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Abstract — Spatial relationships among image objects play a
vital role in countless domains of computer vision (e.g., pattern
recognition, image understanding, scene descr iption). Some
have received considerable attention the last few years (e.g., “ to
the right of,” “a bove,” “ to the left of” and “ below” ), but others
have not been the subject of as much investigation. In this pa-
per, we design consistent fuzzy models of three impor tant spa-
tial relationships: “ surr ounded by,” “ between” and “among.”
These models are based on the histogram of forces, which rep-
resents the relative position between two objects. Here, force
histograms are assimilated to fuzzy sets and processed through
their αα-cuts. Our goal is to extend the capabili ties of a fuzzy
system for li nguistic scene descr iption introduced in an ear lier
paper.

I. INTRODUCTION

Spatial relationships among image objects play a vital
role in countless domains of computer vision. Freeman tried
to draw up an exhaustive li st of “primitive” relationships and
came up with 13 names (such as “above” , “near” , “between” ,
“ inside” , etc.) [1]. He also proposed the use of fuzzy rela-
tions, because “all or nothing” standard mathematical rela-
tions are clearly not suited for models of spatial relationships.
Freeman’s ideas were widely adopted. However, 2D objects
were often assimilated to very elementary entities such as a
point (centroid) or a (bounding) rectangle. The procedure is
practical, but yields poor models because of the loss of a lot
of morphological information. Krishnapuram et al [2] and
Miyajima and Ralescu [3] tackled this problem in parallel
and came up with similar propositions. They developed the
idea that the relative position between two objects can have a
representation of its own and can thus be described in terms
other than spatial relationships. However, the representation
set out in [3] shows several weaknesses (e.g., requirement for
raster data, long processing times, anisotropy). In [4][5],
Matsakis and Wendling introduced the histogram of forces. It
proved to be a powerful tool, studied for numerous applica-
tions (e.g., pattern recognition [6], scene matching [7], lin-
guistic scene description [8], spatial databases [9]).

The histogram of forces lends itself, with great flexibilit y,
to fuzzy definitions of directional spatial relations (such as
“to the right of” , “ in front of” , etc.) [8]. In this paper, we
consider its use for the modeling of other important relation-
ships: “surrounded by,” “between” and “among.” They are
represented by fuzzy relations: s, b and a. Although the

preposition “between” usually denotes a ternary relation, its
model b is binary, as are s and a. For instance, the degree of
truth of the proposition “A is between B1 and B2” is
b(A,B1∪B2), and the degree of truth of “A is among B1, B2, B3

and B4” is a(A,∪Bi). Contrary to “between,” the term
“surrounded by” does not belong to the list of primitive
names for spatial relations drawn up by Freeman in [1]. How-
ever, it can be related to the element that Freeman refers to as
“ inside.” The relation “surround” then corresponds to
“outside.” It is the semantic inverse of “surrounded by,” i.e.,
the propositions “A is surrounded by B1, B2 and B3” and “B1,
B2 and B3 surround A” are equivalent. The term “among” does
not belong to Freeman’s li st either. We call “among” a spatial
relationship similar to “between.” The main difference is that
“between” usually involves three objects (A, and B1 and B2)
whereas “among” involves four objects or more (A, and at
least three other objects).

Fuzzy definitions of “surrounded by,” “between” and
“among” are proposed in Section II I, and tested on real data
in Section IV. Concluding remarks are given in Section V.
Section II covers some existing models and briefly presents
the notion of the histogram of forces.

