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Abstract

The quantitative (or fuzzy qualitative) assessment of
directional spatial relationships (such as “ to the right of” ,
“ above” , “ south of” …) between two areal objects often
relies on the computation of a histogram of angles, which
provides a representation of the relative position of the
objects. In a recent paper, the notion of the histogram of
forces was introduced. Here, we show that this powerful
tool of representation lends itself, with great flexibilit y, to
the definition of directional spatial relations. Indeed, any
family of directional relations that relied on the construc-
tion of angle histograms can be advantageously redefined
using force histograms. Moreover, the notion of the histo-
gram of forces enables radicall y new famili es to be con-
ceived: definitions which correspond to a coherent and
rational perception of the world, but non-reali zable by
previous methods.
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1.  Introduction

Knowing how to apprehend the spatial organization of
2-D objects is essential to computer vision (for pattern
recognition, image understanding, scene description in
natural language, etc.). Freeman [4] proposed that the
relative position of two objects be described in terms of
spatial relationships. He also proposed that fuzzy relations
be used, because “all -or-nothing” standard mathematical
relations are clearly not suited to models of spatial rela-
tionships. Moreover, according to Bloch [2], “although the
human way of reasoning can deal with qualitative infor-
mation, computational approaches of spatial reasoning
and object recognition can benefit from more quantitative

measures” (see e.g. [3]). Freeman’s ideas were widely
adopted. But many authors assimilated 2-D objects to very
elementary entities such as a point (barycenter) or a
(bounding) rectangle. This process is extremely practical,
therefore it has often been used, notably for spatial rea-
soning and representation and processing of qualitative
spatial knowledge (see e.g. [3, 13, 14, 20]). However, a lot
of morphological information on the considered objects is
lost, and the procedure cannot be hoped to give a satis-
factory modelli ng of the relationships. By introducing the
notion of the histogram of angles, Miyajima and Ralescu
[17] developed the idea that the relative position between
two objects can have a representation of its own and can
thus be described in terms other than spatial relationships.
An ideal representation, once computed, is expected to
allow rapid fuzzy qualitative evaluation of any spatial
relationship. Actuall y, an angle histogram is generall y
used to assess the directional relationships only (such as
“ to the right of” , “above”…) [9, 10, 12, 17, 18]. As a
matter of fact, relative position is often assimilated to di-
rectional relations. The point of view is improper, but it
shows the importance of these particular spatial relations
—on which we focus here—in computer vision.

Finall y, numerous methods for defining families of di-
rectional relations can be found in the literature. However,
few of these methods simultaneously meet the following
requirements:

(a) No 2-D object is assimilated to a very elementary en-
tity such as a point or a rectangle.

(b) The defined directional relations are fuzzy relations,
and not “all -or-nothing” ones.

(c) The defined family of relations satisfies the basic axio-
matic properties (see Section 2.3) which are — in a
more or less explicit way — widely adopted by com-
puter scientists: for instance, we expect that object B is
to the left of object A as A is to the right of B (seman-
tic inverse notion, according to Freeman [4]; symmetry
property, according to Bloch [2]).



The centroid method (see e.g. [9] and the methods de-
scribed in [6, 8] do not meet requirement (a); the ones
described in [1, 5, 11] do not meet requirement (c). Actu-
all y, as far as we are aware, the only methods which fairly
meet the previous requirements are based—explicitl y or
not—on the notion of the histogram of angles. These
methods are the compatibilit y method [17], the aggrega-
tion method [12], the possibilit y method proposed in [2]
(but not the necessity method, neither the average one),
and maybe the neural network methods [10].

In this paper, we show that the corresponding families
of directional relations can be advantageously redefined
using force histograms [15, 16] instead of angle histo-
grams. We also introduce two new families of directional
relations, still based on the notion of the histogram of
forces. We thus demonstrate that this powerful tool of
representation lends itself, with great flexibilit y, to the
definition of directional spatial relations. In Section 2,
different mathematical functions associated with the no-
tion of the histogram of forces are briefly presented. In
particular, it is shown how what is called an H function
can participate in the generation of a family of directional
relations. Actuall y, any method ([17, 12, 2, 10]) that fairly
meets the three requirements corresponds to the datum of
an H function (even though these methods are based on
the notion of the histogram of angles). This point is dealt
with in Section 3, and the advantages of exploiting force
histograms instead of angle histograms are described. In
Section 4, a new H function is introduced. We use it in
Section 5 to generate two new families of directional re-
lations. Experimental results are given in the same sec-
tion.

