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Abstract 
 

The relative position between two objects in a 2D 

raster image is often represented quantitatively by a 

force histogram. In the general case, force histograms 

are computed in O(KN N) time: N is the number of 

pixels in the image and K is the number of directions in 

which forces are considered. When the objects are 

defined as fuzzy sets, this complexity also depends 

quadratically on the number M of possible membership 

degrees. In the present paper, an algorithm that runs 

in O(NlogN) is introduced. Computation times are 

basically independent of K and M. All objects (convex, 

concave, crisp, fuzzy) are handled in an equally fast 

manner. Experiments validate the theoretical analysis. 
 

 

1. Introduction 
 

Motivations for automated spatial representations 

come from practical applications like geographic 

information systems [1], robot navigation [2], and 

content-based image retrieval [3]. 

Spatial representations are either qualitative or 

quantitative [4]. Qualitative representations focus on 

uniqueness and essentialness of a feature, whereas 

quantitative representations use numerical values to 

express the degrees of significances of a feature. In 

addition, quantitative representations require consider-

ing objects’ visual features, like shape and size, 

whereas qualitative ones treat spatial knowledge as a 

concept independent of visual knowledge [5].  

Numerous approaches have been proposed to 

quantitatively represent the relative position between 

two spatial objects. We focus here on two influential 

approaches within the field. The angle histogram [6][7] 

is appealing for its simplicity, but suffers from 

weaknesses including long processing times, 

anisotropy, and an inability to handle vector data. The 

F-histogram, introduced by Matsakis in [8], is a 

generic and more complex representation. Most related 

work has been done on particular F-histograms called 

force histograms. The force histogram generalizes and 

overcomes the weaknesses of the angle histogram [9]. 

It has been used in scene description, in human-robot 

communication, for the classification of cranium si-

nuses, the design of spatial indexing mechanisms for 

medical image databases, etc. See [10] for a review of 

work on and applications of the force histogram. See 

also [11], Section 2.2, for general information on the 

different types of F-histograms.  

The spatial objects considered here are objects (or 

regions) in a 2D raster image. Angle histograms are 

then computed in O(N
2
) time, where N is the number of 

pixels in the image [6][7]. For convex objects, force 

histograms are computed in O(KN), where K is the 

number of directions in which forces are taken account 

of [9][10]. Some histograms (constant force histo-

grams, which are fundamentally equivalent to angle 

histograms) can be computed in O(KN) or O(NlogN), 

regardless of whether the objects are convex or not 

[12]. In the general case, however, force histograms are 

computed in O(KN N) time [9][10]. When fuzzy 

objects are considered, this complexity also depends 

quadratically on the number M of possible membership 

degrees. In the present paper, a new algorithm is 

introduced. Computation times are basically independ-

ent of K and M. The algorithm is in O(NlogN) for all 

force histograms, whether the objects are convex or 

concave, crisp or fuzzy. The histograms are derived 

from a mapping defined over the 2D discrete vector 

space. The mapping provides raw information about 

the objects’ relative position and can be computed 

efficiently using the Fast Fourier Transform (FFT). 

The angle and force histograms are briefly reviewed 

in Section 2. The new algorithm is presented in Section 

3. An experimental study, in Section 4, validates the 

theoretical analysis. Conclusions are given in Section 5.   



2. Review 
 

2.1. Angle histogram 
 

Let A and B be two objects defined as finite sets of 

pixels: A={a1,a2,…,am} and B={b1,b2,…,bn}. For any 

ai A and bj B, let aibj [0,2 ) be the direction of the 

oriented line that runs from the centre of ai to the 

centre of bj. The histogram of angles H
AB

 is a function 

from [0,2 ) to  (the set of real numbers). It is a 

possible representation of the position of B relative to 

A. The value H
AB

( ) is defined as the number of pixel 

pairs (ai,bj) such that aibj= . Note that only m n 

directions  may satisfy H
AB

( ) 0. For fuzzy objects A 

and B with membership functions μA and μB, the value 

H
AB

( ) is usually set to aibj=  μA(ai)μB(bj). 