II . BACKGROUND

A. The Histogram of Forces

The relative position of a 2D object A with regard to an-
other object B can be represented by a function FAB from IR
into IR  + called the histogram of forces associated with (A,B)
via F, or the F-histogram associated with (A,B). For any
direction θ, the value FAB(θ) is the scalar resultant of elemen-
tary forces. These forces are exerted by the points of A on
those of B, and each tends to move B in direction θ (Fig. 1).
Actuall y, the letter F denotes a numerical function. Consider
any real number r. If the elementary forces are in inverse ratio
to dr, where d represents the distance between the points con-
sidered, then F is denoted by Fr . The F0 -histogram (histo-
gram of constant forces) and the F2-histogram (histogram of
gravitational forces) have very different and very interesting
characteristics. The former provides a global view of the
situation. It gives equal consideration to both the object’s
closest and farthest parts, whereas the F2-histogram focuses
on the closest parts.



(a)  

     

�

�

θ

−π/2 0 θ π/2     −π/2 0 π/2θ

(b) (c)

Fig. 1.   Force histograms. (a) FAB(θ) is the scalar resultant of forces (black
arrows). Each one tends to move B in direction θ. (b) The histogram of
constant forces associated with (A,B). It represents the position of A relative
to B. (c) The histogram of gravitational forces associated with (A,B). It is
another representation of the relative position between A and B.

The histogram of forces encapsulates structural informa-
tion about the objects as well as information about their spa-
tial relationships. It offers solid theoretical guarantees and
nice geometric properties, ensures fast and eff icient process-
ing of vector data as well as of raster data, and enables the
handling of fuzzy objects as well as crisp objects, intersect-
ing objects as well as disjoint objects, and unbounded objects
as well as bounded objects. Force histogram computation
benefits from the power of integral calculus, is highly paral-
leli zable, and util izes a well -known algorithm that is com-
monly circuit coded in visualization systems. Details can be
found in [4][5][7][8].

B. Existing Spatial Models

Spatial relationships like “surrounded by,” “between” and
“among” play an important role in the interpretation of a
scene, and several methods of assessing these relationships
have been proposed. There are two main approaches. The
first one is based on such rules as (R1) and (R2) [10][11]:

(R1)  IF B1 is to the right of A AND B2 is to the left of A
          THEN A is between B1 and B2

(R2)  IF B is to the right of A AND B is above A AND
             B is to the left of A AND B is below A
         THEN A is surrounded by B

The main weakness of this approach comes from the fact that
it is very diff icult to express the necessary conditions for a
spatial configuration to occur (instead of sufficient condi-
tions). In the case of Fig. 2(a) for instance, the proposition “A
is between B1 and B2” cannot be assessed using (R1). Only a
low (and useless) lower bound of its degree of truth would be
obtained. Moreover, a rule like (R2) assumes that an object
can be in many directions with respect to another. This way
of modeling directional relationships is questionable: gener-
all y, people do not combine more than two spatial preposi-

tions when translating visual information into natural lan-
guage descriptions [12][13]. Lastly, one should be aware of the
implicit assumptions on the objects. (R2), for instance, should
be applied only if B does not intersect the convex hull of A,
i.e., if it is known that A does not surround B at all. Indeed,
the directional relationships are tied by the semantic inverse
principle [1] (e.g., A is to the left of B as much as B is to the
right of A). Therefore, without constraints on the objects,
there is no way to know which object surrounds (or includes!)
the other. This is illustrated by Figs. 2(b)(c).

In the second approach, the considered relationships are
not derived from other “even-more-primitive” relationships.
Instead they are assessed directly. Most examples can be
found in the modeling of “surrounded by” and are based on
the computation of a histogram of angles. For any pixel P of
A, let θP be the angle made by the two tangents from P to B as
in Fig. 3. To each element θ of ]2,0[ π , the histogram associ-

ates the number of pixels P such that the angle θP is equal to
θ. In [14], the degree of truth for “A is surrounded by B” is
produced by a multilayer perceptron fed by the histogram
values. Other authors resort to a decreasing membership
function µ from ]2,0[ π  into [0,1] such that µ(θ) is 1 if θ is 0

