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Abstract. With a raster Digital Elevation Model, it is usual to associate a di-
rected graph. Firstly, the problem of defining cost functions for such digraphs
is discussed in a general and formal framework, and a particularly simple and
natural way to tackle this problem is proposed. Secondly, the notion of profit-
abilit y, which is commonly li nked with the notion of cost, is put forward.
Thus, profitabilit y measures are introduced. In particular, the profitabilit y of a
point according to a region is defined. Finall y, it is shown that profitabilit y
measures and cost functions provide complementary information.
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1    Introduction

With a raster DEM, it is usual to associate a digraph. To each path of this digraph a
cost may be attached. Typicall y, a DEM represents a part of the surface of the earth.
A path of the associated digraph then corresponds to a path on the surface. And the
cost of the digraph path may correspond to the (euclidean) length of the surface path.
It may also correspond to a time or a gasoline consumption. In this paper, only
digraphs associated with raster DEMs are considered. Firstly, the problem of defi-
ning cost functions for these graphs is discussed in a general and formal framework.
A particularly simple and natural way to tackle this problem is proposed in section
§2. The presented approach develops from euclidean to discrete geometry. Thus, cost
functions defined on paths of the aff ine euclidean space are introduced. As shown in
§4, cost functions of graphs are to space cost functions, as a raster DEM is to the
represented surface. Secondly, the notion of profitabilit y is put forward. It is in the
habit of saying that such a place is near and of easy access, or near but inaccessible,
distant but quite accessible, etc. Distance and accessibilit y can thereby be comple-
mentary criteria for the research of particular spots, for instance within the frame-
work of regional development. Profitabilit y is to cost as accessibilit y is to distance.
Profitabilit y measures on paths of the aff ine euclidean space are introduced in §3. As
shown in §4, they enable to define on a DEM the profitabilit y of a point according to
a region. By way of conclusion, §5, experimental results ill ustrate how profitabilit y
measures and cost functions provide complementary information. Note that N is the
set of natural numbers, Z is the one of relative numbers and R the real numbers one.
a··b, where a and b are relative numbers, is { n∈Z / a≤n≤b} and R  is R ∪{ −∞,+∞} .



Fig. 1.  Linear paths of C.
Fig. 2.  Generating a hill -climbing energetic function.
 The hill -climber feels mostly at ease on a 15° slope.
He refuses slopes up over 60° and slopes down over 45°.

2    Space Cost Functions

2.1    Terminology and Notations

The space is a directed aff ine euclidean space referred to the direct orthonormal
frame (O, i , j , k ). The plane is the aff ine subspace referred to the direct frame
(O, i , j ). In this section §2, a path is an oriented geometrical arc of space. The
length of a path is its euclidean length. A linear path is a path of space without
double point and whose support is a segment. P P1 2 , where P1 and P2 are two points
of space, denotes the linear path joining P1 to P2. Let n be an integer such that n≥3,
(Pi)i∈1..n a sequence of n points of space. Pi

i∈1..n denotes the path obtained by juxtapo-
sition of the arcs Pi

i∈1..n−1 and P Pn n−1 . Its length is  Σi∈1..n−1 PiPi+1. Now consider the
set of the paths which benefit by the recurrent notation that has been introduced. C
will represent the part of this set including following paths only: Pi

i∈1..n such that for
any element i of 1..n−1 the orthogonal projections of Pi and Pi+1 onto the plane are
distinct. From now on, the term path will be applied to the elements of C only. Let
PQ  be a path of C (more precisely, “ let P and Q be two points of space such that:
PQ∈C” ). Let u  be the orthogonal projection of PQ onto the plane ( i , j ) and let v

be the unit vector u / | u |. Defined relatively to the direct vector plane ( v , k ): ∠ PQ

is the measure of the oriented angle between v  and PQ , xPQ and yPQ are the
coordinates of PQ (Fig.1). ∠ PQ∈]−π/2,π/2[ and xPQ∈R+

∗  and yPQ/xPQ = tan(∠ PQ).
∠ PQ measures the angle between the PQ  and the plane. It is the slope of the path.

