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ABSTRACT 
 
A directional map (or spatial template, fuzzy landscape) is 
an image where the value of each pixel represents the degree 
to which the pixel satisfies some directional relationship 
(e.g., right, left, above, below) to some reference object (i.e., 
a given set of pixels). There exists a simple quantitative 
model of such relationships, and the computation of direc-
tional maps is usually based on algorithmic implementations 
of this model. We show here that the model has important 
flaws, and we respond to the issue with a new, promising 
approach: all directional maps induced by the reference object 
are generated from a force field that the object (which is 
seen as a physical entity) creates around itself. Preliminary 
experiments illustrate and show the interest of the approach. 
 

Index Terms — Directional relationships, object localiza-
tion, directional maps, force fields, spatial templates 
 

1. INTRODUCTION 
 

The modeling of spatial relations [1,2,3,4] involves two 
fundamental questions: (a) How to identify the spatial rela-
tions between two given objects? (b) How to identify the 
object that best satisfies a given relation to a reference object? 
The second question defines an object localization task (and 
has received less attention). Cognitive experiments show that 
people accomplish this task by parsing space around the 
reference object into good regions (where the object being 
looked for is more likely to be), acceptable and unaccept-
able regions [5,6]. These regions blend into one another and 
define a spatial template [6]: each point in space is assigned 
a value between 0 (unacceptable region) and 1 (good region). 

In this paper, we focus on directional (also called projec-
tive [7] or cardinal [2]) relationships (e.g., front, south, 
above). A spatial template (also called fuzzy landscape [1]) 
can then be referred to as a directional map, which is in fact 
an image where the value of each pixel represents the degree 
to which the pixel satisfies some directional relation to some 
reference object (i.e., to a given set of pixels). Directional 
maps can be used for, e.g., spatial reasoning, object localiza-
tion and identification, structural and model-based pattern 
recognition [8,9,10]. Let us illustrate this with a simple 
example.  Assume you are familiar with the two reference 

  
 
buildings R1 and R2 (Fig. 1a). You need to go to Escher Hall, 
which you do not know. You are told, however, that it is the 
building east of R1 and south of R2. Which one among L1 to 
L5 do you think is Escher Hall? Let us find it together. First, 
compute the directional maps M1 = “east of R1” (Fig. 1b) and 
M2 = “south of R2” (not shown here). We will expand on this 
task in the rest of the paper. Then, combine M1 and M2 into 
a single map M = “east of R1 and south of R2” (Fig. 1c); e.g., 
assign each pixel p the value M(p)=min{M1(p), M2(p)}. Now, 
let us rate each candidate building L on a scale from 0 (worst) 
to 1 (best). A pessimistic soul might rate it minp∈L M(p), a tem-
perate soul avep∈L M(p) and an optimistic one maxp∈L M(p). 
Our decision can actually be based on all three values, i.e., 
on the triple 

 d(L) = (minp∈L M(p), avep∈L M(p), maxp∈L M(p)). (1) 
For instance, L can only be Escher Hall if d(L)=(1,1,1). It 
cannot be Escher Hall if d(L)=(0,0,0). There is no certainty 
at all but it is totally possible that L is Escher Hall if 
d(L)=(0,0.5,1). There exists a simple quantitative model of 
the directional relationships to a reference object, and the 
computation of directional maps is usually based on 
algorithmic implementations of this model (Section 2). We 
show here that the simplicity of the model has eclipsed 
important flaws. We respond to the issue with a new, 
promising approach: it relies on the idea of considering the 
reference object as a physical entity that creates a force field 
around itself (Section 3). All directional maps induced by 
the object can be generated from the force field in negligible 
time (Section 4). Preliminary experiments illustrate and 
show the interest of the approach (Section 5). 

Fig. 1. Directional maps: (a) Buildings; (b) The directional map 
“east of R1”. The brighter the region, the more it is considered that 
the region is east of R1. Black corresponds to 0 and white to 1; (c) 
The map “east of R1 and south of R2”. 
 



2. DIRECTIONAL MAPS 
 
In the rest of the paper, P is the Euclidean plane. An object 
R is a nonempty bounded subset of P. For any point p of P 
we have R(p)=1 if p ∈R and R(p)=0 if p ∉R. The symbol δ 
denotes a unit vector. The vector from p to q is pq. Its norm 
(i.e., length) is |pq|. The radian measure in [0,π] of the angle 
between two nonzero vectors u and v is denoted by ∠(u,v). 
µ is a non-increasing function from [0,π] into [0,1] such that 
µ(0) =1 and µ(π/2)=0. Two possible candidates for µ(x) are 
µlin(x)=max{0,1−2x/π} and µcos(x)=max{0,cosx}. 