and is 0 if θ is greater than π. In [11] for instance, the histo-
gram of angles is assimilated to a fuzzy set and matched to µ.
In [2], it is used to compute the aggregated value of the µ(θP)
when P describes A. The spatial models above all derive from
Rosenfeld’s visual surroundedness [15]. They assume that the
object B is connected and does not intersect A. They are not
extremely robust since the results are not sensitive to the
thickness of the surrounding object, only to tangency points.
Moreover, they cannot handle vector data, and are computa-
tionally expensive.
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Fig. 2.   (a) “ B1 is to the right of A” and “ B2 is to the left of A” are true to a
certain extent only. Most fuzzy models [16] would produce degrees of truth
lower than 0.5. However, A is clearly between B1 and B2. In (b) as in (c), the
same fuzzy models would assess B to be somewhat above, below, to the right
and to the left of A as well . It does not mean that A is surrounded by B. In (b),
A surrounds B. In (c), A is included in B.

B

A
θP

P

Fig. 3.   Angle histogram computation for the modeling of “ surrounded by.”
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III . NEW SPATIAL MODELS

In this section, two objects, A and B, are considered. The
normalized histogram Fr

BA / maxθ Fr
BA(θ) is denoted by H

and assimilated to a fuzzy set (Fig. 4(a)). The symbol Hα

denotes the support of H if α is 0, and the cut of level α if α
belongs to the interval (0,1] (Fig. 4(b)). For any α, the set Hα

is represented by a polar diagram (Fig. 4(c)). Imagine that A
and B are the objects of Fig. 4(d) (B is composed of four
connected components). When the radius of A and the thick-
ness of B both tend towards 0, the normalized histogram H
becomes crisp, and the polar representation of any Hα be-
comes exactly li ke Fig. 4(c), i.e., it merges with the configu-
ration in the object space.

With any set Hα we associate 2q angles:  z1, z2, …, zq

(“z” as in zero) and  o1, o2, …, oq (“o” as in one). All these
angles belong to the interval [0,2π]. Moreover:  z1≥z2≥…≥zq 

and  o1≥o2≥…≥oq . The value q is the number of arcs in the
polar representation of Hα. This is ill ustrated by Fig. 4(e).
When Hα is equal to the referential set (i.e., the set of real
numbers), q=1 and  z1=0 and o1=2π (case of Fig. 5(a)). If q is
greater than 1, two other angles y1 and y2 can be defined (Fig.
4(e)). We have:  y1≥z1+z2  and  y2≥z1+z2 .

A. “ Surrounded by” α-Cuts

The degree to which the set Hα describes a “surrounded”
situation is denoted by sα(A,B). It is a real number that be-
longs to the interval [0,1]. We propose the simple expression
below, where k denotes some positi ve value (in our experi-
ments, k =1). The highest possible degree, 1, is reached when
z1 is 0 (see Fig. 5(a)). The higher z1, the lower sα(A,B) (see
Figs. 5(b)(d)). Note that sα(A,B) does not depend on the
number of arcs that are around the center point in the polar
representation of Hα (as far as z1 remains the same).

sα(A,B) = max (
π
11,0

z
k− )

B. “ Between” α-Cuts

The degree to which the set Hα describes a “between”
situation is denoted by bα(A,B). We consider that the rela-
tionship should not apply when q is 1, and that the highest
values should be reached when q is 2 (i.e., when exactly two
arcs are around the center point in the polar representation of
Hα). However, z1 and z2 should be close to each other, i.e.,
the ratio z2/z1 should be high (Fig. 6(a)). There is nothing
preventing z1 and z2 from being small (Fig. 6(b)), but
min(y1,y2) should not be too small (Fig. 6(c)). The situation is
not as ideal when q is greater than 2. In accordance with
Figs. 6(d)(e)(f), we consider that z3 should be small com-
pared to z1 and z2, i.e., the higher z3/z2, the lower bα(A,B). In
conclusion, we propose the definition below, where k, k' and
k" denote three positi ve real numbers (in our experiments,
k =1, k' =1 and k" =2).

