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Abstract. With araster Digital Elevation Model, it is usual to asociate adi-
rected graph. Firstly, the problem of defining cost functions for such digraphs
isdiscussd in a general and formal framework, and a particularly simple and
natural way to tackle this problem is proposed. Secondly, the notion of profit-
ability, which is commonly linked with the notion of cost, is put forward.
Thus, profitability measures are introduced. In particular, the profitability of a
point according to a region is defined. Finaly, it is shown that profitability
measures and cost functions provide complementary information.
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1 Introduction

With araster DEM, it is usual to associate a digraph. To each path of this digraph a
cost may be attached. Typically, a DEM represents a part of the surface of the erth.
A path of the associated digraph then corresponds to a path on the surface And the
cost of the digraph path may correspond to the (eucli dean) length of the surface path.
It may also correspond to a time or a gasoline wnsumption. In this paper, only
digraphs assciated with raster DEMs are wmnsidered. Firstly, the problem of defi-
ning cost functions for these graphs is discussed in a general and formal framework.
A particularly simple and natural way to tackle this problem is proposed in sedion
§2. The presented approach develops from eucli dean to discrete geometry. Thus, cost
functions defined on paths of the affine euclidean space are introduced. As $own in
84, cost functions of graphs are to space @st functions, as a raster DEM s to the
represented surface Seoondly, the notion of profitability is put forward. It isin the
hahit of saying that such a placeis near and of easy access or near but inaccesshle,
distant but quite accesshle, etc. Distance and accesshility can thereby be comple-
mentary criteria for the research of particular spots, for instance within the frame-
work of regional development. Profitability is to cost as accesshility is to distance
Profitabilit y measures on paths of the affine euclidean space are introduced in 83. As
shown in 84, they enable to define on a DEM the prdfitability of a point according to
aregion. By way of conclusion, 85, experimental results ill ustrate how profitability
measures and cost functions provide wmplementary information. Note that N is the
set of natural numbers, Z is the one of relative numbers and R the real numbers one.
a. b, wherea and b are relative numbers, is{n0Z / asn<b} and R is R O{—c0,+c0}.
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Fig. 2. Generating a hill -climbing energetic function.

Fig. 1. Linea pathsof C. The hill -climber feds mostly at ease on a15° slope.
He refuses $opes up over 60° and slopes down over 45°.

2 Space Cost Functions

2.1 Terminology and Notations

The space is a direded affine euclidean space referred to the dired orthonormal
frame (O, 7,7, % ). The plane is the affine subspace referred to the dired frame
(O,7,7). In this ®dion §2, a path is an oriented geometrical arc of space The
length of a path is its euclidean length. A linear path is a path of space without
double point and whose support is a segment. P,P,, where P, and P, are two points
of space, denotes the linear path joining P, to P,. Let n be an integer such that n=3,
(P)iown @ Sequence of n points of space A, ' " denotes the path obtained by juxtapo-
sition of the arcs F.'m"”_l and PP, . Itslength is Zijg; -1 PP+1. Now consider the
set of the paths which benefit by the reaurrent notation that has been introduced. C
will represent the part of this st including following paths only: P UL guch that for
any element i of 1..n—1 the orthogonal projedions of P, and P, onto the plane are
distinct. From now on, the term path will be applied to the dements of C only. Let
PQ be a path of C (more predsely, “let P and Q be two points of space such that:
PQIC’). Let u be the orthogonal projedion of PQ onto the plane (7, 7) and let v’
be the unit vedor v/ | v’ |. Defined relatively to the dired vedor plane (v, ' ): ro
is the measure of the oriented angle between v and PQ’, xpg and ypo are the
coardinates of PQ (Fig.1). Opod]-12,172[ and xpgORY and yro/Xpo = tan(dpg).
0 po measures the angle between the PQ and the plane. It is the slope of the path.

2.2 Slope-Dependent Cost Functions

Definition 1. A space cost function isamap C from C into Ry satisfying [A1]:
[A1] Let B"""beapath of C: C(R"™") = Zinn 1 C(RPRa).
Given p apath of C. C() isthe cost of p. If C(u) isfinite, u is potentially profitable.

Any path of C hence admits a cost (C is a map) and may absolutely not be profitable
(a cost may be infinite). Moreover, travelling is always costly (a cost is a strictly
positive value). Note that certain probems of optimal paths call for replacing the
sum calculation in [A1] by the alculation of the minimum [Gon84] or of the average
[Ahu93, or even of the product [Pri94]. And the matter may be then to research max-
cogt paths and no more min-cogt paths. The previous definition is however adapted to
the majority of the practically encountered problems.




Definition 2. A space @<t function Cis sid to be slope-dependent iff it satisfies[A2]:
[A2] Let PQ and RS betwo paths of C: [PQ=RSand Opg=0Rs] 0 C(PQ)=C(RS).

