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Abstract

The quartitative (or fuzzy quditative) asessnent of
dirediond spatial relationships (such as “ to the right of”,
“above’, “south o ...) between two areal objeds often
relies on the computation d a histogram of anges, which
provides a representation o the relative position d the
objeds. In arecent paper, the nation d the histogram of
forces was introduced. Here, we show that this powerful
tod of representation lends itself, with great flexhbility, to
the definition o dirediond spatial relations. Indeed, any
family of dirediond relations that relied onthe construc-
tion d ande histograms can ke advantageoudy redefined
using force histograms. Moreover, the nation d the histo-
gram of forces enaldes radically new families to be con-
ceived: definitions which correspond to a coherent and
rationd perception d the world, but nonrealizable by
previous methodk.

Keywords

Spdial relationships, parameter extraction,
pattern recognition, scene andysis,
fuzzy relations, fuzzy sets.

1. Introduction

Knowing hav to apprehend the spatial organization o
2-D objeds is esential to computer vision (for pattern
reaogrntion, image understanding, scene description in
natural language, etc.). Freeman [4] proposed that the
relative position d two oljeds be described in terms of
spatial relationships. He dso proposed that fuzzy relations
be used, becaise “dl-or-nothing’ standard mathematicd
relations are dealy nat suited to models of spatia rela-
tionships. Moreover, acording to Bloch [2], “althoughthe
human way of reasoning can ded with qualitative infor-
mation, computational approaches of spatial reasoning
and oljea reagrition can benefit from more quantitative

measures’ (see e.g. [3]). Freeman's ideas were widely
adopted. But many authors assmilated 2-D objeds to very
elementary entities sich as a point (barycenter) or a
(boundng) redangle. This processis extremely pradicd,
therefore it has often been used, notably for spatial rea-
soning and representation and processng d qualitative
spatial knowledge (seee.q. [3, 13, 14, 20]). However, alot
of morphdogicd information onthe cmnsidered ojedsis
lost, and the procedure caana be hoped to gve asatis
fadory modelling d the relationships. By introducing the
nation d the histogram of angles, Miyajima and Ralescu
[17] developed the ideathat the relative position ketween
two olhjeds can have arepresentation d its own and can
thus be described in terms other than spatial relationships.
An ided representation, once mmputed, is expeded to
alow rapid fuzzy qualitative evaluation o any spatial
relationship. Actually, an angle histogram is generally
used to assess the diredional relationships only (such as
“to the right of”, “abowe”...) [9, 10, 12, 17, 18]. As a
matter of fad, relative position is often assmil ated to d-
redional relations. The point of view is improper, but it
shows the importance of these particular spatial relations
—on which we focus here—in computer vision.

Finally, numerous methods for defining families of di-
redional relations can be foundin the literature. However,
few of these methods smultaneously mee the foll owing
requirements:

(a) No 2-D objed is assmil ated to a very elementary en-
tity such asa point or aredange.

(b) The defined drediona relations are fuzzy relations,
and nd “all-or-nathing” ones.

(c) The defined family of relations stisfies the basic axio-
matic properties (see Sedion 2.3) which are — in a
more or lessexplicit way — widely adopted by com-
puter scientists: for instance, we exped that objed B is
to the left of objed A as A isto the right of B (seman-
tic inverse nation, acording to Freeman [4]; symnetry
property, according to Bloch [2]).



The centroid method (seee.g. [9] and the methods de-
scribed in [6, 8] do nd med requirement (a); the ones
described in [1, 5, 11] do nd med requirement (c). Actu-
aly, asfar aswe ae aware, the only methods which fairly
med the previous requirements are based—explicitly or
not—on the nation d the histogram of angles. These
methods are the compatibility method [17], the aggrega-
tion method [12], the posshility method popaosed in [2]
(but not the necessty method neither the average one),
and maybe the neural network methods [10].