2.  Directional relations and force histograms

The Euclidean plane is referred to a directional or-
thogonal frame (O, 

�

i ,
�

j ). Let θ and v be two reals and 
�

iθ
and 

�

jθ  the respective images of 
�

i and 
�

j  through a θ-angle
rotation: ∆θ(v) denotes the oriented line whose frame is
defined by the vector 

�

iθ  and the point of coordinates (0,v)
— relative to (O, 

�

iθ ,
�

jθ ) — (Fig. 1).

2.1.  The µµ  functions

A fuzzy directional spatial relation between points is a
fuzzy binary relation Rα between points, where α repre-
sents any real. The relation Rα connects any couple (A,B)
of distinct points with an element of interval [0,1]. This
element Rα(A,B) is the degree of truth of the proposition
“A is in direction α of B” . A family (Rα)α∈IR of direc-
tional relations between points can be defined from a
fuzzy subset of IR: its membership function µ is continu-
ous, with period 2π, even, decreasing on [0,π], and takes

        
Figure 1.   Oriented straight lines and longitudinal sections.

E ∩ ∆θ(v)  (i.e. I ∪ J ∪ K)  is a longitudinal section of E.

     

Figure 2.   Example of directional relations between points.
The degree of truth of the proposition
“A is in direction α of B” is µ(β−α).

the value 1 at 0 and the value 0 at π/2. Let α and β be two
real numbers and A and B be distinct points. If β is an
(

�

i , 
→
BA ) angle measure, then (Fig. 2):  Rα(A,B) = µ(β−α).

2.2.  The F functions

With any couple (A,B) of 2-D objects, we associate a
function FAB from IR  into IR + [15, 16]. This function rep-
resents the relative position of A with regard to B. For any
direction θ, the value FAB(θ) is the total weight of the ar-
guments that can be found in order to support the proposi-
tion “A is in direction θ of B” . More precisely, it is the
scalar resultant of elementary forces. These forces are
exerted by the A points on those of B, and each tends to
move B in direction θ. Actuall y, F denotes a function
which allows the 2-D objects to be handled as 1-D entities
(longitudinal sections, see Fig. 1). Let r be a real. If the
elementary forces are in inverse ratio to d 

r, where d repre-
sents the distance between the points considered, then F is
denoted Fr . For instance, the F function associated with
the universal law of gravitation is F2 . If FAB is defined on
IR—i.e. if for any θ the scalar resultant FAB(θ) is finite—
then the couple (A,B) is termed F-assessable and FAB is
called the histogram of forces associated with (A,B) via F,
or the F-histogram associated with (A,B). For any real r,
any couple of disjoint objects is Fr –assessable [16].

2.3.  The H functions

    A histogram of forces is an element of Map 2π(IR, IR +),
i.e. a map from IR  into IR + with period 2π. For any such
map h and for any real α, let us denote by h ⊕α the func-
tion defined by:



h ⊕α | IR → IR +

                  θ 
�

 h(θ+α)

It is also an element of Map 2π(IR , IR +). Now, let F be a
function from T into IR + and H a map from Map 2π
(IR , IR +) into [0,1]. The family (Rα)α∈IR of fuzzy binary
relations defined on exactly the set of F-assessable cou-
ples by  Rα(A,B) = H(FAB

 ⊕α)  (see Fig. 3) is called the
family of directional spatial relations generated by F and
H. The value Rα(A,B) represents the degree of truth of the
proposition “A is in direction α of B” .

Proposition:

Let µ be the membership function of a fuzzy set “direc-
tional relations between points” (see 2.1), and H be a map
from Map 2π(IR , IR +) into [0,1] such that [H1] to [H3]:

[H1] For any real δ and any strictly positi ve real η,
there exists an element ε of ]0,π[ such that:
∀h∈Map 2π(IR  , IR +),

(h≠0 and h([δ−π,δ−ε]∪[δ+ε,δ+π]) = { 0} )  
   ⇒ |H(h)−µ(δ)|<η

[H2] ∀(h1, h2)∈Map 2π(IR  , IR +)
2,

      (∀θ∈IR,  h1(−θ) = h2(θ))  ⇒  H(h1) = H(h2)
[H3] ∀( h1, h2)∈Map 2π(IR  , IR +)

2,
      (∃K∈IR +

*   / h1= K. h2)  ⇒  H(h1) = H(h2)

It is shown in [15, 16] that for any real number r, the fam-
il y (Rα)α∈IR of directional spatial relations generated by
Fr and H then satisfies the following properties:

[R1] Let A and B be two objects and α and β two reals.
Denote by t u�  the translation of  vector �u . There
exists a real number k0 such that for any k greater
than k0 the ( tk.i

�

β
(A), B) couple is Fr -assessable.