q=1 ⇒  bα(A,B)=0

q=2 ⇒  bα(A,B)=min (
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C. “ Among” α-Cuts

The degree to which the set Hα describes an “among”
situation is denoted by aα(A,B). When q is lower than 3, we
consider that the relationship should not apply. When q is
greater than or equal to 3, we expect the arcs in the polar
representation of Hα to be comparable in size and evenly
distributed around the center point. The best case is illustrated
by Figs. 7(a)(d), in which  z1=zq  and  o1=oq ,  i.e.,  z1=(Σi  zi)/q 
and  o1=(Σi oi)/q . The worst cases are illustrated by Figs.
7(b)(e), in which either z1>> z2 or o1>> o2, i.e.,  z1≈Σi zi  or
o1≈Σi oi  . Hence the proposed definition below:
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Fig. 4.   (a) The normalized force histogram H is assimilated to a fuzzy set.
(b) Hα is the cut of level α. (c) Polar representation of Hα. We would get a
very similar diagram if the objects A and B were as in (d). (e) Angles associ-
ated with Hα.
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Fig. 5.   Degree to which Hα describes a “surrounded” situation.
(a) sα(A,B)=1. (b) sα(A,B)≈0.5. (c) sα(A,B)≈0.5.
(d) sα(A,B)=0. (e) sα(A,B)≈0.9. (f) sα(A,B)≈0.8.
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D. Wrapping Computation Scheme

The spatial relationships “surrounded by,” “between” and
“among” are modeled by fuzzy binary relations: s, b and a.
One might consider that the histogram values are not reall y
useful, and that the most important is the knowledge of the
directions in which forces appear—whatever the type and the
amplitude of these forces. The relations s, b and a could, there-
fore, be defined as follows: s(A,B)=s0(A,B), b(A,B)=b0(A,B) and
a(A,B)=a0(A,B). The method, however, is drastic. Moreover,
it is not extremely robust. Although the values sα(A,B), bα(A,B)
and aα(A,B) vary in a continuous manner when an arc or a gap
in the polar representation of Hα extends gradually at one of
its ends, continuity is generally disrupted when an arc stretches
to merge with its neighbor or shrinks to disappear.

All Hα sets should therefore be considered. In practice,
the fuzzy set H can be represented by a finite number of α-
cuts: Hα1, Hα2, …, Hαn. The values α1, α2, …, αn are such
that:  α1=1>α2>…>αn>αn+1=0 and Hα1⊂Hα2⊂…⊂Hαn=H0.
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Fig. 6.   Degree to which Hα describes a “ between” situation.
(a) bα(A,B)=1. (b) bα(A,B)=1. (c) bα(A,B)≈0.4.
(d) bα(A,B)=0. (e) bα(A,B)≈0.5. (f) bα(A,B)≈0.8.
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Fig. 7.   Degree to which Hα describes an “among” situation.
(a) aα(A,B)=1. (b) aα(A,B)≈0.1. (c) aα(A,B)=1.
(d) aα(A,B)=1. (e) aα(A,B)≈0.2. (f) aα(A,B)≈0.8.

The degrees of truth s(A,B), b(A,B) and a(A,B) can then be
defined as follows, using the general computation scheme
proposed by Dubois and Jaulent in [17]:

          s(A,B) = Σi mi s
αi(A,B), (1)

         b(A,B) = Σi mi b
αi(A,B) (2)

and   a(A,B) = Σi mi a
αi(A,B), (3)

where  mi=αi−αi+1 . (4)