In this paper, we show that the arrespondng families
of dirediona relations can be avantageoudy redefined
using force histograms [15, 16] instead o angle histo-
grams. We dso introduce two new families of diredional
relations, still based on the nation o the histogram of
forces. We thus demonstrate that this powerful tod of
representation lends itself, with grea flexihility, to the
definition d diredional spatial relations. In Sedion 2
different mathematicd functions asociated with the no-
tion d the histogram of forces are briefly presented. In
particular, it is saown hov what is cdled an H function
can participate in the generation d a family of diredional
relations. Actualy, any method([17, 12, 2, 10Q]) that fairly
meds the three requirements corresponds to the datum of
an H function (even thoughthese methods are based on
the nation d the histogram of angles). This paint is dedt
with in Sedion 3 and the advantages of exploiting force
histograms instead of angle histograms are described. In
Sedion 4 a new H function is introduced. We use it in
Sedion 5to generate two new families of diredional re-
lations. Experimental results are given in the same sec-
tion.

2. Directional relations and force histograms

The Euclidean pane is referred to a dirediona or-
thogoral frame (O, i ,7). Let 8 and v ke two reds and 7,
and Js the respedive imagesof i and j througha8-angle
rotation: Ae(v) denctes the oriented line whaose frame is
defined by the vedor iy and the point of coordinates (0,v)
— relative to (O, Ty, 1s) — (Fig. 1).

2.1. The u functions

A fuzzy directional spatial relation between pointsis a
fuzzy binary relation Ro between padnts, where a repre-
sents any red. The relation Ry conreds any coupe (A,B)
of distinct points with an element of interval [0,1]. This
element Ra(A,B) is the degree of truth of the propasition
“Aisin dredion a of B". A family (Ra)a[g of direc-
tional relations between pdnts can be defined from a
fuzzy subset of IR: its membership function p is continu-
ous, with period 2, even, deaeasing on[0,1], and takes

Figurel. Oriented straight lines and longitudinal sections.
En Ae(v) (i.e.1 0J0OK) isalongtudina sedion d E.
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Figure2. Example of directional relations between points.
The degreeof truth of the propasition
“Aisin drediona of B” is pu(B-a).

thevalue 1 at 0 and the value O at Tv2. Let a and 3 be two
red numbers and A and B be digtinct paints. If B is an
(i, Ba) angle measure, then (Fig. 2): Ra(A,B) = p(B-a).

2.2. TheF functions

With any coupe (A,B) of 2-D objeds, we a&sciate a
function F*® from R into IR, [15, 16]. This function rep-
resents the relative pasition d A with regard to B. For any
diredion 8, the value F**(8) is the total weight of the a-
guments that can be foundin aorder to suppat the propasi-
tion “A isin dredion 6 of B". More predsdly, it is the
scdar resultant of elementary forces. These forces are
exerted by the A points on those of B, and ead tends to
move B in dredion 0. Actualy, F denates a function
which allows the 2-D objeds to be handled as 1-D entities
(longitudinal sections, see Fig. 1). Let r be ared. If the
elementary forces arein inverse ratio to d', where d repre-
sents the distance between the points considered, then F is
denoted F, . For instance, the F function associated with
the universal law of gravitationisF,. If F*® is defined on
IR—i.e. if for any 8 the scdar resultant F**(8) is finite—
then the mugde (A,B) is termed F-assessable and F*® is
cdled the histogram of forces associated with (A,B) via F,
or the F-histogram associated with (A,B). For any red r,
any coude of digoint objedsis F—asessable [16].

2.3. TheH functions

A histogram of forces is an element of Map,n(R, IR.),
i.e. amap from IR into IR, with period 2t For any such
map handfor any red a, let us denote by hoa the func-
tion defined by



hoo [R - R,
8 > h(6+a)

It is also an element of Map,n(IR,IR,). Now, let F be a
function from T into IR, and H a map from Map,nt
(R,IR,) into [0,1]. The family (Ra)aly of fuzzy binary
relations defined on exadly the set of F-assessable wu-
ples by Ra(A,B) = H(F**0a) (seeFig. 3) is cdled the
family of directional spatial relations generated by F and
H. The value Ra(A,B) represents the degreeof truth of the
propasition“A isin drectiona of B”.