Moreover:   lim k→+∞  Rα ( tk.i
�

β
(A), B) = µ(β−α)

[R2] Let A and B be two objects and α a real.
If (A,B) is Fr -assessable then (B,A) also is and:
Rα+π(B,A) = Rα(A,B)

[R3] Let A and B be two objects, α a real and sym a
∆β(v)-axis orthogonal symmetry. If (A,B) is Fr -
assessable then (sym(A),sym(B)) also is and:
R2β−α (sym(A),sym(B)) = Rα(A,B)

[R4] Let A and B be two objects, α a real and dil a dila-
tation with a strictly positi ve ratio. If (A,B) is Fr -
assessable then (dil(A),dil(B)) also is and:
Rα(dil(A),dil(B)) = Rα(A,B)

[R1] to [R4] are the basic axiomatic properties (Fig.
4). [R1] signifies that two objects can be assimilated to
points if they are distant enough. [R4] means that the rel-

    

Figure 3.   Handling of force histograms:   Rα(A,B) = H(F
AB

 ⊕ α)

[R1]    The position of A’ with regard to B is approximately li ke
      the position of any point of A’ with regard to any point of B.

[R2]   B is in direction α+π of A as
   A is in direction α of B.

 [R3]   A’ is in direction 2β−α of B’ as
A is in direction α of B.

[R4]   The position of A’ with regard to B’ is
            li ke the position of A with regard to B.

Figure 4.   The basic axiomatic properties.



ations are not sensiti ve to scale changes, [R3] that neither
a space dimension nor a direction are preferred. [R2]
brings out the notion of semantic inverse (according to
Freeman [4]): object A is thus to the left of object B as B
is to the right of A. The points of view stated above are —
in a more or less explicit way — widely adopted by com-
puter scientists [2, 8, 10, 11, 12, 17].

3.  Directional relations and angle histograms

A and B are now two image regions. For the sake of
simplicity, only disjoint crisp objects will be considered
here: so, each object can be represented by a finite set of
points of the Euclidean plane. The histogram of angles as-
sociated with (A,B) is a function Ang AB  from IR into IR +
with period 2π (li ke force histograms). For any real θ, the
value Ang AB(θ) is the number of couples (a,b) belonging
to A×B such that θ is an (

�

i , 
→
ba) angle measure [17, 18].

Let µ be the membership function of a fuzzy set
“directional spatial relations between points” (see 2.1) and
let H be a map from Map 2π(IR , IR +) into [0,1] such that
[H1] to [H3] (see 2.3). The family (Rα)α∈IR of directional
relations defined by Rα(A,B) = H(Ang AB

 ⊕α) can advanta-
geously be redefined by  Rα(A,B) = H(F0

A B
 ⊕α). Indeed, it

is demonstrated in [15, 16] that F0-histograms coincide
with angle histograms, but without their weaknesses (long
processing times, anisotropy, requirement for raster data,
etc.). Moreover, the proposition presented in Section 2.3
vouches for the fact that the redefined family satisfies the
four basic axiomatic properties. Such a guarantee cannot
be offered to the initial family. These reflections concern
the aggregation method [12], as well as the compatibilit y
method [17] and the possibilit y method [2] (the neural
networks methods [10] have to be kept apart: the Rα(A,B)
values depend on how exactly the training is performed).

