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Abstract

Fuzzy set theory is making many inroads into the handling
of uncertainty in various aspects of image processing and
computer vision. High level computer vision is a place that
holds great potential for fuzzy sets because of its natural
linguistic capabilities.  Scene description, i.e., the language-
based representation of regions and their relationships, for
either humans or higher automated reasoning provides an
excellent  opportunity.  In this paper we discuss aspects of
scene interpretation involving linguistic descriptions of
spatial relations between image objects.

1. Introduction

Natural scene understanding is an important aspect of
computer vision.  It has received considerable attention, but
has not had the success of low level and mid level vision
techniques.  This is at least partially due to the fact that
sophisticated world models are needed and that reasoning at
high levels is rife with uncertainty.  Early approaches, such
as ACRONYM [1] and constraint networks[2] exposed the
diff icult nature of scene interpretation. These systems were
primarily constructed to locate objects within a given scene,
and did not explicitly model uncertainty.

Walker et al. [3] developed a system for reasoning about
lines, planes, and polygons in 2 and 3 dimensions.  This was
extended to incorporate fuzzy set theoretic operations to
control perceptual grouping of primitive elements [4].

Antony constructed a framework within which spatial,
temporal and hierarchical scene reasoning can take place,
although no actual imagery was analyzed [5].  The primary
focus was on creating structures to efficiently carry out
scene analysis tasks.  He also addressed the possibilit y of
incorporating fuzzy set concepts into constraints such as
"near", and used quadtree representations to determine
(crisp) areas of an image that would correspond to the
spatial concepts like "northeast".

In high level computer vision, spatial relations among image
objects play a vital role in the description of a scene.
Humans can judge the spatial relationship between two
objects, e.g., “B is to the right of A” , although it has been

made quite clear that human intuition varies considerably.
Both the vague concepts of what spatial relationships should
mean, and the uncertainty of how they can model differing
human perceptions make automated calculation and use of
this important information problematic.

Because of its importance and connection to human scene
understanding, the concept of spatial relations has been
considered in many forms, from linguistic and
psychological points of view to automated definition and
reasoning systems [6-9].  Spatial relations such as ABOVE,
RIGHT, and others defy precise definitions, and seem to be
best modeled by fuzzy sets [10-15]. However, there are
many fuzzy definitions available.

With all of the potential definitions, there has been a
considerable amount of argument about the "best" method.
Much of the debate centered on human intuition.  Each
paper makes such arguments.  Interestingly, what we found
was that for pattern recognition, the differences between
fuzzy spatial relation definitions was not crucial to the final
recognition rate [16]; the fact that the approaches provided
reasonable (and distinct) estimates was the important factor.
Further recent evidence for this claim with respect to scene
analysis can be found in [17], but this was done in a limited
application environment.  Much more work needs to be
done to exploit the benefits of fuzzy definitions of spatial
relations for scene analysis.

In this paper, we examine the utilit y of fuzzy spatial
relations for scene description in the following sense.  First,
we consider a fuzzy rule-based approach to image
description as found in [18].  While the results are quite
good for the images tested, this approach has the problem
that it is based on estimates made for only the four primitive
directional relations (LEFT, ABOVE, RIGHT, BELOW)
plus SURROUND.  Most of the rules are used to generate
additional finer quantized directions.  Also, additional
geometric object features are needed to develop the
primitive relations.   Next, we briefly describe the approach
of Matsakis [13] who postulated an axiomatic framework
for functions that generate spatial relationships from which
he generated the histogram of forces.  By picking particular
choices of the functions, he can recover the histogram of



angles or a histogram of "gravitational forces" that
incorporates metric information about the sets in question.
Finally, we consider how this richer set of geometric and
angular information can be used to develop a "language" to
better describe the relationships between objects.  We
believe that this language can be tailored to match
individual human users, which has applications for content-
based image retrieval.