Proposition:
Let yu be the membership function d a fuzzy set “direc

tional relations between pants’ (see2.1), and H be amap
from Map,n(IR,IR,) into [0,1] such that [H1] to [H3]:

[H1] For anyred & andany srictly paositivered n,
there exists an element € of |0, such that:
OhOMap,n(IR, IR,),

(h#0 and H[&-Tt5-€] O[&+€,5+T]) = {0})
0 [H(h)-p(d)l<n

[H2] 0O(h,,h,)OMap,n(IR,IR,)’,

(DBOIR, h(-6) =h,(®)) O H(h) =H(h)

[H3] O( h,h)OMap,r(IR, IR,)’,

(KOIR}, /h,=K. h) O H(h,) =H(h,)

Itis .ownin [15, 16] that for any red number r, the fam-
ily (Ra)alJg of diredional spatial relations generated by
F, and H then satisfies the foll owing properties:

[R1] Let A andB betwo ohjeds and a and 3 two reds.
Denate by ty the trandation d vedor T . There
exists a red number k, such that for any k geaer
than k, the ('[kjB (A),B) coupeisF, -asessble.
Moreover: lim, _,,00 R (tij (A),B) = p(B-a)

[R2] Let A andB betwo oljedsanda ared.

If (A,B) is F,-asessble then (B,A) aso is and:
Ra,m(B.A) = Ra(A,B)

[R3] Let A and B be two oljeds, a ared and sym a
Ap(v)-axis orthogoral symmetry. If (A,B) is F,-
assessable then (sym(A),sym(B)) also isand:

R,g-a (sym(A),sym(B)) = Ra(A,B)

[R4] Let A andB betwo ohjeds, a ared and dil a dila-
tation with a strictly positive ratio. If (A,B) is F,-
assessble then (dil(A),dil(B)) also isand:

Ry (dil(A),dil(B)) = Ry(A,B)

[R1] to [R4] are the basic axiomatic properties (Fig.
4). [R1] signifies that two oljeds can be admilated to
pointsif they are distant enough [R4] meansthat the rel-

FAB() FABg q(8)

L A NI

Figure3. Handling of force histograms: Ru(A,B) = H(F*0 a)

[R1] Theposition d A’ with regard to B is approximately like
the position d any pant of A’ with regard to any pant of B.

» 9

[R2] Bisin drediona+Ttof A as
Aisin drediona of B.

A

[R3] A’isindredion B—a of B’ as
Aisin drediona of B.

[R4] Theposition d A’ with regardto B’ is
like the position d A with regard to B.

Figure4. The basic axiomatic properties.



ations are not sensitive to scde canges, [R3] that neither
a space dimension na a diredion are preferred. [R2]
brings out the nation d semantic inverse (acarding to
Freeman [4]): objed A isthusto the left of objed B as B
isto theright of A. The points of view stated above ae —
in amore or lessexplicit way — widely adopted by com-
puter scientists[2, 8, 10, 11, 12, 17].

3. Directional relations and angle histograms

A and B are now two image regions. For the sake of
simplicity, only digoint crisp ojeds will be nsidered
here: so, ead oljed can be represented by a finite set of
points of the Euclidean plane. The histogram of angles as-
sociated with (A,B) is a function Ang”® from IR into IR,
with period 21 (like force histograms). For any red 0, the
value Ang”®(8) is the number of coupes (ab) belongng
to AxB such that 8 isan (i , ba) ange measure [17, 18].

Let u be the membership function d a fuzzy set
“diredional spatial relations between pants’ (see2.1) and
let H be amap from Map,n(IR,IR,) into [0,1] such that
[H1] to [H3] (see2.3). The family (Ra)a [y of diredional
relations defined by Ra(A,B) = H(Ang”*® Da) can advanta-
geously be redefined by Ra(A,B) = H(F,°00). Indeed, it
is demonstrated in [15, 16] that F,-histograms coincide
with angle histograms, but withou their weaknesses (long
processng times, anisotropy, requirement for raster data,
etc.). Moreover, the propasition presented in Sedion 2.3
vouches for the fad that the redefined family satisfies the
four basic axiomatic properties. Such a guarantee cannot
be offered to the initial family. These refledions concern
the aygregation method [12], as well as the compatibility
method [17] and the posshility method [2] (the neura
networks methods [10] have to be kept apart: the Ra(A,B)
values dependon hav exadly the training is performed).