2.2    Slope-Dependent Cost Functions

Definition 1.  A space cost function is a map C from C into R+
∗ satisfying [A1]:

[A1]  Let Pi
i∈1..n be a path of C:  C( Pi

i∈1..n 
) = Σi∈1..n−1 C( P Pi i +1 ).

Given µ a path of C. C(µ) is the cost of µ. If C(µ) is finite, µ is potentially profitable.

Any path of C hence admits a cost (C is a map) and may absolutely not be profitable
(a cost may be infinite). Moreover, travelli ng is always costly (a cost is a strictly
positi ve value). Note that certain problems of optimal paths call for replacing the
sum calculation in [A1] by the calculation of the minimum [Gon84] or of the average
[Ahu93], or even of the product [Pri94]. And the matter may be then to research max-
cost paths and no more min-cost paths. The previous definition is however adapted to
the majority of the practicall y encountered problems.



Definition 2.  A space cost function C is said to be slope-dependent iff it satisfies [A2]:
[A2] Let PQ  and RS be two paths of C: [PQ=RS and ∠PQ

 
=∠RS] ⇒ C( PQ )=C( RS).

The slope and length of a linear path then determine its cost. In other words, the
exact locali zation of the path in space is not important: space is considered homoge-
neous. In practice, it is far from being always the case. For instance, a 4×4 vehicle
can travel on road or on uneven ground, on dry or sodden soil , through a thick or scat-
tered vegetation, along or against the wind direction, etc. ([Mit91], [Zha93], [Kre94],
[Dub95]...). Slope-dependent cost functions are then not adapted to cost modelization
(supposing that the available data do not only consist in topographical ones!). However
that may be, these are fundamental functions because the cost function associated with
a non-homogeneous space can be defined from a parametrized family of slope-
dependent functions (one corresponding for instance to the travel on tarred road, the
other on stony path, etc.). Moreover, the profitabilit y measures (see §3) need to be
based on such cost functions, representing ideal spaces. Proposition 1 expresses that
the cost of a linear path of given slope is proportional to the length of this path.

Proposition 1. Let C be a slope-dependent cost function, PQ  and RS two paths of C
and k a strictly positi ve real number: [PQ=k·RS and ∠PQ=∠RS] ⇒ C( PQ)=k·C( RS)

2.3    Generator of a Space Cost Function

Definition 3.  Let θ be an element of ]−π/2,π/2[ and let C be a slope-dependent space
cost function. C is said to be minimal at θ iff it satisfies the following properties:
[A3] Let PQ  and RS be two paths of C: (PQ = RS and ∠RS = θ) ⇒ C( PQ) ≥ C( RS)
[A4] Let RS be a path of C: [RS = 1  and  ∠RS = θ]  ⇒  C( RS) = 1

From [A3], it derives that among all li near paths with length 1, those with slope θ
have the lowest cost. [A4] sets this minimal cost to 1. The only real contribution of
[A4] is to guarantee the existence of potentiall y profitable paths. Remark that the
map from C into R+

∗  which associates each path with its length is minimal at any
element of ]−π/2,π/2[.

Proposition 2. ⇒⇒ Let θ be an element of ]−π/2,π/2[ and let C be a slope-dependent
space cost function. If C is minimal at θ, there exists a map δ from ]−π/2,π/2[ into
[0,1] such that for any PQ  of C: C( PQ) = xPQ / [cos(∠PQ).δ(∠PQ)]. This map δ is
unique and takes the value 1 at θ. ⇐⇐ Let θ be an element of ]−π/2,π/2[ and let δ be a
map from ]−π/2,π/2[ into [0,1] taking the value 1 at θ. There exists a space cost
function C such that for any path PQ  of C: C( PQ) = xPQ / [cos(∠PQ).δ(∠PQ)]. This
cost function is unique, slope-dependent and minimal at θ.

Definition 4. Let θ be an element of ]−π/2,π/2[. According to proposition 2, the datum of a
space cost function, slope-dependent and minimal at θ, is equivalent to the one of a
map δ from ]−π/2,π/2[ into [0,1] taking the value 1 at θ: δ is the cost function generator.