2. Fuzzy Rule-based Scene Description

In [18], we presented a fuzzy rule-based approach for
linguistic scene description involving spatial relations. Its
objective was to construct linguistic descriptions of entire
image scenes.  Explicit modeling of the uncertainty of
defining spatial relations was incorporated into the scene
description methodology.  We used spatial relationship
values generated from neural networks trained on aggregate
responses from a panel of people.  These fuzzy spatial
relationship values were combined with other world
knowledge encoded in fuzzy logic rules to produce the final
linguistic analysis.  Details can be found in [18] with
additional scene matching experiments in [17]

Based on outputs of spatial relationship neural networks,
five spatial relation membership values (LEFT, ABOVE,
RIGHT, BELOW, and SURROUND) were obtained for
pairs of objects in a scene.  Objects of like type were
automatically grouped together to provide more concise
descriptions. The fuzzy membership values were fed to a set
of rules such as:

If  LEFT is   LOW       AND
    ABOVE  is   HIGH      AND
    RIGHT is   HIGH      AND
    BELOW is   LOW       AND
    SURROUND is  LOW

THEN TOTALLEFT is    LOW       AND
TOTALABOVE is   LOW       AND
TOTALRIGHT is   LOW       AND
TOTALBELOW is   LOW       AND
ABOVELEFT is   LOW       AND
ABOVERIGHT is   HIGH      AND
BELOWLEFT is   LOW       AND
BELOWRIGHT is   LOW       AND
AMONG is   LOW        AND
TOTALSURROUND is LOW

The input values were the 5 spatial relation memberships
from the spatial relationship neural networks.  The 10 output
variables are shown in the above rule.  They indicated the
confidence values of the 10 relations. There were over 200
basic rules in this system.  Other rules were needed for
specific problem domains.

In an application to Automatic Target Recognition, consider
Figure 1(a) which shows a preprocessed LADAR range
image (called "pseudo intensity") containing a SAM site and
an embedded convoy of vehicles.  Based on a series of

detection/recognition algorithms [19], we produced the
detection and labeling of the objects( Figure 1(b) and (c)).

(a)

 (b)

Label Object Label Object
1 Launcher 6 Launcher
2 Launcher 7 Vehicle
3 Launcher 8 Launcher
4 Center

Vehicle
9 Vehicle

5 Vehicle 10 Vehicle

(c)

Figure 1.  An image of SAM site.  (a) Pseudo-intensity image; (b)
Detection and labeling of the targets; (c) Object labels from
detection/recognition algorithms.

After application of the rule-based system, outputs were
converted to linguistic labels. From the 10 output values, the
variable with the highest confidence value was picked to
describe the relation between objects in the scene.  This is a
simplistic linguistic approximation approach, but has
produced good results in [18]. The automated description of
Figure 1 is shown in Figure 2.

There are 5 missile launchers (1,2,3,6,8).
They surround a center vehicle (4).
The image includes a SAM site.
A convoy of vehicles (5,7,9,10) is belowright of the SAM site.

Figure 2. Linguistic output for Figure 1 from the fuzzy rule-based
system.

The description in Figure 2 is typical of those obtained in
[18].  How do we judge the performance of high level scene
description?  We only argued from an intuitive basis.  That
is, from comparing the original images to the linguistic
representation, do we believe that the description captured
the "essence" of the scene?  As mentioned in the
Introduction, appealing to intuition has been a standard
means of justifying output of spatial relationship definitions.
There needs to be a better method.  One approach that
involves using this system to produce a description to match
against that generated by another means, e.g., a person or a
different description package.  Preliminary data is
encouraging [17].  However, the "language" used in [18] is
very coarse.  Better descriptive terminology needs to be
created and matched to the spatial relationship definitions,
particularly if it can be tailored to particular individuals.



3. Relative Position and F-histograms

Now we describe the new approach employing force
histograms and show how it can be used to develop finer
linguistic descriptions between objects.  Let A and B be two
image objects. For any direction θ, the function value FAB(θ)
represents the total weight of the arguments that can be
found in order to support the proposition “A is in direction θ
of B” . More precisely, it is the resultant of elementary
forces that are exerted by the points of As on those of B,
where each tends to move B in direction θ (Figure 3). If the
elementary forces are in inverse ratio to dr, where d
represents the distance between the points considered and r
is a positi ve real, then F is denoted by Fr . For instance, the
F function associated with the universal law of gravitation is
F2 . When considering all angles, FAB is called the histogram
of forces associated with (A,B), or the F−histogram
associated with (A,B). It is demonstrated in [13] that
F0−histograms coincide with angle histograms, It is
interesting that F0  –histogram and F2 –histogram have very
different characteristics (Figure 4). The former gives a
global view of the situation. It considers the closest parts
and the farthest parts of the objects equally, whereas F2 –
histograms focus on the closest parts.