Consider for instance the aygregation method The u
function associated with this method is the function p,
defined by DBU[0,1v2], W, (B)=1-20/mt (Fig. 2). It is easy
to show that there exists an H function H_ sharing prop-
erty [H1] with p , satisfying [H2] and [H3], such that the
family (Ra)a(g of diredional relations experimented in
[12] can be defined by: Ra(A,B) = H,(Ang*®0a). For any
element h o Map,n{IR,IR,) correspondng to an ange
histogram, we have;

H (h) = [Zi0; 4 h(6). K, (8)] / Zi0y  h(6;)

where 6,, 6,, ... , 6,, denote the dements of {60]-Ttrg /
h(8) # 0} (which is inevitably finite and norempty). Fi-
nally, (Ra)adg Can be alvantageously redefined by
Ra(A,B) = H,(F;° Da). Note that F,-histograms are not the
only histograms of forces that can be used. But in that
case, redefinition obvioudly leads to a redly different
family of diredional relations (in [16] for instance, three

methocs are mpared: the first is the compatibility
method in the second the angle histograms have been
replacal by F;-histograms; in the third, they have been
replacal by F,-histograms).

4. A new H function

a) RR'GHT(A'B):_1 b) Reeir(A,B)=1

RABOVE(A ’ B)=

C) Rrerr(A,B)<1
Figure5. Expected behavior of the directional relations.

The H function introduwced in this ®dion accets a
physicd interpretation, as the F functions do. What is to
be expeded from the family of diredional relations gen-
erated by F and H? Four configurations, ill ustrated in Fig-
ure 5, are & the origin of the H function presented here.
For ead configuration, we have expressed a wish con-
cerning the aswer given by the dirediona relations.
Readers are free to think this wish is arbitrary. Anyhow,
arbitrariness is inherent in the problem we ded with.
What matters to usisto demonstrate that the notion d the
histogram of forces offers a flexible and paverful tod to
define diredional spatial relations.

4.1. Contradictory, compensatory, effective forces

6 contradictory forces

6 compensalory forces h =

6 ellective forces

@ @ + 6 )

- 2 8 0 0. w2 gl

+

Figure6. Contradictory, compensatory and effective forces.

Let (A,B) be an F-assessable coude of objeds, and let
h be the histogram of forces assciated with (A,B) via F;
h = F"®. Any coupe (8,h(B)), where 8 is an element of
[-T-172] (or [-102,0], or [0,772], or [1W2,m]), will be
cdled force of the first quadrant (or second, third, fourth
guadrant). The forces of the 1st and 4th quadrants are



elements which, to various degrees, weaken the propasi-
tion“A isin dredion 0of B”; the forces of the 2nd and
3rd quadrants are dements which suppat the propasition.

The wish ill ustrated by Figure 5a leals us to use forces
of the third quadrant in order to compensate — as much as
posshle — the contradictory forces of the fourth ore. A
propation o these mmpensatory forces is defined by an
element 6, of [0,772] (Fig. 6). 6, is chasen such that
the barycenter of the system {(8,h(8))}6J6, 1, is—
when it exists and as far as possble:

(72, [g h(6).d6)
More predsely:

f(,_)[ (6-172).h(6).d6 =0 O J’% (6-172).h(6).d6 =0
9 (6-12).h(8).d6<0 O 6,=0
To satisfy [H2], forces of the second quadrant are used in
asymmetricd way to compensate the contradictory forces
of the first one. The propation o these compensatory
forcesis defined by an element 6- of [-172,0] (Fig. 6):
9n(9+n72).h(9).d9 >00 J’en (6+172).h(6).d6 =0
O (6+172).n(6).d0 <0 0 8.=0

{(6,n(6))} 606~ B, isthe set of the dfedive forces. At
this gage of handiing d h, the maximum value that can be
readed by R(A,B) — Ryeur(A,B) — is st to the per-
centage h, of these forces (Fig. 6):

he = ( ISi h(6).d8 ) / [T h(e).do )

4.2. Optimal and sub-optimal components

h(B)
A
G sub-optimal componcnts

hS G optimal components

A
Figure7. Optimal and A |
sub-optimal components. 0 0, /2

2 6. 0 8, a2 >0

The wishes ill ustrated in Figure 5 now lead us to d-
vide eat effedive force into two comporents (Fig. 7).
These cmporents are determined from a threshold hg to
which we will return in Sedion 4.3. One is optima and
used to suppat the ideathat A is“perfedly” in dredion 0O
of B. The other comporent is sub-optimal and is used to
suppat, more caitioudy, the ideathat A is “rather” in
direcion 0 of B. The set of sub-optimal comporents is
asdmil ated to its barycenter and the set of optimal com-
porents to a unique force aplying at point zero. This

naturally leads us to define arepresentative diredion 8,
(Fig. 7) andthus to gve the value of R,(A,B), i.e. of H(h):

8, = (jgj 8.max(0,h(8)-hy).do ) / (jgj h(6).d6 )
and  H(h) = R(A,B) = u(8,).h,

where 1 denotes the membership function o a fuzzy set
“diredional spatia relations between pants’ (see2.1). It
is essy to show that H shares property [H1] with u and
satisfies properties [H2] and [H3].