δ(α), for any element α of ]−π/2,π/2[, is the distance a cost unit enables to cover on a
linear path of slope α. The interest of expressing C in terms of δ li es in this simple
interpretation. From a practical point of view, defining a cost function by means of
its generator is particularly convenient and natural (Fig.2).



2.4    A Typical Family of Space Cost Functions

Definition 5. Let θ be an element of ]−π/2,π/2[ and C a space cost function, slope-depen-
dent and minimal at θ. C is called a hill-climbing energetic function iff it satisfies [A5]:
[A5]  Let PQ  and RS be two paths of C:
         [PQ = RS  and  (∠PQ ≤ ∠RS ≤ θ  or  θ ≤ ∠RS ≤ ∠PQ)]  ⇒  C( PQ) ≥ C( RS)

A hill -climber gets less tired on a linear path of slope θ. The further from θ the slope
is (i.e. the more abrupt the slope up or the steeper the slope down), the more energy
is consumed. The idea is to penalize abrupt ways (Fig.2). The map from C into R+

∗

which associates each path with its length is a hill -climbing energetic function.

3    Space Profitability Measures

In this section, profitabilit y measures on paths of the space are introduced. The
calculation of the profitabilit y of a path joining P to Q is based on the estimate,
drawn from a priori knowledge, of the travel cost from P to Q. The knowledge at
stake are voluntaril y limited: for instance to the position of the orthogonal projec-
tions of P and Q onto the plane, or to the position of P and Q in space, the length of
the min-cost path from P to Q, etc. Each case leads to a particular profitabilit y
measure. As ill ustrations, two measures are briefly described here. C denotes a space
cost function, DP and DQ the lines directed by k and running through P and Q, P@Q
the set of paths belonging to C and joining P to Q, DP @ DQ the set of paths belonging
to C and joining one point of DP to one point of DQ:    DP @ DQ   =

( )  P QP Q', ' ∈ ×
� �

�
P’@Q’

3.1    The 2D-Profitability Measure

Definition 6. The 2D-profitability measure is a function A2D from C into [0,1]. Let µ
be a path of C joining a point P to a point Q. A2D is defined at µ iff  inf ν∈DP @ DQ  C(ν)
is finite (it is especiall y the case when µ is potentiall y profitable). It is then set that:
A2D(µ) = [inf ν∈DP @ DQ C(ν)] / C(µ). A2D(µ) is the 2D-profitability of  µ (relatively to C).

Forecasting to spend inf ν∈DP @ DQ C(ν) to join Q from P, means at the same time to be
economical, pragmatic, very optimistic and (really) misinformed. As if a hill -climber, in
order to assess the distance he still has to cover, would draw a segment on a rudi-
mentary touristic map and consider the relief to be certainly as he hopes to be. So is
A2D. And its judgement gets more severe: if somebody is advised to follow µ to get
from P to Q, the measure will probably assess that, comparing C(µ) with the cost initiall y
forecast, the suggestion was not the best (and even dishonest). In the case where C is
the map from C into R+

∗  which associates each path with its length, the forecast cost
is the distance between lines DP and DQ, i.e. xPQ. Consequently, measure A2D is a map
and value A2D(µ) is simply xPQ /λ — where λ denotes the length of µ. The following
proposition gives a practical means to characterize A2D in a more general case.

Proposition 3.  If the cost function C is generated by a continuous map δ, the profitabilit y
measure A2D is an everywhere defined measure. Moreover, for any couple (P,Q) of points:
[ PQ∈C ⇒ inf

ν  @P Q∈ � �
C(ν) = x

PQ
 / max

α π π∈]- /2, /2[
(δ(α)·cos(α))] and [ PQ∉C ⇒ inf

ν  @P Q∈� �
C(ν)=0]



3.2    The 3D-Profitability Measure

Definition 7. The 3D-profitability measure is a function A3D from C into [0,1]. Let µ
be a path of C joining a point P to a point Q. A3D is defined at µ iff  infν∈P@Q C(ν)
is finite (it is especiall y the case when µ is potentiall y profitable). It is then set that:
A3D(µ)=[infν∈P@Q C(ν)] / C(µ). A3D(µ) is the 3D-profitability of µ (relatively to C).