Given a point p, the function that assigns the value 
µ(∠(δ, pq)) to each point q is the directional map induced 
by p in direction δ. There is no consensus on the termi-
nology, but there is clear consensus on the definition. 
Directional maps induced by R (instead of p) are not, 
however, easy to define. The simplest way is to replace R 
with its centroid pR and assign the value µ(∠(δ, pR q)) to 
each q. We then get the centroid-based map CδR. There 
exists, however, a quantitative model of the directional 
relationships to a reference object, which is simple, does not 
sacrifice the geometry of the object, and whose basic 
principle is supported by cognitive studies. The standard 
map SδR depends essentially on angular deviation (in accor-
dance with [5,6,7]) and is defined by 

 SδR(q) = sup p ∈R  µ(∠(δ, pq)). (2) 

In practice, exact calculation of SδR is computationally expen-
sive. Two approximation algorithms (one based on a mor-
phological approach [1] and one based on the partitioning of 
the image into parallel raster lines [11]) have been proposed 
and are commonly used [8,9,10]. Standard maps, unfor-
tunately, have important flaws, as will be shown in Section 5. 

 
3. FORCE FIELDS 

 
Consider two point-like particles p and q of mass 1. 
According to Newton’s law of gravity, q exerts on p a force 
pq/|pq|r+1 of magnitude 1/|pq|r, where r = 2. Now, imagine R 
is a flat metal plate of uniform area density 1. The particle q 
exerts on R the force 

 

  

Φr
R q( ) = pq

pq
r+1 dp

p∈R∫∫  

   
= R(p) pq

pq
r+1 dp

p∈P∫∫ . (3) 

In this paper, we are not bound to physical laws, and r can 
be any real number. The function  Φr

R
 is called the force 

field induced by R. We introduce here two algorithms for 
computing force fields in the case of 2D raster data. First, let 
us rewrite (3) using the Cartesian coordinates (u,v) and (x,y) 
of q and p: 

 
  
Φr

R (u,v) = R(x, y) (u − x,v − y)
| (u − x,v − y) |r+1 dx dy

y∫x∫ .  (4) 

In the discrete domain of an N=m×n image, (4) becomes 

 
  

 
  
Φr

R (u,v) = R(x, y) (u − x,v − y)
| (u − x,v − y) |r+1

y=0

n−1

∑
x=0

m−1

∑ ΔxΔy . (5) 

The surface elements the plane is divided into are the pixels 
of the image, with width Δx =1 and height Δy =1 (Fig.2a). 
Note that when (x,y) = (u,v), all forces in the surface element 
cancel each other out for symmetry reasons. This results in 
the convention that 0/0=0. Equation (5) calculates   Φr

R(u,v)  in O(N) time, i.e., it calculates  Φr
R

 in O(N2) time. 
Now, let us move the origin of the coordinate system to 

q and let us rewrite (3) using the polar coordinates (θ,) of p. 
Since the Jacobian determinant of the coordinate conversion 
formula is , i.e., since dxdy =dθd, we have 

 
   
Φr

R (0,0) = R(θ,) (−cosθ,−sinθ)


r+1 dθd
∫θ∫ . (6) 

In the discrete domain, (6) becomes 

 
   
Φr

R (0,0) = R(θ,) (−cosθ,−sinθ)


r+1 ΔθΔ
∑θ∑ . (7) 

θ belongs to a set {2πk/K}k∈0..K−1 of K reference directions. 
Δθ, therefore, is 2π/K. Starting from q, and using, e.g., 
Bresenham’s algorithm [12], draw a line in direction θ. The 
pixels pθ,0=q, pθ,1, pθ,2, etc., are  successively encountered. 
Each one is attached to a surface element of width Δ=1/εθ, 
where εθ=|cosθ| if θ∈[0,π/4]∪[3π/4,5π/4]∪[7π/4,2π) and 
εθ=|sinθ| otherwise (Fig.2b). In the end, (7) is rewritten as 

 
  
Φr

R (q) = − 2π
K

R( pθ,t )

| pθ,tq |r−1t∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(cosθ,sinθ)
εθθ∑ . (8) 

This equation calculates   Φr
R (q) in O(K√N) time, i.e., it 

calculates  Φr
R

 in O(KN√N) time. 
 