 

2.2. Force histograms 
 

Here, A and B are true 2D objects. Each one is an 

infinite set of points, with a measurable, nonzero area. 

Consider any p A and q B. Let |pq| be the distance 

between p and q, and let pq be the direction of the 

oriented line that runs from p to q. The points p and q 

are seen as particles that attract each other: q exerts on 

p an elementary force whose direction is pq and whose 

magnitude is 1/|pq|
t
, where t  is a constant. The 

histogram of forces 
AB

t
F is a function from [0,2 ) to . 

It is another possible representation of the position of B 

relative to A. The value Ft
AB

( ) is defined as the sum of 

the magnitudes of all the elementary forces in direction 

. For fuzzy objects A and B with membership functions 

μA and μB, the magnitude of the elementary force ex-

erted by q on p is usually set to μA(p)μB(q)/|pq|
t
. When 

t=2, this expression matches Newton’s law of gravity, 

and 
AB

2
F is a gravitational force histogram. As another 

example, 
AB

0
F  is a constant force histogram. In practice, 

of course, a force histogram 
AB

t
F is represented by a 

limited number of Ft
AB

( ) values. The computation of 

each Ft
AB

( ) translates into the assessment of algebraic 

expressions, which are predetermined through integral 

calculus. In the case of raster data, each assessment 

corresponds to the process of a pair of object segments 

(more precisely, a batch of pairs of object pixels). The 

generation of these segments is based on the rasteriza-

tion of lines using Bresenham's algorithm. The manipu-

lation of fuzzy objects is reduced to that of their level 

cuts using the double sum scheme [13]. Details in [8][9]. 

 

3. Algorithm 
 

A new algorithm for force histogram computation is 

introduced. The algorithm is dedicated to the handling 

of 2D raster data. As shown in Section 3.2, a force 

histogram can be derived from a mapping defined over 

the 2D discrete vector space. The mapping, presented 

in Section 3.1, is a mathematical correlation, and can 

therefore be computed using the Fast Fourier 

Transform (FFT).  

 

3.1. Spatial correlation 
 

Consider two pixels p and q, with coordinates 

(xp,yp) and (xq,yq). The position of q with respect to p 

can be represented by the vector pq=(xq xp,yq yp), of 

length |pq| and direction pq. Now, consider two 

objects A and B (possibly fuzzy) in a digital image of 

size N=m n. Let μA and μB be the membership 

functions of A and B. Through zero padding, the image 

can be expanded to occupy the infinite space Z
2
, where 

Z denotes the set of all integers. The mapping  
AB

 

from Z
2
 to  defined as follows:  

AB(u,v) =  μA(x,y)
y= 0

n 1

x= 0

m 1

 μB(x + u,y + v)    (1) 

is a mathematical correlation that provides raw infor-

mation about A and B’s relative position. We call it the 

spatial correlation between the objects A and B. When 

A and B are crisp,  
AB

(u,v) counts the number of pixel 

pairs (p,q), with p A and q B, such that pq=(u,v). See 

Figure 1. The set ={ m+1,…,m 1} { n+1,…,n 1} is 

the effective domain of  
AB

. Since the image is 

expanded through zero padding, only elements (u,v) of 

 may satisfy  
AB

(u,v) 0. There are (about) 4N 

elements in . Since each  
AB

(u,v) is computed in 

O(N) time,  
AB

 is computed in O(4N
2
) time.  

AB
, 

however, can be computed in a much faster manner. 