Forecasting to spend  infν∈P@Q C(ν)  to join Q from P, means at the same time to be
economical, pragmatic, very optimistic and (rather) misinformed. As if a motorist, in
order to assess the distance he still has to cover, would scan an ordnance map and
consider that tunnels have certainly been excavated and bridges erected. A3D sticks
more to realiti es than A2D. Its judgement gets less severe. If C associates each path
with its length, then the forecast cost is PQ. In the general case, infν∈P@Q C(ν) may
be diff icult to calculate. This point will not be tackled here.

4    Back to the Discrete Space

After a quick reminder about cost functions of graphs and optimal paths, in §4.1, it
is shown in §4.2 how to associate a weighted digraph with a raster DEM and a space
cost function. Moreover, in §4.3, profitabilit y measures are defined on the graph vertices.

4.1    Cost Functions of Graphs and Optimal Paths

Let (X,U,V) be any weighted and directed graph. Assume that V is a map from U
into R+

∗ . The function from the set of graph paths into R+
∗ , which associates each

path (ui)i∈1..n with the value Σi∈1..nV(ui), is the cost function of (X,U,V). Σi∈1..nV(ui)
is the cost of (ui)i∈1..n. Now, let p and q be two vertices and let µ be a path from p to
q. If the cost of any path from p to q is greater than or equal to the cost of µ then µ is
an optimal path — or a min-cost path — from p to q. The cost of µ is the min-cost to
reach q from p. Finall y, let ∆ be the function from X² into R+

∗  which associates each
couple (p,q) with the min-cost to reach q from p, let Y be a non-empty subset of X
and let ∆Y be the function from X into R+

∗ defined by: ∀p∈X, ∆Y(p) = min q∈Y ∆(q,p).
∆(q,p) is the min-cost to reach p from q. A path from q to p is optimal iff its cost is ∆(q,p).
∆Y(p) is the min-cost to reach p from Y. ∆Y is the min-cost function according to Y.

4.2    Weighted Digraphs, Raster DEMs and Space Cost Functions

With a numerical image, it is usual to associate the directed graph whose vertices are
the image pixels and the arcs are, generall y, the couples of 8-adjacent vertices. Let
hence I be a raster DEM and let (X,U) be the digraph associated with I. The pixels of
I are assimilated to points of the discrete space Z ². This space itself is embedded into
the aff ine euclidean xy-plane. The choice of U incites to provide Z ² with a discrete
distance, and more precisely with a ponderate distance d defined by a 3×3 mask. In
practice, in order to approach the euclidean distance, the chamfer distance 3-4 is
generall y recommended [Bor86]. Now, it is considered that I is a raster model of a
surface of the aff ine euclidean space. To any pixel of I consequently corresponds a
point of this surface. Pixel and associated point will be named by the same letter:



small for the first and capital for the second. To  pixel p of I thus corresponds a point
P of the aff ine space: p is the orthogonal projection of P onto the xy-plane and the z-
coordinate of P is the gray-level of p in I (up to a scale factor). Finall y, let C be a
space cost function, as defined in §2. C enables to weight the digraph (X,U) by
means of the map V from U into R+

∗  which associates each arc (p,q) with C( PQ) (we
will hark back to this point in §4.3). Consider a path µ of the weighted digraph
(X,U,V). It can be represented by a sequence (pi)i∈1..n of vertices such that:
∀i∈1··n−1, (pi,pi+1)∈U. The cost of µ is the value Σ i∈1..n−1V(pi  ,pi+1), or also
Σ i∈1..n−1C( P Pi i+1 ), i.e. C( Pi

i∈1..n). It then appears natural that the cost function of
the graph, as well as the space cost function, should be denoted C.