Consider for instance the aggregation method. The µ
function associated with this method is the function µ

K

defined by: ∀θ∈[0,π/2], µ
K
(θ)=1−2θ/π (Fig. 2). It is easy

to show that there exists an H function H
K
 sharing prop-

erty [H1] with µ
K , satisfying [H2] and [H3], such that the

family (Rα)α∈IR of directional relations experimented in
[12] can be defined by: Rα(A,B) = HK(Ang AB

 ⊕α). For any
element h of Map 2π(IR , IR +) corresponding to an angle
histogram, we have:

HK(h) = [Σ i∈1..n h(θi). µK(θi)] / Σ i∈1..n h(θi)

where θ1, θ2, … , θn  denote the elements of { θ∈]−π,π] /
h(θ) ≠ 0} (which is inevitably finite and non-empty). Fi-
nall y, (Rα)α∈IR can be advantageously redefined by:
Rα(A,B) = H

K
(F0

A B
 ⊕α). Note that F0-histograms are not the

only histograms of forces that can be used. But in that
case, redefinition obviously leads to a reall y different
family of directional relations (in [16] for instance, three

methods are compared: the first is the compatibilit y
method; in the second, the angle histograms have been
replaced by F0-histograms; in the third, they have been
replaced by F2-histograms).

4.  A new H function

a) RRIGHT(A,B)=1
    RABOVE(A,B)=0

b) RRIGHT(A,B)=1 c) RRIGHT(A,B)<1

Figure 5.   Expected behavior of the directional relations.

The H function introduced in this section accepts a
physical interpretation, as the F functions do. What is to
be expected from the family of directional relations gen-
erated by F and H ? Four configurations, ill ustrated in Fig-
ure 5, are at the origin of the H function presented here.
For each configuration, we have expressed a wish con-
cerning the answer given by the directional relations.
Readers are free to think this wish is arbitrary. Anyhow,
arbitrariness is inherent in the problem we deal with.
What matters to us is to demonstrate that the notion of the
histogram of forces offers a flexible and powerful tool to
define directional spatial relations.

4.1.  Contradictory, compensatory, effective forces

          

Figure 6.   Contradictory, compensatory and effective forces.

Let (A,B) be an F-assessable couple of objects, and let
h be the histogram of forces associated with (A,B) via F:
h = F 

AB. Any couple (θ,h(θ)), where θ is an element of
[−π,−π/2] (or [−π/2,0], or [0,π/2], or [π/2,π]), will be
called force of the first quadrant (or second, third, fourth
quadrant). The forces of the 1st and 4th quadrants are



elements which, to various degrees, weaken the proposi-
tion “A is in direction 0 of B” ; the forces of the 2nd and
3rd quadrants are elements which support the proposition.

The wish ill ustrated by Figure 5a leads us to use forces
of the third quadrant in order to compensate — as much as
possible — the contradictory forces of the fourth one. A
proportion of these compensatory forces is defined by an
element θ+ of [0,π/2] (Fig. 6). θ+ is chosen such that
the barycenter of the system { (θ,h(θ))} θ∈[θ+

 , π ] is—
when it exists and as far as possible:

(π/2 , ∫π
θ+

h(θ).dθ)

More precisely:

∫π
0 (θ−π/2).h(θ).dθ ≥ 0  ⇒  ∫ +θ

π (θ−π/2).h(θ).dθ = 0

∫π
0  (θ−π/2).h(θ).dθ < 0  ⇒  θ+ = 0

To satisfy [H2], forces of the second quadrant are used in
a symmetrical way to compensate the contradictory forces
of the first one. The proportion of these compensatory
forces is defined by an element θ− of [−π/2,0] (Fig. 6):

∫-
0
π (θ+π/2).h(θ).dθ ≥ 0  ⇒  ∫-

-
π

θ (θ+π/2).h(θ).dθ = 0

∫-
0
π (θ+π/2).h(θ).dθ < 0  ⇒  θ− = 0

{ (θ,h(θ))} θ∈[θ− , θ+]    is the set of the effective forces. At
this stage of handling of h, the maximum value that can be
reached by R0(A,B) — RRIGHT(A,B) — is set to the per-
centage he of these forces (Fig. 6):

       he = ( ∫
−
+

θ
θ h(θ).dθ ) / ( ∫−

+
π
π h(θ).dθ )

4.2.  Optimal and sub-optimal components

Figure 7.   Optimal and
 sub-optimal components.