Let A  denote the reflection of A about the origin: 

μA ( x, y)=μA(x,y). By replacing μA(x,y) in (1) with 

μA (x ,y ), where x = x and y = y, we get: 

AB(u,v) =     μA' (x',y')
y'= n +1

0

x'= m +1

0

  μB(u - x',v - y')  (2) 

Equation (2) corresponds to the definition of discrete 

convolution. As we all know, the Fourier transform has 

the ability to convert a convolution into an ordinary 

product, and vice versa. Therefore, by taking advan-

tage of the Fast Fourier Transform (FFT), the spatial 

correlation  
AB

 can be computed in O(NlogN) time. 
 

         
Figure 1. Spatial correlation AB
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3.2. Histogram generation 
 

Let t be any real number, and let A and B be two 

objects in an image of size N=m n. The spatial 

correlation between A and B is  
AB

, with effective 

domain . The origin, i.e., pixel at (0,0), is . Consider 

the function ˆ AB

t
F from [0,2 ) to  defined by: 

ˆ F tAB( ) = AB(p) ft (p, )
p

             (3) 

where ft(p, )=1/| p|
t
 if p=  and ft(p, )=0 otherwise. 

When t=0, we have f0(p, )=1 if p=  and f0(p, )=0 

otherwise. It is not hard to see that ˆ AB

0
F =H

AB
. We 

know that the histogram of constant forces 
AB

0
F and the 

histogram of angles H
AB

 are two different functions. 

For example, only a finite number of directions  

satisfy H
AB

( ) 0, whereas an infinite number of 

directions satisfy F0
AB

( ) 0. We also know, however, 

that 
AB

0
F  and H

AB
 are fundamentally equivalent [9]. 

One can say, therefore, that ˆ AB

t
F is to 

AB

t
F  what H

AB
 

(i.e., ˆ AB

0
F ) is to

AB

0
F . To let ˆ AB

t
F better correspond to 

the histogram of forces
AB

t
F , we need to modify the 

way ft(p, ) is defined. In the effective domain , using 

some line-drawing algorithm such as Bresenham’s, let 

us draw a straight line  that starts from the origin  

and runs in direction . We redefine ft(p, ) as follows: 

ft(p, )=1/| p|
t
 if p { } and ft(p, )=0 otherwise. 

Equation (3) can then be rewritten as: 

ˆ F tAB( ) = AB(p) / | p |t
p { }

         (4) 

Equation (4) brings ˆ AB

t
F  closer (although not exactly 

equal) to 
AB

t
F : an infinite number of directions  now 

satisfy ˆ F t
AB ( )  0. The ˆ AB

t
F  histograms are computed 

in O(NlogN+K N) time, where K is the number of 

directions  in which forces are considered. O(NlogN) 

is required for generating  
AB

 (see Section 3.1), while 

O(K N) is required by Equation (4). As illustrated in 

Figure 2(a), given an image of size N=n n, there are n 

different directions within [0, /4] for lines going from 

the bottom-left pixel to other boundary pixels. In 

[0,2 ), there are 8n 8 (i.e., 8 N 8) such directions. 

This shows that K might be negligible compared to N 

(K<< N), or might be of the same order (K N), but 

there is no interest in choosing greater values 

(K>> N). The presented algorithm, therefore, runs in 

O(NlogN+ N N) = O(NlogN). Computation times are 

basically independent of t (type of force histograms), K 

(number of directions in which forces are computed), 

and M (number of possible membership degrees). All 

objects (convex, concave, of simple or complex 

shapes, defined as crisp or fuzzy sets) are handled in an 

equally fast manner. The experiments in Section 4 

validate this theoretical analysis. 

4. Experiments 
 

In this section, 
AB

t
F denotes a force histogram 

computed using the standard algorithm (see Section 

2.2) and ˆ AB

t
F denotes a histogram computed using the 

new algorithm (see Section 3). For a given K, the 

i=2 i/K with i 0..K 1 are the directions in which 

forces are considered. The test data include three pairs 

of crisp objects, as depicted in Figure 2(b,c,d). 