�

�

θ

Figure 3.   Computation of  FAB(θ).  It is the scalar resultant of
forces (black arrows). Each one tends to move B in direction θ.
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Figure 4.   Main characteristics of the F0  and F2. a) Independence
from distance (F0–histograms): the force exerted by I on J is equal
to that by K on L; b) Independence from scale (F2–histograms): the
force exerted by I on J is equal to that exerted by K on L.

3.1 F-Histograms and Directional Relations

Consider for instance the proposition “A is to the right of
B” (other directions are similar). While the F-Histograms
can supply a much richer Linguistic directional
quantization, we restrict ourselves to the 4 principle
directions here.  In order to assess the degree of truth of this
proposition, the set of directional forces is divided into four
quadrants (Figure 5). The forces Fr

AB(θ) of the first and
fourth quadrants are elements which, to various degrees,
weaken the proposition “A is to the right of B” ; the forces of

the second and third quadrants are elements which support
the proposition. Some forces of the third quadrant are used
to compensate — as much as possible — the contradictory
forces of the fourth one (Figure 5, Figure 6(a)). Forces of
the second quadrant are used in a symmetrical way to
compensate the contradictory forces of the first one. The
remaining forces are called the effective forces. Each
effective force is now divided into two components, as in
Figure 6(b). One is "optimal" and the other "sub-optimal".
The division is a user defined directional sensitivity for the
Fr  −histogram. The optimal components support the idea
that A is “perfectly” to the right of B. The average direction
αr(RIGHT) of the effective forces is then computed. Finall y,
the degree of truth ar(RIGHT) of the proposition “A is to the
right of B” is computed as:

a r (RIGHT) = µ(α  r (RIGHT)) × b  r (RIGHT)

In this expression, br(RIGHT) denotes the percentage of the
effective forces (Figure 5), and µ the membership function
of a fuzzy set of [−π,π] that can be used to define RIGHT as
in Figure 7 (similar to those in [11,12]). Note that the most
optimistic point of view consists in saying that any effective
force is optimal. Then, αr(RIGHT) is equal to 0 radians and
µ(αr(RIGHT)) to 1. According to Fr

AB, the value br(RIGHT)
therefore corresponds to the maximum degree of truth that
can reasonably be attached to the proposition “A is to the
right of B” .
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Figure 5.   Breakdown of the forces  for RIGHT (I).
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Figure 6. Breakdown of the forces  for RIGHT (II). a) Gray dotted
arrows: contradictory forces. Black dotted arrows: compensatory
forces. Black continuous arrows: effective forces.  b) Gray arrows:
sub-optimal components.  Black arrows: optimal components.
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Figure 7. The degree of truth of the proposition “A is to the
RIGHT of B” .

4. Generation of Linguistic Descriptions

Let A and B be two objects. Our aim here is to give a
linguistic description of the relative position between A and
B that fundamentall y relies on the sole primitive directional
relationships: “ to the right of” , “above” , “ to the left of” and
“below” . The description is generated from F0

AB and F2
AB,

which have different and interesting characteristics. We
combine the opinions given by these two histograms.

4.1.  The Numerical Features

Let ∆ be the set of the four primitive directions:
∆={ RIGHT,ABOVE,LEFT,BELOW} . Consider an element δ of
∆. A degree of truth a(δ) has to be attached to the
proposition “A is in direction δ of B” . Now, a0(δ), the value
proposed by F0

AB, is never too optimistic, but is often too
cautious. This drawback will be corrected considering F2

AB.
However, F2

AB ’ s opinion may be excessive: sometimes
excessively pessimistic, and sometimes excessively
optimistic. There are actually three cases.