4. FORCE FIELD-BASED MAPS 
 
Force fields can be used to generate a variety of directional 
maps. Consider a given direction (unit vector) δ. Let us 
show how to derive a map  Φr

δR  from the field . The 
inequality ⋅δ ≤ 0 (where “⋅” denotes the dot product) 
is seen as an indication that the point q is not at all in 
direction δ of R. The value of is then set to 0. What 
value should take when ⋅δ  >  0 ? Two direc-
tional transformations are proposed. In the discrete domain 
of an image of size N, the  Φr

δR

 described below are 
generated from  in O(N) time, and processing times are 
negligible compared to those for force field computation. 

(a) (b) 

Fig. 2. Force field computation: (a) Using Cartesian coordinates;  
(b) Using polar coordinates. 
 



4.1. First directional transformation 

Here,    Φr
R (q) ⋅δ > 0 ⇒  Φr

δR (q) = µ(∠(δ,Φr
R (q)))       (9) 

µ is as in Section 2, and  ∠(δ,Φr
R (q)) is the radian measure in 

[0,π] of the angle between the vectors δ and   Φr
R (q) . 

4.2. Second directional transformation 

In this section, the idea is to assign q a directional value 

  Φr
δR (q) that is a non-decreasing function of   Φr

R (q) ⋅ δ. The 
equation below represents an obvious way to proceed: 

 . (10) 

We can show that | Φr
R | is bounded when r ∈[0,2). However, 

supp∈P   Φr
R ( p) ⋅ δ  cannot be easily determined. In practice, 

therefore, (10) is replaced with 

 , (11) 

where 
  
Φr

δR
 is an approximation of  supp∈P  Φr

R ( p) ⋅ δ. 
 

5. EXPERIMENTS 
 
In Sections 5.2 to 5.5, the symbols Φr,1 and Φr,2 denote the 
map  Φr

δR induced by R in direction δ as defined in Sections 
4.1 and 4.2 respectively. dr,1(L) and dr,2(L) denote triples, as 
in (1), calculated from Φr,1 and Φr,2. 

5.1. Comparing the two algorithms 

Let   
CARTΦr

R  and  
K Φr

R  be the force fields calculated according 
to (5) and (8) respectively. The difference between   

CARTΦr
R  

and  
K Φr

R  is measured by the difference ratio 

 

  

DR =
| CARTΦr

R (x, y) |− | K Φr
R (x, y) |y∑x∑

max | CARTΦr
R (x, y) |,| K Φr

R (x, y) |{ }y∑x∑
, (12) 

which takes values between 0 and 1, and is 0 if and only if 
  
CARTΦr

R = 
K Φr

R . The force field  
K Φr

R  approximates   
CARTΦr

R . 
Higher K means higher accuracy (lower DR) (Fig. 3d), but 
also longer processing time (Fig. 3b). The accuracy depends 
mostly on K, and is quite high (DR<1%) even when K is 
relatively small (K=90), but it also depends a bit on r and on 
the image size N. In particular, it gets higher when r gets 
closer to 1⎯although the variation is small when r is 
confined to the interval [0,2] (Fig. 3c). The processing time 
increases significantly with K and N but does not depend on r. 

5.2. Sensitivity to outliers 

Standard maps are overly sensitive to outliers and can 
change drastically because of one single pixel. According to 
the map in Fig. 4b, the small disk L is indubitably to the right 
of the object R defined by Fig. 4a (dS(L)=(0.95,0.98,1.00)). 
This goes against intuition. Centroid and force field-based 
maps (Fig. 4c) are not affected by the outlier pixel and 
consider that L is not at all to the right of R (d0,2(L)=(0,0,0)). 
  

 
 

     
 

Fig. 4. Sensitivity to outliers: (a) R includes the disk, but it also 
contains the pixel (barely visible) close to the left edge of the 
image; (b) Standard map; (c) Force field-based map. 
  