Moreover, each pair (A,B) was used to generate several 

pairs of fuzzy objects. For a given M, the pixels in A 

were assigned different membership degrees, randomly 

selected from {i/M}i 1..M. The object B was fuzzified in 

the same way. All algorithms were implemented in C 

and run on a machine equipped with Intel Pentium D 

CPU 3.00 GHz and 1GB memory. 

            

Figure 2.  (a) About the number of directions 
in an image; (b,c,d) Test object pairs 
 

4.1. Comparing histogram values 
 

This series of experiments illustrates that 
AB

t
F and 

ˆ AB

t
F are practically identical. The dissimilarity between 

AB

t
F and ˆ AB

t
F is measured by the average difference 

ratio (ADR): 

( ) ( )

( ) ( )( )

ˆ

%
ˆ ,

AB AB
K 1

t i t i

AB AB
i 0

t i t i

F F 1
ADR 100

Kmax F F=

=   (5) 

The ADR values tend to be very low (see Table 1). 

They do not depend much on K and M (results not 

shown here), and they drop and tend towards 0 when 

the size N of the image increases (see Figure 3).  

 

4.2. Comparing processing times 
 

The results shown in this section are identical for all 

types of force histograms (processing times are basi-

cally independent of t). If we assume only convex 

objects are allowed, 
AB

t
F is computed in O(KN) time. 

Table 1. ADR 
         N=1282, K=1800 
Figure 2 (b) (c) (d) 

t=0 0.4% 0.5% 0.2% Crisp 
(M=1) t=2 0.4% 0.8% 1.1% 

t=0 0.5% 0.7% 0.3%  Fuzzy 
(M=5) t=2 0.5% 0.9% 1.2% 

N 
5122 

(A,B): Figure 2(d) 
K=1800, M=1 

t = 0 
t = 2 

ADR (%) 

2 
4 
6 

322 

Figure 2. ADR vs. N 
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(b) 

B A 

(c) 
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However, the efficiency decreases for objects with 

more complex shapes. In the worst case, 
AB

t
F is com-

puted in O(KN N) time, whereas ˆ AB

t
F is always 

computed in O(NlogN). This is illustrated by Figure 4. 

For the object pair depicted in Figure 2(b), when N 

increases, the time required to compute 
AB

t
F  grows 

slowly in comparison to the computation time of ˆ AB

t
F  

(Figure 4(a)). For the pair in Figure 2(c), the 

performance of 
AB

t
F decreases rapidly, while that of 

ˆ AB

t
F remains constant, which, therefore, makes them 

comparable (Figure 4(b)). Finally, for the object pair in 

Figure 2(d), ˆ AB

t
F outperforms 

AB

t
F (Figure 4(c)). Figure 

3 also shows that K and M have almost no influence on 

the computational efficiency of ˆ AB

t
F . On the other 

hand, the complexity of 
AB

t
F  depends linearly on K 

(Figure 4(d)) and quadratically on M (Figure 4(e)).       

 

 

Figure 3. Processing times 
 

5. Conclusions 
 

The standard algorithm for force histogram 

computation in the case of 2D raster data runs in 

O(KM
2
N N) time, where K is the number of directions 

in which forces are considered, M is the number of 

possible membership degrees, and N is the number of 

pixels in the image. In the present paper, we have 

described an algorithm that runs in O(NlogN). For crisp 

objects (M=1) with simple shapes, or if only a relatively 

small number K of histogram values are needed, the 

standard algorithm performs well. In all other cases, 

however, the new algorithm is much more efficient. 

The computed histograms are derived from a mapping 

that provides raw information about the objects' 

relative position. From a theoretical point of view, they 

are not true force histograms. However, they are 

practically identical. In future work, we plan to further 

refine the algorithm and achieve absolute identity. 
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In (a,b,c), K=1800, M=1. In (d), M=1, N=2562. 
In (e), K=360, N=2562. The objects A and B 
are from Figure 2(b,c,d,d,d), respectively. 