The dope and length of a linear path then determine its cost. In other words, the
exact localization of the path in spaceis not important: spaceis considered homoge-
neous. In practice it is far from being always the @ase. For instance a 4x4 vehicle
can travel on road or on uneven ground, on dry or sodden soil, through a thick or scat-
tered vegetation, along or against the wind dredion, etc. ((Mit91], [Zha93], [Kred4],
[Dub9y]...). Slope-dependent cost functions are then not adapted to cost modeli zation
(supposing that the avail able data do not only consist in topographical onesl). However
that may be, these are fundamental functions becuse the st function asociated with
a non-homogeneous gace @n be defined from a parametrized family of dope-
dependent functions (one @rresponding for instanceto the travel on tarred road, the
other on stony path, etc.). Moreover, the profitability measures (see §3) ned to ke
based on such cost functions, representing ideal spaces. Proposition 1 expresses that
the st of alinear path of given dopeis proportional to the length of this path.

Proposition 1. Let C be a dope-dependent cost function, PQ and RS two paths of C
and ka strictly positi ve real number: [PQ=k.RS and U pg=0Rs] O C(PQ)=k.C(RS)

2.3 Generator of a Space Cost Function

Definition 3. Let 6 be an element of |-172,172[ and let C be a dope-dependent space
cost function. Cis sid to be minimal at 0 iff it satisfies the foll owing properties:

[A3] Let PQ and RS betwo paths of C. (PQ = RSand s =0) 0 C(PQ) = C(RS)
[A4] Let RS beapath of C.[RS=1 and Ors=6] O C(RS)=1

From [A3], it derives that among all li near paths with length 1, those with sope 6
have the lowest cost. [A4] sets this minimal cost to 1. The only real contribution of
[A4] is to guarantee the eistence of potentially profitable paths. Remark that the
map from C into Ry which associates each path with its length is minimal at any
element of |-172,172].

Proposition 2. 0 Let 8 be an eement of |-172,172[ and let C be a dope-dependent
space ®st function. If C is minimal at 6, there ists a map 6 from ]-1W2,772[ into
[0,1] such that for any PQ of C: C(PQ) = Xpg / [cos(C rg).d(L1pq)]. Thismap d is
unique and takesthevalue1 at 6. O Let 6 bean dement of |-172,172[ and let d be a
map from ]-172,172[ into [0,1] taking the value 1 at 6. There ists a space ®st
function C such that for any path PQ of C: C(PQ) = Xpg / [cos(0 pg).8(0 pQ)]. This
cost function is unique, slope-dependent and minimal at 6.

Definition 4. Let 6 be an dement of |-172,172[. Acoording to proposition 2, the datum of a
space @st function, slope-dependent and minimal at 6, is equivalent to the one of a
map & from ]-172,172[ into [0,1] taking thevalue 1 at 6: d isthe st function generator.

o(a), for any element a of ]-172,172[, isthe distancea cost unit enablesto cover on a
linear path of slope a. The interest of expressng C in terms of & liesin this smple
interpretation. From a practical point of view, defining a cost function by means of
its generator is particularly convenient and natural (Fig.2).



2.4 A Typical Family of Space Cost Functions

Definition 5. Let 6 be an dement of ]-172,172[ and C a space @<t function, dope-depen-
dent and minimal at 6. Ciscaled ahill-climbing energetic function iff it satifies[A5]:
[A5] Let PQ and RS be two paths of C;

[PQ=RS and (Opg<0ORS<O or 6<0OrRsS<Opg)] O C(PQ) = C(RS)

A hill -climber gets lesstired on alinear path of sope 6. The further from 6 the slope
is (i.e. the more abrupt the dope up or the stegoer the slope down), the more energy
is consumed. The idea is to penalize abrupt ways (Fig.2). The map from C into R}
which associates each path with its length is a hill -climbing energetic function.

3 Space Profitability Measures

In this sdion, profitability measures on paths of the space are introduced. The
calculation of the profitahility of a path joining P to Q is based on the estimate,
drawn from a priori knowledge, of the travel cost from P to Q. The knowledge at
stake are voluntarily limited: for instance to the position of the orthogonal projec-
tions of P and Q onto the plane, or to the position of P and Q in space the length of
the min-cost path from P to Q, etc. Each case leads to a particular profitability
measure. As ill ustrations, two measures are briefly described here. C denotes a space
cost function, Ds and Dq the lines directed by «k and running through P and Q, P@Q
the set of paths belonging to Cand joining Pto Q, D- @ Do the st of paths belonging
to Cand joining one point of D to ane point of Do: Do@ Do = U P @Q
(P,Q) ODpxDg
3.1 The2D-Prdfitability Measure

Definition 6. The 2D-profitability measure is a function A% from Cinto [0,1]. Let p
be apath of Cjoining apaint Pto apoint Q. A*® is defined at W iff infyp,@p, C(V)
isfinite (it is espedally the ase when [ is potentially profitable). It isthen set that:
A®(1) = [infy0ps @ b, C(V)] / C(1). A?>(u) isthe 2D-profitability of i (relatively to C).

