Histogram-Based Scene M atching M easures
O. Sahputera, J.M. Keller, P. Matsakis, P. Gader, and J. Marjamaa

Department of Computer Engineering and Computer Science
University of Missouri-Columbia
Columbia, MO 65211

Abstract -Fuzzy set theory has been used to handle
uncertainty in various aspects of image processing,
pattern recognition and computer vision. High-level
computer vision applications hold a great potential
for fuzzy set theory because of its natural language
capabilities. Scene description, a language-based
interpretation of regions and their relationships, is
one such application that has used fuzzy sets with
some success. This paper extends our earlier and on-
going work in scene description in the following
sense. If we have a linguistic description (from the
system or from a human), and we revisit the scene,
perhaps from a different orientation, can we match
the scene objects and their relationships to be
confident that we are indeed in the same place. We
devel op a scene matching methodology to accomplish
this using histograms of forces between objects.

1. Introduction

In ealier work, Keller and Wang [1] used a fuzzy
rule-base to generate lingutic description of relative
position between two image objeds, and ultimately,
to produce a omplete description of the scene. The
fuzzy rule-base recaved confidence values of the
four main diredional redations (LEFT, ABOVE,
RIGHT, BELOW) and SURROUND based on the
histogram of angles. Another approach for spatia
relationship estimation is due to Matsakis and
Wendling [2] who postulated an axiomatic
framework for functions from which they generated
"histograms of forces' to represent spatial relations
between a pair of 2D image objeds. By sdeding
particular  functions, they generated various
histograms, ranging from the histogram of anglesto a
histogram of gravitational forces. Keler and
Matsakis [3] utilized the histogram of forces to
generate numeric features from multiple force
histograms that were used to generate a lingustic
description of a scene using a rule-base. This
approach encompasss the ealier paradigm and leads
to aricher language for scene description. Due to the
complementary nature of the histograms of forces, it
is even posshle to construct a self assessnent
measure for each linguistic description between a pair
of image objects.

In this paper, we describe an approach to compare
pairs of 2D image objeds in dfferent scenes and
asdgn a @nfidence value indicating how similar they
are. Thisis a part of an ongoing research in the aea
of linguistic scene description for applications in
reamgnition tecnology in general, and automatic
target recognition in particular. Each histogram set
sarves as evidence that must be satisfied if we
attempt to find the same ohjed in other digital
images. Hence, we nead to measure the degree of
similarity between two sets of histograms of forces to
determine how well a match is satisfied. We must
also take into acoount that the two descriptions to be
compared may have different orientations. We use
the notion of “main diredion” of the histogram of
forces and normalize for orientation by shifting the
histograms. This approach is tested on a ntrolled
set of synthetic images and on red ohjects extracted
from LADAR images of a powerplant scene.

2. Spatial Relation M ethods

The fuzzy relative position between 2D objects is
often represented by a histogram of angles [4, 5]. The
histogram of angles associated with any pair (A,B) of
crisp and dgitized objeds is a function Ang”B from
IRinto IN. For any diredion 6, the value Ang”2(8) is
the number of pixd pairs (p,q) belonging to AxB
such that pisin diredion 6 of g. In [2], Matsakis and
Wendling introduced the notion of the histogram of
forces. It generdlizes and supersedes that of the
histogram of angles. It ensures rapid processing o
raster data @ well as of vedor data, and of crisp
objeds as well as of fuzzy objeds. It also dfers lid
theoretical guarantees, and allows expli cit accounting
of metric information. The histogram of forces asso-
ciated with (A,B) via F, or the F-hisogam
asociated with (A,B), is a function F*® from IRinto
IR +. Like Ang”B, this function represents the rlative

position of A with regard to B. For any diredion 6,
the value F*3(0) is the total weight of the aguments
that can be found in order to support the proposition
“Aisin diredion 6 of B". More predsdly, it is the
scalar resultant of dementary forces. These forces are
exerted by the A points on those of B, and each tends
to move B in diredion 6. Actudly, the letter F



denotes a numericd function. Let r be aredl. If the

elementary forces are in inverse ratio to d', where d
represents the distance between the points

considered, then F is denoted F; . For instance the F
function associated with the universa law of
gravitation is F,. The F,—histogram and F—histogram
(histogram of constant forces) have very different and
very interesting characterigtics. The latter, very
similar to the hisogram of angles, gives a global
view of the situation. It considers the dosest parts
and the farthest parts of the objeds equally, whereas
F,—histogram focuses on the closest parts.

