [8] is avaluable tod in representing the relative position
between two 2D objects. In a prdiminary study [9], we
showed that thistod could be used to determine the similari-
ties of object spatia relationships, and to identify objeds
transformed by rotation and dilation (i.e., scding). However,
when comparing different bird' s-eye views of some scene,
the approach presented in [9] basically ignores distortions
caused by declination and threedimensional objeds. An in-
depth study was conducted in [10]. To identify relationships,
a seach is done through rotation space, dilation space, and
also stretching (i.e., dedination) space This constitutes a

vast improvement, but dramatic distortions caused by 3D
objeds gill cannot be handled.

In this paper, segmented LADAR images are used in
conjunction with the range data. The goal is to recmnstruct
each scene so that it is independent of the third dimension
and thetilt (or dedination) of the amera. In other words, the
threedimensional information is used to determine the
dedination angle, and to transform the segmented scene to a
position as viewed from above. Matching is then performed
by comparing the relationships between the objeds in the
transformed scenes. For rotations and scding, we use the
same seach methods described in [10].

Il. TRANSFORMING A SCENE
TOA DECLINATION INDEPENDENT VIEWPOINT

To achieve the goals of this sudy, it was necessary to
modify the images © that the comparisons between two
scenes would be simplified. The most obvious way to
achieve this was to eliminate the angle by which the scenes
are dedined so that two images only differ in their rotation
and scding. We used a set of range data from the power
plant at China Lake, CA. This data set was provided by the
Naval Air Warfare Center (NAWC), and generated by alaser
radar system mounted on a surveill ance plane flying above
the power plant complex. Since the range data, from which
the segmented images were aeated, was available, the
images were modified using the threedimensional informa-
tion contained within to creae aversion of theimage as &
from above.

The range data had many artifacts and noise points that
would potentialy throw off the results of any transformation.
A median filter with athreeby threewindow cleansthe range
data sufficiently. This correds inaccuracies in the range data,
but there ae gill probems with the segmented data.

The scenes used in this experiment were hand-segmented.
The LADAR range data was procesed to be easier to
segment, by “lighting” the scenes. It makes the scenes look
more natural to the human eye and easier to segment. A
norma for each pixel is calculated from the three
dimensional positions in the range data of the pixel, the pixel
above, andthe pixd to theright of it. The dot product of this
normal, and a light vedor are then calculated to find an
intensity value for the pixel. Theresult of thisfilter is ®enin
Fig. 1. Themedian and “lighting’ filters are followed by the
hand segmentation resulting in a rough approximation of the
objeds edges.

To transform the segmented scenes, it is necessary for the
boundaries of the segmented image, and the range data to be
aligned. If this were not done arredly, some pixes would
be separated from their objects. Fig. 2 demonstrates this
probem. Fig. 2a shows what might be asingle wlumn of



one of the scene images. Mapped onto the wlumn are the
labels resulting from hand segmentation. The X’ed blocks
represent background pixels, and the O'ed blocks represent
the object. Empty blocks are not visible from the original
point of view, and are therefore not labeled. If no corredion
were performed on the boundaries, Fig. 2c results. From the
origina view, everything seans to be labeled correaly, but
when the image is rotated to an overhead view, the inaccura-
cies in the segmentation become apparent. Notice the one
O'ed block that becomes sparated from the objed. This
block will cause inaccuraciesin later procedures.

To corred this problem, range information isused. Firg, a
search is performed on the segmented image to find the back
edges of all objects. Next, these alges are aljusted to
correlate with the best possble “real” edge on the range data
by shifting the alge in one of the four cardinal diredions.
This does not eliminate dl of the error caused by inaccurate
segmenting, but does clean up the resulting image nicdy.

Fig. 1. Thefirstimage showsarangeimage from LADAR data.
The second has had “lighting* applied to it.
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Fig. 2. A demongtration of segmentation problems.

A Hough-like transform is used to determine the angle of
dedination from the range data. An accumulator represent-
ing the different degrees of dedination is creaed. We
assume that the most commonly found angle between two
data paintsin all of the wlumns of the datais the dedination
angle. Thus, the method only works on data that represents a
relatively flat landscape with objeds. The actangent of the
difference in range over the distance between a pair of data
pointsin a given column provides the axgle of the two points
in space, which is used to increment the accumulator. After

each pair of points in each column has been processed, the
maximum value of the accumulator is used to indicate the
most common dedination angle in the entire scene. Since
the images were mostly level, it was not necessary to find an
angle to describe the “roll” of the scene, although a similar
method could be used.