1.  a2(δ) > b0(δ)

According to F0
AB, the value b0(δ) is the maximum degree

of truth that can reasonably be attached to the proposition
“A is in direction δ of B” . Therefore, F2

AB confli cts with
F0

AB. We temper F2
AB ’ s enthusiasm and set a(δ) = b0(δ).

2.  a0(δ) > b2(δ)

According to F2
AB, the value b2(δ) is the maximum degree

of truth. Therefore, F0
AB comes into confli ct with F2

AB. We
ignore the excessive pessimism of F2

AB and set: a(δ) = a0(δ).

3.  a2(δ) ≤ b0(δ)  and  a0(δ) ≤ b2(δ)

There is no confli ct. We set: a(δ) = max{ a0(δ),a2(δ)}

It is easy to see that in the three cases: a(δ) =
max{a0(δ),min{ a2(δ),b0(δ)}} . Moreover, the first and second
cases can be rewritten: a(δ)>min{ b0(δ),b2(δ)} . The value
min{ b0(δ),b2(δ)} measures the agreement between the two
sources of information and allows confli cts to be
determined. Six parameters are extracted from the analysis
of the histograms F0

AB and F2
AB, and used in order to

constitute the linguistic description of the relative position
between A and B. These values d1, m1, δ1, d2, m2 and δ2 are
defined as follows:

d1 = max δ∈∆ a(δ)
a (δ1) = d1

m1 = min{ b0(δ1),b2(δ1)}

d2 = max δ∈∆−{ δ1}  a(δ)
a (δ2) = d2

m2 = min{ b0(δ2),b2(δ2)}

Here, δ1 is the primary direction, and δ2 the secondary
direction. The degree of truth a(δ) that we decided to attach
to the proposition “A is in direction δ of B” is maximum
when δ is δ1. The linguistic description wil l generally be
composed of three parts. The first part is the main part of the
description (e.g., “A is to the right of B” ). It involves the
primary direction. The second part supplements the
description (e.g., “but a little above” ). It involves the
secondary direction. The third part indicates to what extent
the four primiti ve directional relationships are suited to
describing the relative position of the objects (e.g., “The
description is satisfactory”). In other words, it indicates to
what extent it is necessary to turn or not to other spatial
relations (e.g. “surrounds”).

4.2.  The System of Rules

A simple set of rules has been implemented to test out the
descriptive nature of this approach.  The preliminary rules
are interval based, and hence, not fuzzy. The first part of the
description uses the rules shown in Figure 8(a). In all parts
of Figure 8, the thickness of the connections indicate the
strength of the parameter. If the primary direction is RIGHT,
and the two objects can be assimilated to points, then m1 is
then equal to 1 (no possibilit y of confli ct between the
sources of information F0

AB and F2
AB). The proposition “A

is to the right of B” is more or less true, depending on its
degree of truth, i.e. on d1.  The three linguistic terms
perfectly, (--2) (which is a void adverb - the standard
situation) and mostly have been chosen here.  If A and B
cannot be assimilated to points, m1 may be lower than 1.
Depending on the amount of ambiguity, perfectly
degenerates into (--1) or nearly1, (--2) into nearly2 or
loosely1, etc. Note that if m1 or d1 are very low values (very
serious confli ct, very ambiguous configuration), no rule is
activated. In this case, no pertinent linguistic description
relying on the sole primitive directional relationships can be
given, and the description wil l be “???????” .  This
dictionary of terms can be tailored to individual users.

The second part of the description depends on δ2, d2 and m2.
It uses the rules shown in Figure 8(b). Suppose for instance
that the secondary direction is ABOVE. Depending on m2, the
proposition “A is above B” may turn into “A is shifted
upward relative to B” . The signification of the second
expression is presented in Figure 9, and its connection with
the primary is il lustrated by Figure 10. Whatever the
expression chosen, two adverbs compete, depending on the
degree of truth of the proposition. If A and B can be
assimilated to points, at least one of the values m2 and d2 is
very low, and “A is above B” is the only possible choice. If
both values are very low, no rule is activated, and the
second part of the description is void.