3. Histogram Compatibility Measure

Each pair of objeds from the reference scene and the
target scene ae represented by relative position
histograms. Hence we nead a method to determine
how well the target obeds match those of the
reference  Histogram compatibility measure between
histogram H1 and H2 is defined as:
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Both histograms are normalized, noted as H". Hence,
both histograms can be seen as fuzzy sets, where at
least one histogram is a norma fuzzy set. H, is
shifted by some angle 6 to best match H,. The angle
0 that produces maximum match is cdled the shift
angle. This shift angle can be aswociated with the
amount of rotation in 2D space (or rotation around
the z-axis for 3D space) as $rown below. We toose
to use the standard min and max operator as our
intersedion and wion operator. Here Cyyo0[0,1]
where the histogram compatibility measure Cyypp iS
maximized to 1 when H; = H,.
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4. Synthetic Images

In this paper we use 8 images (Imagel-Image8) with
Imagel as the template. Each image mntains a
reference (dark gray) and an argument objed (the
light gray objed). The rotational variants are
obtained by rotating the original image from 0° to 90°
with 5 increment, and the dedination variants are
obtained by varying the dedination angle from -45°
to 45° with 5° increment. The original form (zero
rotation and zero dedination) of these images are
given in Figure 1. For these synthetic images, the
goa is to determine from the spatial reationship
histograms whether the assgnment of light and dark
gray objects from test images (2-8) to template image
(1) correspond to a scene match. The test images

simulate conditions such as variaion in olject shape
and sze (Image2-Image7), and variation dwe to
individual object rotation (Image3, Image8). These
could be due to probems in segmentation or
occlusion in the actual 3-D scene.
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Figure 1: Imagel toImage8in original orientation.

5. Experimentswith Synthetic Images

To calculate the spatiad relation compatibility
measure between object pair A and B, we firgt
generate the histograms. FO (constant forces), F2
(gravitationa forces), and AO (angles) that represent
the reative positions of the two objeds. Then we
calculate the histogram compatibility measure for
each corresponding pair of histograms between the
test image and the template. Hence, we will have C™,
C™, and C*°. The aggregation of these values is
defined as the spatial relation compatibility measure
between objed pair A and B. In this paper we
sdeded the Choquet integral [6] with a A fuzzy
measure as our aggregation method. The degree of
optimism of these histogram compeatibility measures
can be given in the order of F2, FO, and AQ, with F2
being the most optimistic. Therefore, we heurigtically
chose the density values of 0.6, 0.9, and 0.99 for F2,
FO and AO respedively. This will reduce the
influence of F2, while utilizing more of the
pessmistic one (A0). The results of each histogram
measures and their fusion using Choquet integral
from Imagel are shown in Figure 2.
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Figure 2: Resultsof C™, C™, C*%and their Choquet
fusion on declination variants of Imagel at O rotation.



5.1 Effect of Image Rotation

We found that image rotation does not affect the
spatial relation compatibility measure. All rotational
variants of Imagel recave compatibility measure
above 0.98 a any rotation ange, where variants of
other test images obtain 0.8 or less compatibility
value, except for Image3, which will be explained in
the following sedion. The average shift angle
approximates the actual rotation angle applied to the
images. The only exceptions are found on Images 5
and 8 wheretheir shift angles lead the actual rotation
by about 5°. This is due to non-symmetric ohjed
positioning in Image5 and Image8 resulting in rather
skewed, non-symmetric histograms, while other test
images have relatively symmetricd histograms.

5.2 Effect of Shapeand Size Variation

The test images used here (Image2, |maged-Image7?)
were oltained by altering the shape and size of one or
both objects in an attempt to modify various aspeds
of the histograms (FO, F2, A0). These histogram
aspeds include shape, magnitude and support. We
define our targets as dedination variants (constructed
by computer graphics) of each test image with
Imagel as the template. The results are shown in
figure 3.
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Figure 3: Effect of shape and size variationsin objects
with Imagel astemplate.

The dedination variants of Imagel aways recave
the highest compatibil ity measures at any dedination
angle. Also, when the shape distortion does not aff ect
the support of histograms (as in Image2, Image6 and
Image7) the cmpatibility measure is higher than
those which do (i.e, Image4 and Image5). The
highest compatibility measure obtained by a target
image is achieved by Image6 around 25°-30°
dedination. Note that the agument ohjed in Image6
contains an additional structure perpendicular to the
center of the origind argument object. As the
dedination angle increases from 0°, perspedive will
have the dfect of making this structure lodk smaller,
hencereducing its influence over the histogram. This
makes the image loock more like the template.
However, perspedive aso makes the two

horizontally parallel objeds look closer at higher
dedination angles. Eventually, the latter perspedive
effed becomes ggnificant enough to cause the
compatibil ity measure of Image6 to drop back down.

5.3 Effect of Individual Object Rotation

We have stated that image rotation has little dfect on
spatial relation compatibility measure. However, we
may run into cases where only one of the
participating oljeds is "rotated", perhaps due to
perspedive distortion, ocdusion, or segmentation
problems. Consider Image3 where the agument
objed is rotated from the template (Imagel) by 30°
around its centroid. The results from comparing
dedination variants againgt the template ae shown in
figure 4. Dedination variants of Image3 recave very
high compatibility measures. In fact, a dedination
angle of 35° or higher, these variants achieved higher
compatibility measures than their counterparts from
Imagel. This condition can be attributed to the
reference object’s symmetry (close to a square) and
size (smaller than argument). This condition causes
the reference object to be evaluated like apoint with
resped to the agument. Thus rotating only the
argument by some agle creates smilar effeds to the
histograms as rotating the whole image by the same
angle ad diredion. This is shown by the average
shift angle for dedination between -45° to 45°, which
is found around 2°, approximating the actual 30°
rotation we applied. For large positive dedination
angle, the size of the agument object in dedination
variants of Imagel is reduced in size uniformly due
to its horizontal orientation. However, for Image3,
the size reduction effed due to perspedive is
experienced the most by the object tip pointing away
from us. On the other hand, perspedive also makes
the other tip (pointing toward ws) look larger than the
original. So, a high positive dedination angle, the
variants of Image3 match the features found in the
histograms of the original template better than
dedi nation variants of the template itself.
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Figure4: Effect of argument object rotation (I mage3)
with template=I magel.