The results presented in [17] rely on Shafer’s theory of belief
functions [18] and its links with fuzzy set and possibilit y
theory [19]. Such links make statistical interpretation of
membership functions possible [17]. For instance, the spatial
relationship “between” measured on (A,B) yields the follow-
ing probabilit y distribution:

pb | [0,1] → [0,1]
          x    |→   Σi mi δ(x,bαi(A,B))

where δ(x,bαi(A,B)) is 1 if x is equal to bαi(A,B) and is 0 oth-
erwise. The degree b(A,B) as stated in Equation (2) is simply
the corresponding expected value. Instead of this single num-
ber, a fuzzy interval could also be obtained by transforming
pb into a possibilit y distribution [17]. In this paper, Equation
(4) wil l be replaced by Equation (5) below, where f denotes a
continuous non-increasing function from [0,1] to IR +. If f(x) is
1, then (4) and (5) are equivalent. Four examples of functions
f are given by Fig. 8.
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Fig. 8.   Examples of functions f for the
definition of basic probability assignments.

The L-shaped function corresponds to the case where the
sets Hα are all ignored but H0. As mentioned above, the sup-
port H0 seems to be the most appropriate set for describing
the relationships between the objects A and B (whereas, para-
doxicall y, the core H1 seems to be the less significant). Con-
sidering different types of force, and other basic probabilit y
assignments than the ones defined by (4), makes it possible to
design spatial models that are more or less sensitive to the
variabil ity of the forces at work, i.e., to the relative thickness
of the objects and to the relative distance between them. This
is ill ustrated by Fig. 9 and Table I. When relying on constant
forces (F0), the “between” models do not care about the in-
creasing distance in situations 4, 5 and 6. However, they are
very sensiti ve to the length of the right rectangle in situations
1, 2 and 3. This sensitivity can be controlled by f. With
gravitational forces (F2), it is just the opposite. The models
pay special attention to relative distance and much less to



Fig. 9.   Different “between” situations.
A is the black square, B is the union of the two gray rectangles.

TABLE I

THE VALUES OF b(A,B) FOR THE SITUATIONS IN FIG. 9 DEPEND ON THE

FORCE HISTOGRAM AND ON THE BASIC PROBABILITY ASSIGNMENT

F0 F2

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 0.77 0.58 0.35 1.00 0.96 0.87 0.64

3 1.00 0.57 0.38 0.21 1.00 0.93 0.81 0.56

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 0.42 0.26 0.14

6 1.00 1.00 1.00 1.00 1.00 0.19 0.10 0.05

relative thickness. For our experiments, in Section IV, we
used F2-histograms and the basic probabilit y assignments
defined by the arc-shaped function. They gave the best intui-
tive results (according to our own perception).

IV. EXPERIMENTS

We considered two LADAR (Laser Radar) images provided
by the Naval Air Warfare Center (Fig. 10). Both were used in
previous works to test different fuzzy systems for automatic
target recognition [20] and linguistic scene description [8]. The
system presented in [8] relies on the computation of force
histograms. It outputs descriptions that make use of spatial
prepositions related to directional relationships. For instance,
the object A in Fig. 10(b) is found to be “perfectly to the right
of B1,” “ below-right of B2,” etc. The histograms computed
are FAB1, FAB2, etc. Consider the group of buildings 4, 5 and 6
in Fig. 10(d). Relative to that group, the tower 1 is “to the left
but a lit tle above,” the tower 2 is “perfectly to the left,” and the
storehouse 3 is “perfectly above but slightly shifted to the left.”
Now, consider Fig. 10(b) again. If the system was asked to
describe the position of A with respect to ∪Bi, it would have to
generate F 

(∪Bi )A. This is an easy task, because F 
(∪Bi )A =Σi F

BiA

and: ∀θ∈IR , FBA (θ)=FAB (θ−π) [7]. The first equation comes
from the fact that forces are additive and ∩Bi is empty. Know-
ing F 

(∪Bi )A, the system would then be able to output the
requested linguistic description. However, in this particular
case, it would come to the conclusion that none of the direc-
tional relationships are relevant, and would display the mes-
sage “???????.” We now have the abilit y to extend the system.