After the angle of dedination has been determined, the
labels of the segmented images are mapped to the three
dimensional positions of the range data. These positions are
then rotated hy the angle of dedination. Theintensity values
of the threedimensiona points are projeded down, so that
the resulting image is the seen as viewed from above. The
image resulting from this processhas many gapsin it, due to
a genera spreading aut of the points and threedimensional
objeds that obscured pointsin the origina image.

Il . RECONSTRUCTING THE IMAGE

Once a acaurate overhead image was created, it was
possble to begin filling the “holes’ caused by the rotation.
There ae two types of holes creaed. The fird is a hole
caused by the general spreading of the pixels caused by the
rotation. The second isahole cused by an objed obscuring
either another ohject, or the background. These two types of
holes are handled differently to create an accurate description
of the overhead view of the scene. If asingle @lumn of the
image is examined, the type of hole @n be determined by the
two bounding pixdls. If the two pixels have the same label,
the hole type is caused by genera sprealing, or an objed
obscuring itself. Thus it is safe to asaume that al of the
pixels between the two have the same values as the bounding
pixels. Inthe semnd case, the two bounding pixels belong to
two different objects (or an objed and the background).
Then, there is redly no way to determine what would lie
between the two objects. For this reason, we have dedded to
“fill” these gaps by constructing fuzzy regions. To best
represent the uncertainty, two types of boundaries were
considered. If ahole ocaurs on the front side (the sde dosest
to the amera) of an object, and there is significant evidence
that that side is obscured by another ohject closer to the
camera, then the fuzzy region assciated with the object is
consgtructed with the front-end membership function, scded
to fit the length of the uncertainty area(Fig. 3b). Hence the
uncertainty areaiisfilled in smoathly, and the obscured object
is “recongtructed” in a coherent manner. If a hole occurs on
the backside of the objed, and if enough evidence «ists to
support the @nclusion that the objed stretches out into the
uncertainty area, then the fuzzy region is constructed wsing
the back-end membership function (Fig. 3a). Fig. 4 shows an
example of object reconstruction.
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Fig. 3. Two membership functions used to construct the fuzzy regions.
a) The back-end membership function. b) The front-end function.



Fig. 4. Thefirstimage (Ieft) showsthe original scene. The second image
(middle) shows the scene after being transformed to an overhead view (the
light gray regions are the areas of uncertainty). The final image (right)
shows the fuzzy region used to represent the furthest most object
(the lighter the pixel, the more it belongs to the object).

V. OBJECT PAIR RELATION ANALY SISAND
SCENE MATCHING

Oncethe two scenes to match have been transformed to a
dedi nation independent angle, the histograms of constant and
gravitational forces [8] are calculated for each individual
fuzzy region pair. At this point, when comparing two
histograms not coming from the same scene, the rotational
difference and scaling ratio o the images can be assessed and
varied to maximize a similarity measure (for our experi-
ments, we used the classc sigma-count of the intersedion
over the union). Rotational difference is calculated as the
distance between the centroids of the two histograms, and
can be varied by shifting ane of the hisograms along the
horizontal axis. The scaling ratio is calculated by comparing
the histogram averages, and can be varied hy stretching one
of the histograms vertically. Detail s can be found in [10].

For the experiments, it was assumed that the ohjed con-
tents of each scene were the same, thus for a scene with four
objeds, 720 mssble scene matches must be wnsidered. For
each possble matching, an overall “matching degre€ is
derived from the computed maximum similarity measures,
scaleratios, and rotational differences.

V. RESULTS

For the first sat of experiments, several artificia three
dimensional scenes of buildings on a flat plane were aeated
to demondtrate the functionality of the system, as well as
some of its drengths and weaknesss. The first pair of
scenes to be compared demonstrates the merits of remn-
structing the front edge of an objed using a fuzzy region.
The two scenes are displayed in Fig. 5. Note that the objects
have been labeled consistently. For each scene, the dedina-
tion angle is remvered and the overhead view is computed
(see Sections 2 and 3. When the objects edges are not
remnstructed (i.e., no fuzzy regions), the similarity measures
using the histograms of gravitational forces are found to be as
in Table 1. When the objects are recnstructed using fuzzy
regions, there is a very noticeable improvement, as $1own by
Table 2.

Table 1 hasone very notable mistake. As eninrow 0_2,
the pair wasidentified as0_1. Thismistake is due to the fact
that the ocdusion of object 2 makes it look like ohject 1. In
the results based on the fuzzy remnstruction of the ocduded
region, the wrred pairsare matched. In all experiments, the

results of the histograms of constant and gravitational forces
were quite mmparable.