 
Fig. 5. Case of elongated objects. (a)-(d) A force field-based map 
induced in one direction changes when the reference object grows 
in that direction. (e) This is not the case of standard maps. (f) Is L 
to the right of R1, R2, R3, R4? Two different views. 
5.3. Case of elongated objects 

Consider Fig. 5abcd. When R1 lengthens and becomes R2, 
then R3, and then R4, the force field-based map Φ0,2 changes 
accordingly. Therefore, although L is somewhat to the right 
of R1 (d0,2(L)=(0.6,0.8,0.9)), this becomes less and less true 
as R1 grows (Fig. 5f), and L is not at all to the right of R4 
(d0,2(L)=(0,0,0)). Comparable results are obtained with other 
force field-based maps, and with centroid-based maps. They 
are intuitively sound. On the other hand, the standard maps 
induced by the four objects are exactly the same (Fig.5e), 

R 

(a) (b) 

(c) (d) 

Fig. 3. Comparison of  and : (a) Test image, with N 
pixels; (b) Processing times; (c) DR values when K=180; (d) DR 
values when r =1. The algorithms were implemented in C and run 
on a machine with Intel Pentium D CPU 3.0GHz and 1GB memory.  
 

L L 

δ 

R 

S Φ0,2 

(a) (b) (c) 

(a) 

(c) (f) (d) 

(b) (e) 



and L is to the right of R4 as much as it is to the right of R1 
(dS(L)=(0.6,0.8,0.9)). This goes against common sense. 

5.4. Case of concave objects 
Consider the concentric shell R and the disks L1 to L6 in Fig. 
6a. The standard map S (Fig. 6b) assigns 1 to every pixel in 
the region enclosed by R and considers that every disk Li is 
perfectly to the right of R (dS(Li)=(1,1,1)). This is another 
counterintuitive result. On the other hand, according to the 
force field-based map Φ0.5,1 (Fig. 6c), L1 and L2 are not at all 
to the right of R; L3 and L4 are somewhat to the right of R; L5 
and L6 are to the right of R. See Fig. 6f. The centroid-based 
map C (not shown here) shares exactly the same view about 
L1, L2, L5, L6, but is more positive about L3, L4 (e.g., 
dC(L3)=(0.6,0.8,1.0) while d0.5,1(L3)=(0.4,0.7,1.0)). 

Φ1.0,1 and Φ1.5,1 (Fig. 6de) are way different from S and C 
and show unique characteristics. According to Φ1.0,1 (Fig. 6g), 
L1 to L4 are not at all to the right of R. The map Φ1.5,1 takes a 
more local view of the situation and considers that L1, L2 are 
to the right of R because they definitely are to the right of 
the closest part of R (Fig. 6h). Note that if L6 was drifting to 
the right, away from the shell, Φ1.5,1 would still consider 
(with the same confidence) that L6 is to the right of the shell. 
This shows the main difference between Φr,1 and Φr,2 when 
r>0: the triple dr,1(L6) would remain pretty much equal to 
(1,1,1), while dr,2(L6) would decrease and tend towards (0,0,0). 

5.5. Escher Hall 

According to C, S, Φr,1, Φ0,2, the triple d(L) cannot decrease 
when L is moving away from R in direction δ. In most cases, 
it actually increases: the farther L, the more it is in direction 
δ of R. For example, all these approaches believe that the 
building L4 in Fig. 1a is a better candidate than L3 for “south 
of R2”⎯and a building on the other side of town would be 
an even better candidate. Φr,2 with r>0 breaks this rule. The 
directional maps in Fig. 1bc are actually Φ0.1,2 maps. Contrary 
to S maps, they consider that L3 is a better candidate than L4 
for “south of R2”, and is the best candidate for “east of R1 
and south of R2”. We have found Escher Hall. 
 

6. CONCLUSION 
 
We have shown that the standard quantitative model of the 
directional relationships to a reference object has important 
flaws. In response to the issue, we have designed new 
models. The reference object R is seen as a physical entity 
that creates a force field around itself. The directional maps 
induced by the object can be generated from the force field. 
These maps show unique characteristics. Distance is explic-
itly taken into account. The closest parts of the object can 
receive more or less attention. Note that all the equations 
presented here still hold when R is fuzzy (i.e., R(p) belongs 
to [0,1] instead of {0,1}). In future work, we will introduce 
an efficient algorithm for force field computation and we 
will extend the approach to vector and 3D data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6. Case of concave objects: (a) Direction, reference and 
located objects; (b) The standard map; (c)(d)(e) Various force 
field-based maps and (f)(g)(h) corresponding d(L) values. 
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