In certain cases, one of the rules shown in Figure 8(c) is
activated, and the two first parts of the description are
combined, using one of the four compound directions:
ABOVE−RIGHT, ABOVE−LEFT, BELOW−LEFT and BELOW− RIGHT.



If there is no ambiguity concerning A and B's relative
position, the rule leading to the term (--3) is the only one that
can be activated.  The connections of an expression such as
“A is above-right of B” with the other kinds of expressions
are illustrated in Figures 12 and 14.

If a pertinent linguistic description relying on the primitive
directional relationships can be given, then the description
assesses itself using the last rules shown in Figure 8(d).
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Figure 8.   The system of rules.

There are many thresholds for these crisp rules. Most of the
values D1 to D10 have been deduced from geometric
observations, the others have been determined empiricall y,
considering typical configurations such as those presented in
Figures 9 and 11.

0 0 0

A
A

A

B B B

A B is   to  the   o f .pe rfec t ly righ t A B is   to  the   o f ,
bu t  sh if ted  .

pe rfec t ly righ t
s lig h tly up w ard

A B is   to  the   o f ,
bu t  sh ifted  .

pe rfec t ly righ t
s tron g ly u pw a rd

Figure 9. Secondary direction and Shifting. In each case, the self-
assessment of the description is: “The description is satisfactory.”

A is (--2) to the right of B,
but strongly shifted
upward relative to B.  The
description is satisfactory.

B
A A is (--2) to the right of

B, but a little above.
The description is
satisfactory.

Figure10. An example of equivalent descriptions.

A B is   to  the   o f .
The desc ription  is .

perfectly right
satisfa ctory

A B is   to  the  o f .
The desc ription  is .

nearly rig ht
ra ther satisfacto ry

2

A B is   to  the  o f .
The desc ription  is .

loose ly right
unsatisfactory

3

B

B

B

A

A

A

???????

3

2

Figure 11. Training images and terminology: Self-assessment.

   

1

5

3
2

4

B

1 is loosely4 below-left of B.

The description is unsatisfactory.

2 is loosely4 below-left of B.

The description is rather satisfactory.

3 is loosely4 below-left of B.

The description is satisfactory.

4 is nearly3 below-left of B.

The description is satisfactory.

5 is (--3) below-left of B.

The description is satisfactory.

Figure 12.   Test image sequence to show connections of the two
parts.

B1 B2 B3 B4 B5

1 B is   to  the   o f .
T he  d esc rip t ion  is  .

pe rfec t ly le ft
sa t is fac to ry ?? ?? ???

2 B is  to  th e   o f .
T he  d esc rip t ion  is  .

ne arly  le ft
sa t is fac to ry

2

3 B is  to  the   o f .
T he  d esc rip t ion  is  .

lo ose ly  le ft
ra the r sa tis fac to ry

3

4 B is  to  the   o f .
T he  d esc rip t ion  is  .

lo ose ly  le ft
un sa tis fac to ry

32

3

3

Figure 13. Test images to show the need for additional description.



B

5

2

B

1

B

B

3

B

4

1 B is   .
The de scrip tion  is  .

pe rfec tly below
satis fac to ry

2 B
B

 is   , but 
sh ifte d to  the  re la t ive  to  .
The de scrip tion  is  .

pe rfec tly s lightly
rig ht

satis fac to ry

be low

3 B
B

 is   , but 
sh ifte d  re la t ive  to  .
The de scrip tion  is  .

pe rfec tly s tro ngly

satis fac to ry

be low
rig htto  the  

4 B is   .
The de scrip tion  is  .

lo ose ly
satis fac to ry

4
be low -right of

5 B is   .
The de scrip tion  is  .

ne arly
satis fac to ry

3
be low -right of

4

3

Figure 14.  More test objects

5. Conclusions

In this paper, we indicate how spatial relations can be used
with rule-based approaches for scene description.  We
introduced a new method to use F-Histograms to enhance
the linguistic expressions by means of hedges and a self-
assessment.  Preliminary results are quite encouraging.
Clearly more work is necessary to exploit the richness of the
information contained in the F-Histograms.
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