The images used in the seaond experiment are those dis-
played in Fig. 6. Objed 0 has a structure that is obscured in
the firgt image (l€eft), but visible in the second (right). The
pairs similarities in the crisp case were found to be as in
Table 3. Table 4 shows that with the fuzzy regions there is

again a notable improvement.
Fig. 5. Thesetwo images are of the same scene.

Thefirst hasarotation of 10 degreesand a declination of 10 degrees.

The second has arotation of 0 degrees and a declination of 60 degrees.

TABLE |
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 5 USING CRISPREGIONS.
01 02 12
01 0.956 073 0.663
0.2 0.974 0.717 0.677
12 0.495 0.349 0.705
TABLEII
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 5 USING FUZZY REGIONS,
01 02 12
01 0.966 0.715 0.679
0.2 0.618 0.875 0.425
12 0.645 0.455 0.911

Fig. 6. Thesetwo images are of the same scene.

Thefirst hasarotation of O degreesand a declination of 50 degrees.
The second has arotation of 0 degrees and a declination of 20 degrees.

TABLE Il
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 6 USING CRISPREGIONS,
01 02 12
01 0.755 0.853 0.862
0.2 0.681 0.969 0.788
12 0.832 0.828 0.963
TABLE IV
SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 6 USING FUZZY REGIONS,
01 02 12
01 0.921 0.814 0.903
0.2 0.806 0.943 0.808
12 0.847 0.773 0.97



There is an incorredly matched objed pair in row 0_1 of
Table 3. Thisis correded when the ocduded back-ends of
the objects are remnstructed. Hence based on this experi-
ment, there ae @ses where there is merit to using a fuzzy
region to fill in the uncertainty areaon the back-end of an
objed. However, we have found that in cases in which there
isno evidencethat there ae structures being obscured behind
the object, this assumption would deaease the performance
of the system asawhole.

In a final experiment, we examine how wel the system
performs on a red world image The images are those
displayed in Fig. 7. Only the four labdled objeds were
considered. The shapes of the objeds and the distance
between a given pair in these scenes vary greatly. By
“eliminating” the dedination, these factors are ameliorated.
Note that even though the results with fuzzy regions are
calculated, the dfeds of the ocduded regions are minimal
due to the nature of the scenes and the lack of obscuration.
The similarity measures are found to be asin Table 5.

These results are not sufficient to match ohject pairs, or the
entire scane.  In every row, except for 0 3, the highest
similarity measure does not correspond to the true matching.
Thus, it is necessary to use additional information, such as
the alculated rotationa differences, and the scaling ratios.
Any combination of two of the three measures (similarity
measures, rotationa differences, and scaling ratios) is
sufficient to identify the true matching, but a cmbination of
all threeyieds the widest margin between the @rred and
next best matching. That is why the matching degree
mentioned in Sedion 4 cerives from the threemeasures.

As expeded, the matching with the highest degreeis found
to be the true matching, with a value of 0.997. The next
closest matching swaps the relationships of objeds 0 and 3,
with objeds 1 and 3, and only eans a matching degreeof

hw

Fig. 7. Thesetwo images are from the same scene
shown from two different viewpoints.

TABLE V

SIMILARITY MEASURES OF OBJECT PAIRS IN FIG. 7 USING FUZZY REGIONS,
01 02 03 12 13 23
01 0484 0484 0925 0736 0928 0363
02 052 0525 0808 0817 0824 0386
03 0457 0451 0896 0689 086 0345
1.2 0329 0322 0699 0514 0665 0255
13 0.308 03 0644 0479 0613 0242
2.3 0733 0701 0384 0491 0407 0696

0.976. The high value is becuse objects 0 and 1 are bath
about the same size and the reationships between them and
objea 3 only differ by a few degrees. Only 8 of the 720
matching posshiliti es achieve a matching degreeabove 0.9.

V1. CONCLUSIONS

We have shown that scene matching in LADAR (Laser
Radar) imagery can be performed by manipulating the scene
viewpoints and constructing fuzzy regions. The gproach
described in this paper is powerful because it combines the
robustness of force histogram comparison for two-
dimensional objed pair identification with known informa-
tion about the threedimensional sructure of the scene
These tods used with existing ohjed reagnition tods can
create a powerful scene recognition system. One limitation
of our approach is that it does not hande perspedive
distortion. If this parameter could be found in an image, then
the transformed image would indeed be the scene as viewed
above. The obvious next goal of this ongoing research will
be to use what has been leaned here to apply to scene
reaognition.
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