4.3    Profitability of a Point According to a Region

Let I be a raster DEM, C a space cost function and (X,U,V) the graph associated
with (I,C). Consider a non-empty subset Y of X. Here will be defined a function from
X into [0,1] called profitabilit y measure according to Y. The notion of space profit-
abilit y measure, developed in §3, will of course contribute to this end. Within the
framework of this paper, it will exclusively be referred to measure A2D . Moreover, it
will from now on be supposed that C is generated by a continuous map δ. Consider,
for a given vertex p of X−Y, the expression: min q∈Y [inf ν∈DQ @ DP 

C(ν)]. As a direct
extension of §3.1, it appears natural to interpret this value as the cost forecasted by
A Y

D2  to reach p from Y — where A Y
D2  denotes the profitabilit y measure we want to

define. It also appears natural to welcome p in the definition domain of A Y
D2  iff this

cost is finite. In this case: A Y
D2 (p) = (min q∈Y [inf ν∈DQ @ DP 

C(ν)]) / ∆Y(p). The path
that will be “reall y  taken” is indeed the optimal path, whose cost is ∆Y(p). Now,
according to proposition 3:  inf ν∈DQ @ DP 

C(ν) = qp / max α∈]-π/2,π/2[ (δ(α)·cos(α)).
Where qp is obviously the euclidean distance between q and p. Consequently:

min q∈Y [inf ν∈DQ @ DP 
C(ν)] = (min q∈Y  qp) / max α∈]-π/2,π/2[ (δ(α)·cos(α))

The discrete transcription of the numerator is min q∈Y d(q,p) or also dY(p) — by
denoting dY the distance image according to Y (remember that d is a chamfer
distance, see §4.2). For obvious practical reasons, it is tempting to adopt it. But, to
this end, the discrete transcription of the cost calculation must be operated. In §4.2,
we had weighted each arc (p,q) by C( PQ), i .e., according to propositi on 2, by:
C( PQ) = xPQ / [cos(∠ PQ).δ(∠ PQ)]. Coming back to the definition of V, we set:

 ∀ (p,q) ∈ U,  V(p,q) = d(p,q) / [cos(∠ PQ).δ(∠ PQ)]

Remark that C(p,q) — where C denotes the cost function of the digraph — is not
exactly equal to C( PQ) any more — where C now denotes the space cost function.

Definition 8. The 2D-profitability measure A Y
D2  according to Y — or 2D-profitability

image according to Y — is the map from X into [0,1] which takes the value
(dY(p) / ∆Y(p)) / max α∈]-π/2,π/2[ (δ(α)·cos(α))  at each vertex p of X−Y and takes
the value 1 at each vertex of Y.  A Y

D2 (p) is the 2D-profitability of p according to Y.

If C is the hill -climbing energetic function which associates each path of C with its
euclidean length, then A Y

D2  is defined on X by:  ∀p∈X, A Y
D2 (p) = dY(p) / ∆Y(p).
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Fig. 3.  2D-profitabilit y measures. Some characteristics.

The represented paths are the optimal paths from P to Q. In the first case (on the left), point Q
may be assessed totall y profitable according to { P} . Depending on δ, Q may be assessed more
profitable in the second case than in the third one, even if the PQ distances are identical and

also the lengths of the optimal paths.

5    Experimental Results and Conclusion

In this paper, the problem of defining cost functions for digraphs associated with
raster DEMs has been discussed in a general and formal framework. A particularly
simple and natural way to tackle this problem has been proposed. Moreover, the
notion of profitabilit y has been put forward and profitabilit y measures have been
defined. The calculation of profitabiliti es is based on the datum of a space cost
function — representing an ideal homogeneous space — and consists in drawing
estimates from a priori knowledge of travel costs. Profitabilit y measures and cost
functions provide useful and complementary information. The results of two experi-
ments are given here in order to ill ustrate this point. The min-cost images ∆Y have
been computed by means of the well -known Bellman’s algorithm [Bel58] and the
distance images dY by means of a very eff icient algorithm [Ros66] [Bor84] which
needs exactly two passes over the data set. High elevations, profitabiliti es and costs
are represented in light gray. All images are 256×256.
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Gaussian Hill.  Costs and profitabiliti es are according to the upper-left corner.
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Mont Ventoux (France). Covered surface: 100 km². Maximal difference in level: 600 m.
Costs and profitabiliti es are according to a point situated amid the upper part of the image.
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