The wishes ill ustrated in Figure 5 now lead us to di-
vide each effective force into two components (Fig. 7).
These components are determined from a threshold hS to
which we will return in Section 4.3. One is optimal and
used to support the idea that A is “perfectly” in direction 0
of B. The other component is sub-optimal and is used to
support, more cautiously, the idea that A is “ rather” in
direction 0 of B. The set of sub-optimal components is
assimilated to its barycenter and the set of optimal com-
ponents to a unique force applying at point zero. This

naturall y leads us to define a representative direction θ0

(Fig. 7) and thus to give the value of R0(A,B), i.e. of H(h):

θ0 = (∫
−
+

θ
θ

θ . max(0,h(θ)−hS) . dθ ) / (∫
−
+

θ
θ

h(θ).dθ )

  and     H(h) = R0(A,B) = µ(θ0).he

where µ denotes the membership function of a fuzzy set
“directional spatial relations between points” (see 2.1). It
is easy to show that H shares property [H1] with µ and
satisfies properties [H2] and [H3].

4.3.  Directional sensitivity

Figure 8.   The comb effect.    If hS was set to h(0), RRIGHT(A,B)
would take the value 1 in the left case, and could take a noticea-

bly lower value in the right case.

Setting the threshold hS to 0 would not allow the wish
ill ustrated in Figure 5b to be fulfill ed. Setting it to +∞
would not allow 5c to be fulfill ed. On the contrary, the
value h(0) seems suitable. For the sake of robustness, and
in order to avoid the “comb effect” (Fig. 8), it is however
better to take into account the value of h not only at 0 but
in a neighborhood of  0. This is the reason why we have
chosen to resort to a map S from [−π/2,π/2] onto [0,1],
which is even, continuous, decreasing on [0,π/2], and
takes the value 1 at 0 (remark that S appears in the sub-
script notation hS):

hS = (∫
−
+

θ
θ

S(θ).h(θ).dθ ) / (∫
−
+

θ
θ

S(θ).dθ )

S characterizes the “directional sensiti vity” . An anal-
ogy between S and microphone directivity—cardioid
(heart-shaped), hyper cardioid, etc.—can be establi shed:
the sensiti vity is maximum on the axis and decreases on
moving away (Fig. 9).

Figure 9.   Directional sensitivity.



5.  Experimental results

In this section, four families of directional spatial rela-
tions are considered: K, M, F0 and F2. The first, K, is
defined by the aggregation method [12] (see also Section
3), and the second, M, by the compatibilit y method [17].
Both are based on the construction of angle histograms.
The last two families are based on the construction of
force histograms. They are generated by the new H func-
tion (presented in Section 4) and by the function F0 for F0,
the function F2 for F2. The µ and S functions used for
defining H are respectively triangular (see Fig. 2) and
trapezoidal (see Fig. 9). Note that the choice of S is not
criti cal—except for some very particular configurations
(the “comb effect” , see 4.3). A medium directional sensi-
tivity has been chosen here. K, M, F0 and F2 can handle
fuzzy objects as well as crisp objects, and F0 and F2 can
handle vector data as well as raster data. However, the test
images presented are all numerical images and involve
disjoint crisp objects only: the reader can easil y analyze
the configurations, and the results are quite eloquent.

Let us highlight the most distinguishing mark between
the K and M families on the one hand, and the F0 and F2
families on the other (i.e.: between the existing H func-
tions—see Section 3—and the new one—see Section 4).
Consider for instance Image 7. Through a point of object
B (the disc), draw a vertical li ne. The right half-plane so
defined may contain some points of A (in white). For K
and M, it is enough to conclude that the proposition “A is
to the right of B” cannot be totall y false: RRIGHT(A,B)≠0.
The F0 and F2 families are much more exacting. Gener-
all y, with these families, if Rα(A,B) is not null then
Rα+π(A,B) is null: for instance, F0 cannot assess A to be
simultaneously quite to the left and to the right of B. On
the contrary, the K and M families — especiall y M —
often assess an object to be in one, and the same time, in
many directions with respect to another (see Images 3, 6,
7, 8, 9). Some authors [2, 18] support the idea that this
feature allows more complex relationships — li ke
“surround” — to be derived. For instance, considering the
results achieved by M for Image 9, one could conclude
that A surrounds B. But if A was the disc and B the ring
(A would then be surrounded by B), or if the ring became
a disc (A would include B), M would achieve the same
results. So, in our opinion, drawing conclusions from such
results looks diff icult and not reasonable. The directional
relations are not the only spatial relations, and they cannot
represent the relative position of an object with regard to
another all by themselves. In particular, they cannot (and
have not to) supply for the spatial relation “surround” .
Moreover, it is well  known  in  cogniti ve  science  that,
generall y,  when translating visual information into natu-
ral language descriptions, people do not combine more