To see whether our previous result also holds for
situation where the reference object is not compact
and is comparable in size to the argument, we created
Image7 where the reference object is identical to the
argument. For the target, we rotated the argument
object 30° around its centroid and designated it as
Image8. From Figure 5, we see that declination
variants of Image8 also receive high compatibility
measures, exceeding those of the declination variants
of the template at extreme angles (-45°). However,
the average shift angle of Image8 was measured
around 8°, far from the actua angle of rotation
applied to the argument obyject.

Effect of Individual Obj. Rotation (template=Image7)
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Figure5: Effect of argument object rotation (I mageB)
with template=I mage7.

6. Scene M atching with Real Images

We also used severad hand segmented scenes taken
from power-plant images generated using laser radar
(LADAR). The LADAR range data is processed
using the pseudo-intensity filter [1] defined as
[1+62 +G§]'°'5 where G, and G, are Sobel gradient

magnitudes in a 3x3 window after median filtering.
An example is shown in the top image of figure 6.
The power-plant range data were provided by the
Naval Air Warfare Center (NAWC), China Lake, Ca.
Severa flights were made from different directions

WA

over the power plant. The objects appear different
between flights and at different times in a given
flight. The bottom image in figure 6 shows 4 hand
segmented objects in one of theimages. We chose
the objects from DSL as our template image (figure
7). There were 10 images altogether (named DS1 -
DS10), seven of which contained the same 4 objects,
and three where the objects assignment was wrong.
We ask two interrelated questions. 1. Are the objects
in the given scene the same as those in the
reference?, and 2. What is the best assignment of
object labels to verify the answer to question 1?

Given two scenes with manually assigned references,
the compatibility measure between the two scenes is
defined as the average of the compatibility measures
between each argument object (labeled 1 through 3)
and the reference (labeled 0). Since there are only
three argument objects in each scene, there are six
possible labd matching schemes between argument
objects in the target scene and argument objects in
the template scene. A brute force approach is
currently used to determine the best matching
scheme. Below, five test images are described. These
images provide representative samples of all the
images tested.

When comparing a scene to itsdlf, the scene
compatibility measure is expected to reach its
maximum at 1. This hypotheses is verified when we
tested DS1 againgt itself asthetemplate.

The Scene, DS2, is taken from the same flight as the
template, DS1, shown in figure 8. This explains the
similarity in shapes and positioning. The major
differences between the two images are scaling, due
to the approach on the object, and dight variations in
the shapes of objects due to the inaccuracy of
segmentation. In spite of these differences, the
compatibility measure between the two scenes
remainsrather high, 0.88.
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Figure 6. Pseudo-intensity image of power-plant scene as used in D4 scene. Labeled objects are as shown in D34,
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Figure 7. Objects from DS1 (template scene).
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Figure 8. Objects from DS2 (sameflight as DS1).

Now, a scene, DS5, that is obvioudy not the same as
DSl is tested (figure 9). Here, the maximum
compatibility measure of any matching scheme is
0.37. This is quite low, and indicaes that the
assumption that the two scenes are the sameisfase.

2 1
G s

Figure9. Objects from DS5 (scaled tofit).

In figure 10 (DS6), the same four buil dings asin DS1
are found, viewed from a different flight path and a
different approach angle. The highest scene
compatibility at 0.65 belongs to the crred matching
scheme. The low compatibility measure of thistest is
partially due to the unusual changes in shape between
DS6 and the template scene. Also, the angle between
the original flight path and this one, in combination
with the dedination angle, causes a large distance
alteration between thereference object and dbject 3.

1

Figure 10. Objectsfrom DS6.

The fifth test, DS7 (figure 11), shows the same scene
from yet another path and approach angle. This flight
isin the opposite diredion from the original. The test

yields a maximum scene cmpatibility of 0.79 with
the @rred matching scheme. This problem is easier
than the previous because the difference in approach
angle is about 18C°. At this angle, the vertical and
horizontal distances between objects have abaut the
sameratio as those in the template scene.

1

Figure 11. Objectsfrom DS7.

7. Conclusions

Spatial relationship compatibilit y measures defined in
this paper can be used to deted shape variation in
objeds and perform ohject/scene matching. It is aso
flexible enough to accommodate alimited range of
dedination variation. Several histogram compatibil ity
measures are used to calculate spatiad relation
compatibility measure between two objed pairs. In
turn, several spatial relation compatibility measures
are used to find the scene mwmpatibility measure as
shown using the power-plant scenes.
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