4.3. Directional sensitivity

Figure8. The comb effect. If hgwas st to h(0), Recir(A,B)
would take the value 1 in the |l eft case, and could take anoticea-
bly lower value in the right case.

Setting the threshold hy to 0 would na al ow the wish
illustrated in Figure 5b to be fulfilled. Setting it to +oo
would na allow 5c to be fulfilled. On the contrary, the
value h(0) seams giitable. For the sake of robustness and
in order to avoid the “comb effed” (Fig. 8), it is however
better to take into acourt the value of h na only at 0 bu
in a neighbahood d 0. This is the reason why we have
chosen to resort to a map S from [-172,772] onto [0,1],
which is even, continuows, deaeasing on [0,772], and
takes the value 1 at O (remark that S appeas in the sub-
script notation hy):

he= (fo* S(6)n(8).d0 ) / (fo* S(6).d8 )

S charaderizes the “diredional sensitivity”. An anal-
ogy between S and microphore diredivity—cardioid
(heat-shaped), hyper cardioid, etc.—can be established:
the sensitivity is maximum on the ais and ceaeases on
moving away (Fig. 9).

Figure9. Directional sensitivity.



5. Experimental results

In this ®dion, four families of diredional spatial rela-
tions are wnsidered: K, M, FO and F2. The first, K, is
defined by the aygregation method [12] (see dso Sedion
3), and the seaond M, by the compatibility method [17].
Both are based onthe cnstruction d angle histograms.
The last two families are based on the onstruction do
force histograms. They are generated by the new H func-
tion (presented in Sedion 4) and bythe function F, for FO,
the function F, for F2. The p and S functions used for
defining H are respedively trianguar (see Fig. 2) and
trapezidal (see Fig. 9). Note that the choice of S is nat
criticd—except for some very particular configurations
(the “comb effed”, see4.3). A medium diredional sensi-
tivity has been chasen here. K, M, FO and F2 can handle
fuzzy obeds as well as crisp ohjeds, and FO and F2 can
hande vedor data & well asraster data. However, the test
images presented are dl numericd images and invave
digoint crisp oljeds only: the reader can easily analyze
the configurations, and the results are quite doquent.

Let us highlight the most distingushing mark between
the K and M families on the one hand, and the FO and F2
families on the other (i.e.: between the eisting H func-
tions—see Sedion 3—and the new one—see Sedion 4).
Consider for instance Image 7. Througha point of objea
B (the disc), draw a verticd line. The right half-plane so
defined may contain some paints of A (in white). For K
and M, it is enoughto conclude that the propasition “A is
to the right of B” canna be totally false: Rricrr(A,B)Z0.
The FO and F2 families are much more exading. Gener-
aly, with these families, if Ra(A,B) is not null then
Ra.1(A,B) is null: for instance, FO canna assessA to be
simultaneoudly quite to the left and to the right of B. On
the mntrary, the K and M families — espedally M —
often asessan oljed to be in org, and the same time, in
many dredions with resped to ancther (seelmages 3, 6,
7, 8, 9). Some aithors [2, 18] suppat the ideathat this
feaure dlows more mmplex relationships — like
“surround’ — to be derived. For instance, considering the
results achieved by M for Image 9, one muld conclude
that A surrounds B. But if A was the disc and B the ring
(A would then be surrounded by B), or if the ring kecane
a disc (A would include B), M would achieve the same
results. So, in ou opinion, drawing conclusions from such
results looks difficult and nd reasonable. The dirediona
relations are nat the only spatial relations, and they canna
represent the relative position d an ojed with regard to
ancther all by themselves. In particular, they canna (and
have nat to) supdy for the spatia relation “surround'.
Moreover, it iswell known in cogntive science that,
generally, when trandating visual information into natu-
ral language descriptions, people do nd combine more