Fig. 11 shows ten configurations extracted from Figs.
10(b)(d). For each configuration, the degrees of truth s(A,B),
b(A,B) and a(A,B) have been computed (see Table II ). The
highest degree, if greater than some threshold (0.5), indicates

(a)

(b)

(c)

(d)

Fig. 10.   (a) Fil tered LADAR range image of a Surface-to-Air Missile site
with convoy. (b) Objects detected by the Automatic Target Recognition
system described in [20]. (c) Fil tered LADAR range image of a power plant.
(d) Hand-segmented image used in [8].

the spatial relationship which suits the configuration best.
This relationship is also shown in Fig. 11. In Fig. 11(g), the
fuzzy system presented in [8] detects a large amount of ambi-
guity. It states that “A  is loosely below B” and notes that “the
description is unsatisfactory.” The second part of the message
prompts the user to turn to relationships other than directional
ones. The extended system would stick to this output anyhow,
because the values s(A,B), b(A,B) and a(A,B) are too low. In
Fig. 11(j), the amount of ambiguity detected by the original
system is even larger, and no appropriate description can be
given. Although the value s(A,B) is quite high, one should not
state that “A is surrounded by B.” As happens with the rule-
based methods (Section II.B), it is important to make sure
beforehand that B does not intersect the convex hull of A (or
that A is “rather” compact, and that A and B do not intersect
“much”)—which is not the case here. This is the price to pay for
concurrent assessment of directional relationships and spatial
relationships like “surrounded by,” “ between” and “among.”
Finally, here are some results obtained when choosing other
basic probabili ty assignments (see Section III .D). With the stan-
dard assignments (Equation (4)), the highest degrees of truth
are often lower than 0.3, and no relationship really stands out.
When f is the steep L-shaped function (the α-cuts of the fuzzy
set H are ignored, only the support H0 is considered),  the
results tend to be crisp, and are much less satisfactory (ac-
cording to our own perception). In Fig. 11(d) for instance, A is
found to be “between B ” (b(A,B)=0.85 and a(A,B)=0.72); for
Fig. 11(g), we get s(A,B)=0.91 (instead of 0.41); in Fig. 11(h),
A is “surrounded by B ” (s(A,B)=0.94 and b(A,B)=0.00); in
Fig. 11(i), we have s(A,B)=1.00 (instead of 0.63).
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Fig. 11.   Ten configurations extracted from the images shown in Fig. 10..
A is the black object, B is the union of the gray ones.

TABLE II

VALUES OF s(A,B), b(A,B) AND a(A,B)
FOR THE CONFIGURATIONS DEPICTED IN FIG. 11

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

s 0.23 0.08 0.07 0.23 0.58 0.92 0.41 0.58 0.63 0.68

b 0.29 0.92 0.71 0.47 0.62 0.02 0.01 0.61 0.16 0.12

a 0.71 0.00 0.00 0.67 0.06 0.02 0.01 0.00 0.00 0.00

V. CONCLUSION

We have shown that the histogram of forces can be em-
ployed to design consistent fuzzy models of spatial relation-
ships like “surrounded by,” “between” and “among.” Com-
pared to other existing methods, force histogram-based
methods are computationally much less expensive; they are
able to handle non-connected objects and groups of objects;
they are able to handle vector data as well as raster data; and
a variety of spatial models, more or less sensitive to the
thickness of the objects and to the distance between them,
can be defined. Another important advantage is that the di-
rectional relations (i.e., “ to the left of,” “above,” etc.) can be
assessed concurrently. Unfortunately, there is a price to pay:
as happens with the rule-based methods, we have to make
sure beforehand that the considered objects satisfy certain
constraints (e.g., one object is compact and does not intersect
the other object, or one of the objects does not intersect the
convex hull of the other object). Only specific tools, dedi-

cated to the evaluation of the spatial relationships studied
here, can overcome this limitation. Designing new types of
force histograms constitutes a promising avenue. The idea is
to adopt novel sets of axiomatic properties, and to change the
way the longitudinal sections are handled [4][5].
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