    
                           1                            2                            3     

K M F0 F2 K M F0 F2 K M F0 F2

RIGHT 71 78 100 100 10 12 0 0 3 7 0 0

LEFT 0 0 0 0 10 12 0 0 22 18 75 99

ABOVE 15 23 0 0 0 0 0 0 33 80 3 0

BELOW 15 23 0 0 80 88 100 100 43 81 7 2

    
                           4                            5                            6     

K M F0 F2 K M F0 F2 K M F0 F2

RIGHT 38 32 55 86 60 71 54 21 1 3 0 0

LEFT 0 0 0 0 2 12 0 0 40 35 87 99

ABOVE 67 68 73 43 0 0 0 0 17 45 0 0

BELOW 1 5 0 0 38 29 76 99 43 68 20 5

    
                           7                            8                            9     

K M F0 F2 K M F0 F2 K M F0 F2

RIGHT 1 1 0 0 4 10 0 0 25 50 0 0

LEFT 51 52 96 95 38 50 48 44 25 50 0 0

ABOVE 25 48 0 0 29 50 0 0 25 50 0 0

BELOW 25 48 0 0 29 50 0 0 25 50 0 0

Test images and result tables.
Argument A appears in white and referent B in gray.

The results are given in hundredths.

than two relations [7, 19]. The new H function presented
in Section 4, and used for defining the F0 and F2 families,
has been conceived in that way (see Fig. 5a).

Of course, the K and M families could have been rede-
fined using force histograms (as seen in Section 3). Fi-
nall y, the notion of the histogram of forces enables all the
families studied here to be conceived, and to benefit from
the four basic axiomatic properties. Which family pro-
vides the “best” results? The answer obviously depends on
the application considered. We just dealt here with what
Gapp [6] has called the basic meanings of spatial relations



(the model proposed by Gapp to define the semantics of
spatial relations distinguishes context-specifi c conceptual
knowledge from the basic meanings of the relations).
However, note that even when the results provided by F0
and F2 — the two new families presented in this paper —
are completely different from the others, they express
opinions which are full y rational (see Images 3, 4, 5, 6).
Moreover, no family relying on the construction of angle
histograms (or of F0-histograms) can behave li ke F2: in-
deed, angle histograms do not take into account metric
information.

Other comments:

Image 2 — If A is not perfectly below B in that case, when does
such an event occur? The fact is that in practice K  and M  pro-
scribe the equalit y: Rα(A,B)=1.  Image 3 — According to M
(and K ), the “house” (object A) is rather south of the “river”
(object B), or maybe north, but certainly not west.  Image 4 —
F2 is the only family to aff irm that A is more to the right of B,
even though it gives a certain credit to the proposition “A is
above B” .  Image 5 — As A becomes longer, K  and M  quickly
aff irm that A is essentiall y located to the right of B. F0 eventu-
all y shares this point of view, but later on, and in a less definite
way. F2 is alone to maintain that A essentiall y remains below B.
The new H function presented in Section 4 has been conceived
to this end (see Fig. 5b).  Image 7  — According to M , object A
is not much more to the left of object B than below or above it.
And A is not much more to the left of B in Image 7 than in Im-
age 9.  Image 9 — Is the ring located to the left of the disc? The
F0 and F2 families definitely say: no. They cannot (and have
not to) supply for the spatial relation “surround” .

6.  Conclusion

Numerous methods for defining families of directional
spatial relations can be found in the literature. However,
no method can be hoped to give a reall y satisfactory mod-
elli ng of the directional relationships if it does not meet
some reasonable requirements. In this paper, three re-
quirements have been stated. It happens that the only
methods which fairly meet them are based — explicitl y or
not — on the notion of the histogram of angles. We have
shown that the corresponding families of directional rela-
tions can be advantageously redefined using force histo-
grams instead of angle histograms. By imposing physical
considerations on force histograms, we have introduced
two new families of directional spatial relations. Finall y,
the notion of the histogram of forces offers a flexible and
powerful tool to define such families. By working with
two functions (F and H), endless families can be gener-
ated. Research needs to be done to determine the most
suitable families according to context and to the applica-
tion considered. We are currently addressing these issues.
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