1 2 3

RIGHT| 71|78 (100|100 10|12 o | O] 3 | 7|0 | O
LEFT 0 0 0 0]/10]|12] 0 0f22]18|75|99
ABOVE( 15| 23| 0 0 0 0 0 0(f33[80] 3 0
BELOW| 15|23| 0 | 0]/ 80|88 |100/100) 43 (81| 7 | 2

RIGHT || 38 | 32| 55 | 86
LEFT 0 0 0 0
ABOVE| 67 |68 |73 |43]l o | 0| 0| O0|17(45| 0] O
BELOW| 1 | 5] 0] 0] 38[29|76]|99]43|68|20]| 5

K|{MJFO|F2[| K |M |FO|F2) K | M | FO|F2
RIGHT || 1 1 0 0 4 10| O 0f25|50| 0 0
LEFT || 51|52 |96 | 95| 38|50 |48 |44 25|50 0 | 0
ABOVE| 25| 48| 0 0|l 29 | 50 02550 | 0 0
BELOW| 25| 48| 0 0|l 29 | 50 02550 0 0

Test images and result tables.
Argument A appearsin white and referent B in gray.
The results are given in hundredths.

than two relations [7, 19]. The new H function presented
in Sedion 4 and wsed for defining the FO and F2 families,
has been conceved in that way (seeFig. 5a).

Of course, the K and M families could have been rede-
fined using force histograms (as e in Sedion 3. Fi-
nally, the nation d the histogram of forces enables all the
families gudied here to be conceved, and to benefit from
the four basic axiomatic properties. Which family pro-
vides the “best” results? The answer obviously depends on
the gplication considered. We just dedt here with what
Gapp [6] has cdl ed the basic meanings of spatial relations



(the model proposed by Gapp to define the semantics of
spatial relations distingushes context-spedfic conceptual
knowledge from the basic meanings of the relations).
However, nate that even when the results provided by FO
and F2 — the two new families presented in this paper —
are ompletely different from the others, they express
opinions which are fully rational (see Images 3, 4, 5, 6).
Moreover, no family relying onthe cnstruction d angle
histograms (or of F,-histograms) can behave like F2: in-
ded, angle histograms do nd take into acourt metric
information.

Other comments:

Image 2 — If A isnat perfedly below B in that case, when daes
such an event occur? The fad is that in pradice K and M pro-
scribe the guality: Rg(A,B)=1. Image 3 — According to M
(and K), the “howse” (objedt A) is rather south of the “river”
(objed B), or maybe north, but certainly nat west. Image 4 —
F2 is the only family to affirm that A is more to the right of B,
even thoughit gives a cetain credit to the propasition “A is
above B". Image 5 — As A becmes longer, K and M quickly
affirm that A is esentially locaed to the right of B. FO eventu-
ally shares this point of view, but later on, and in a lessdefinite
way. F2 isaoneto maintain that A esentialy remains below B.
The new H function presented in Sedion 4 tes been conceved
to thisend (seeFig. 5b). Image 7 — Accordingto M, objed A
is not much more to the left of objed B than below or abowe it.
And A is nat much more to the left of B in Image 7 than in Im-
age 9. Image 9 —Istheringlocaed to the |eft of the disc? The
FO and F2 families definitely say: no. They canna (and have
not to) suppy for the spatial relation “surround'.

6. Conclusion

Numerous methods for defining families of diredional
spatial relations can be foundin the literature. However,
no method can be hoped to gve aredly satisfacdory mod-
elling d the diredional relationships if it does not med
some reeasonable requirements. In this paper, three re-
quirements have been stated. It happens that the only
methods which fairly med them are based — explicitly or
not — onthe nation d the histogram of angles. We have
shown that the arrespondng families of diredional rela-
tions can be advantageously redefined using force histo-
grams instead of angle histograms. By imposing physicd
considerations on force histograms, we have introduced
two new families of diredional spatial relations. Finally,
the nation d the histogram of forces offers a flexible and
powerful tod to define such families. By working with
two functions (F and H), endess families can be gener-
ated. Research reeds to be dore to determine the most
suitable families acarding to context and to the gplica-
tion considered. We ae aurrently addressng these issues.
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