Forecasting to spend infyip, @ b, C(V) tojoin Q from P, means at the same time to be
emnomical, pragmatic, very optimigtic and (really) misnformed. Asif a hill -climber, in
order to asessthe distance he ill has to cover, would draw a segment on a rudi-
mentary touristic map and consider the relief to be cetainly as he hopesto be. Sois
A?®. And its judgement gets more severe: if somebody is advised to follow p to get
from Pto Q, the measure will probebly assssthat, comparing C(l) with the g initially
forecadt, the suggestion was not the best (and even dishonest). In the ase where C is
the map from Cinto RY which associates each path with its length, the forecast cost
is the distance between lines D and Dq, i.e. Xz5. Consequently, measure A% isamap
and value A®(p) is smply X9 /N — where A denotes the length of y. The following
proposition gives a practical means to characterize A%° in amore general case.

Proposition 3. If the @<t function C is generated by a continuous map 6, the profitability
measure A% is an everywhere defined measure. Moreover, for any couple (P,Q) of paints:

[PQOCO - [iJD@DQ C(v)= xPQ o] ﬁ 6(0() cos(a))] and[PQOC O &jf@% C(v)=0]



3.2 The3D-Profitability Measure

Definition 7. The 3D-profitability measure is a function A%° from Cinto [0,1]. Let p
be a path of Cjoining a point P to a point Q. A% is defined at p iff infynp@g C(v)
isfinite (it is espedally the ase when [ is potentially profitable). It isthen set that:
AP (W)=[infyop@g C(V)] / C(1). A%°(u) is the 3D-profitability of p (relatively to C).

Forecasting to spend infyppag C(v) tojoin Q from P, means at the same time to be
emnomical, pragmatic, very optimistic and (rather) misinformed. Asif amotorigt, in
order to asessthe distance he ill has to cover, would scan an ordnance map and
consider that tunnels have ceatainly been excavated and bridges ereded. A® sticks
more to realiti es than A%, Its judgement gets less ®vere. If C asciates each path
with its length, then the forecast cost is PQ. In the general casg, infygpag C(v) may
be difficult to calculate. This point will not betackled here.

4 Back tothe Discrete Space

After aquick reminder about cost functions of graphs and optimal paths, in 84.1, it
is $rown in 84.2 how to associate a weighted digraph with a raster DEM and a space
cost function. Moreover, in 84.3, profitahilit y measures are defined on the graph vertices.,

4.1 Cost Functions of Graphsand Optimal Paths

Let (X,U,V) be any weighted and dreded graph. Asaume that V is a map from U
into R . The function from the set of graph paths into R, which assciates each
path (ui)io1.n With the value 201,V (W), is the cost function of (X,U,V). Zig1.nV(u)
isthe cost of (u)ig1.n. Now, let p and qbe two vertices and let 1 be a path from p to
g. If the st of any path from p to g is greater than or equal to the st of p then pis
an optimal path — or a min-cost path — from p to g. The @st of u is the min-cost to
reach q from p. Finally, let A be the function from X2 into R¥ which assciates each
couple (p,g) with the min-cost to reach g from p, let Y be a non-empty subset of X
and let Ay be the function from X into RY defined by: OpOX, Ay(p) = min qoy A(Q,p).
A(g,p) isthe min-cost to reach p from g. A path from qto p isoptimal iff its cost isA(q,p).
Av(p) isthe min-cost to reach p from Y. Ay isthe min-cost function accordingto Y.

4.2 Weighted Digraphs, Raster DEM s and Space Cost Functions

With anumerical image, it isusual to associate the direded graph whose vertices are
the image pixels and the arcs are, generally, the cuples of 8-adjacent vertices. Let
hencel bearaster DEM and let (X,U) be the digraph associated with I. The pixels of
| are assmil ated to points of the discrete space Z2. This gaceitsef is embedded into
the affine euclidean xy-plane. The dhoice of U incites to provide Z 2 with a discrete
distance and more predsaly with a ponderate distance d defined by a 3x3 mask. In
practice, in order to approach the euclidean distance the dhamfer distance 3-4 is
generally recommended [Bor86]. Now, it is considered that | is a raster model of a
surface of the affine euclidean space To any pixel of | consequently corresponds a
point of this surface Pixel and associated point will be named by the same letter:



small for thefirst and capital for the second. To pixd p of | thus corresponds a point
P of the affine space p is the orthogonal projedion of P onto the xy-plane and the z-
coardinate of P is the gray-level of p in | (up to a scale factor). Finaly, let C be a
space o<t function, as defined in §2. C enables to weight the digraph (X,U) by
means of themap V from U into R which assciates each arc (p,g) with C(PQ) (we
will hark back to this point in 84.3). Consider a path p of the weighted dgraph
(X,U,V). It can be represented by a sequence (p)io1.n Of vertices auch that:
Oid1. n-1, (pi,pi+0)0U. The st of u is the value Zjg1, n-1V(pi ,piv1), OF also
i01.0-1C(RPL ), i-e C(A ™™™, It then appears natural that the st function of
the graph, aswel as the space @t function, should be denoted C.

4.3 Profitability of a Point According to a Region

Let | be a raster DEM, C a space o<t function and (X,U,V) the graph associated
with (1,C). Consider a non-empty subset Y of X. Here will be defined a function from
X into [0,1] called profitability measure according to Y. The notion of space profit-
ability measure, developed in 83, will of course mntribute to this end. Within the
framework of this paper, it will exclusively be referred to measure A%° . Moreover, it
will from now on be supposed that C is generated by a continuous map &. Consider,
for a given vertex p of X-Y, the expresson: min qoy [infy0p, @ b, C(V)]. As adired
extension of 83.1, it appears natural to interpret this value as the mst forecasted by
AP toreach p from Y — where A{P denotes the profitability measure we want to
define. It also appears natural to welcome p in the definition domain of A%P iff this
cogt isfinite. In this case: A (p) = (minqov [infyOp, @ b CV)]) / Av(p). The path
that will be “really taken” is indeed the optimal path, whose @st is Av(p). Now,
acoording to proposition 3: infyp, @ b, C(V) = dp/ max a2, w2 (3().cos()).
Where gpis obvioudly the eucli dean distance between g and p. Consequently:

mingoy [infyOp, @ 0. C(V)] = (mingoy dp) / maxa)-rw2,w2[ (3(a).cos(a))

The discrete transcription of the numerator is min gy d(g,p) or also dy(p) — by
dencting dy the distance image acoording to Y (remember that d is a chamfer
distance see 84.2). For obvious practical reasons, it is tempting to adopt it. But, to
this end, the discrete transcription of the st calculation must be operated. In §4.2,
we had weighted each arc (p,q) by C(PQ), i.e., according to proposition 2, by:
C(PQ) = xpg / [cos(0 rg).d(0 rq)]. Coming back to the definition of V, we set:

0 (p,a) DU, V(p,) =d(p,g) / [cos(Drq)-d(0r)]

Remark that C(p,q) — where C denotes the @st function of the digraph — is not
exactly equal to C(PQ) any more — where C now denotes the space st function.

Definition 8. The 2D-profitability measure AZ° according to Y — or 2D-profitability
image according to Y — is the map from X into [0,1] which takes the value
(dv(p) / Av(p)) / maxa]-w2, w2 ((0).cos(a)) at each vertex p of XY and takes
the value 1 at each vertex of Y. A%P(p) isthe 2D-profitability of p accordingto Y.

If C isthe hill-climbing energetic function which associates each path of C with its
euclidean length, then A$° isdefined on X by: OpOX, A$ (p) = dy(p) / Av(p).
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Fig. 3. 2D-profitability measures. Some characteristics.

The represented peths are the optimal paths from P to Q. In the first case (on the | eft), point Q
may be asessd totaly profitable according to { P}. Depending on 6, Q may be assessed more
profitable in the second case than in the third one, even if the PQ distances are identical and
also the lengths of the optimal paths.

5 Experimental Resultsand Conclusion

In this paper, the problem of defining cost functions for digraphs associated with
raster DEMSs has been discussed in a general and formal framework. A particularly
simple and natural way to tackle this problem has been proposed. Moreover, the
notion of profitability has been put forward and profitability measures have been
defined. The alculation of profitabiliti es is based on the datum of a space ©st
function — representing an ideal homogeneous gace — and consists in drawing
estimates from a priori knowledge of travel costs. Profitability measures and cost
functions provide useful and complementary information. The results of two experi-
ments are given here in order to ill ustrate this point. The min-cost images Ay have
been computed by means of the well-known Bellman’s algorithm [Bel58] and the
distance images dy by means of a very efficient algorithm [Ros66] [Bor84] which
nedls exactly two passes over the data set. High devations, profitabiliti es and costs
arerepresented in light gray. All images are 256x256.
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Gaussian Hill. Costs and prdfitabiliti es are acoording to the upper-left corner.
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Mont Ventoux (France). Covered surface: 100km2 Maximd differencein level: 600m.
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