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Abstract -Fuzzy set theory has been used to handle
uncertainty in various aspects of image processing,
pattern recognition and computer vision. High-level
computer vision applications hold a great potential
for fuzzy set theory because of its natural language
capabilities. Scene description, a language-based
interpretation of regions and their relationships, is
one such application that has used fuzzy sets with
some success.  This paper extends our earlier and on-
going work in scene description in the following
sense. If we have a linguistic description (from the
system or from a human), and we revisit the scene,
perhaps from a different orientation, can we match
the scene objects and their relationships to be
confident that we are indeed in the same place. We
develop a scene matching methodology to accomplish
this using histograms of forces between objects.

1. Introduction

In earlier work, Keller and Wang [1] used a fuzzy
rule-base to generate linguistic description of relative
position between two image objects, and ultimately,
to produce a complete description of the scene. The
fuzzy rule-base received confidence values of the
four main directional relations (LEFT, ABOVE,
RIGHT, BELOW) and SURROUND based on the
histogram of angles. Another approach for spatial
relationship estimation is due to Matsakis and
Wendling [2] who postulated an axiomatic
framework for functions from which they generated
"histograms of forces" to represent spatial relations
between a pair of 2D image objects. By selecting
particular functions, they generated various
histograms, ranging from the histogram of angles to a
histogram of gravitational forces. Keller and
Matsakis [3] utilized the histogram of forces to
generate numeric features from multiple force
histograms that were used to generate a linguistic
description of a scene using a rule-base. This
approach encompasses the earlier paradigm and leads
to a richer language for scene description. Due to the
complementary nature of the histograms of forces, it
is even possible to construct a self assessment
measure for each linguistic description between a pair
of image objects.

In this paper, we describe an approach to compare
pairs of 2D image objects in different scenes and
assign a confidence value indicating how similar they
are. This is a part of an ongoing research in the area
of linguistic scene description for applications in
recognition technology in general, and automatic
target recognition in particular. Each histogram set
serves as evidence that must be satisfied if we
attempt to find the same object in other digital
images. Hence, we need to measure the degree of
similarity between two sets of histograms of forces to
determine how well a match is satisfied. We must
also take into account that the two descriptions to be
compared may have different orientations. We use
the notion of “main direction” of the histogram of
forces and normalize for orientation by shifting the
histograms. This approach is tested on a controlled
set of synthetic images and on real objects extracted
from LADAR images of a powerplant scene.

2. Spatial Relation Methods

The fuzzy relative position between 2D objects is
often represented by a histogram of angles [4, 5]. The
histogram of angles associated with any pair (A,B) of
crisp and digitized objects is a function Ang AB  from
IR into IN. For any direction θ, the value Ang AB(θ) is
the number of pixel pairs (p,q) belonging to A×B
such that p is in direction θ of q. In [2], Matsakis and
Wendling introduced the notion of the histogram of
forces. It generalizes and supersedes that of the
histogram of angles. It ensures rapid processing of
raster data as well as of vector data, and of crisp
objects as well as of fuzzy objects. It also offers solid
theoretical guarantees, and allows explicit accounting
of metric information. The histogram of forces asso-
ciated with (A,B) via F, or the F−histogram
associated with (A,B), is a function FAB from IR into
IR  +. Like Ang AB, this function represents the relative
position of A with regard to B. For any direction θ,
the value FAB(θ) is the total weight of the arguments
that can be found in order to support the proposition
“A is in direction θ of B” . More precisely, it is the
scalar resultant of elementary forces. These forces are
exerted by the A points on those of B, and each tends
to move B in direction θ. Actually, the letter F



denotes a numerical function. Let r be a real. If the
elementary forces are in inverse ratio to dr, where d
represents the distance between the points
considered, then F is denoted Fr . For instance, the F
function associated with the universal law of
gravitation is F2. The F2  –histogram and F0 –histogram
(histogram of constant forces) have very different and
very interesting characteristics. The latter, very
similar to the histogram of angles, gives a global
view of the situation. It considers the closest parts
and the farthest parts of the objects equally, whereas
F2 –histogram focuses on the closest parts.

3. Histogram Compatibility Measure

Each pair of objects from the reference scene and the
target scene are represented by relative position
histograms. Hence, we need a method to determine
how well the target objects match those of the
reference.  Histogram compatibility measure between
histogram H1 and H2 is defined as:
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Both histograms are normalized, noted as H*. Hence,
both histograms can be seen as fuzzy sets, where at
least one histogram is a normal fuzzy set. H2 is
shifted by some angle θ to best match H1. The angle
θ that produces maximum match is called the shift
angle. This shift angle can be associated with the
amount of rotation in 2D space (or rotation around
the z-axis for 3D space) as shown below. We choose
to use the standard min and max operator as our
intersection and union operator. Here CH1H2∈[0,1]
where the histogram compatibility measure CH1H2 is
maximized to 1 when H1 = H2.

4. Synthetic Images

In this paper we use 8 images (Image1-Image8) with
Image1 as the template. Each image contains a
reference (dark gray) and an argument object (the
light gray object). The rotational variants are
obtained by rotating the original image from 0o to 90o

with 5o increment, and the declination variants are
obtained by varying the declination angle from -45o

to 45o with 5o increment. The original form (zero
rotation and zero declination) of these images are
given in Figure 1. For these synthetic images, the
goal is to determine from the spatial relationship
histograms whether the assignment of light and dark
gray objects from test images (2-8) to template image
(1) correspond to a scene match. The test images

simulate conditions such as variation in object shape
and size (Image2-Image7), and variation due to
individual object rotation (Image3, Image8). These
could be due to problems in segmentation or
occlusion in the actual 3-D scene.

Figure 1: Image1 to Image8 in original orientation.

5. Experiments with Synthetic Images

To calculate the spatial relation compatibilit y
measure between object pair A and B, we first
generate the histograms: F0 (constant forces), F2
(gravitational forces), and A0 (angles) that represent
the relative positions of the two objects. Then we
calculate the histogram compatibil ity measure for
each corresponding pair of histograms between the
test image and the template. Hence, we will have CF2,
CF0, and CA0. The aggregation of these values is
defined as the spatial relation compatibility measure
between object pair A and B. In this paper we
selected the Choquet integral [6] with a λ fuzzy
measure as our aggregation method. The degree of
optimism of these histogram compatibil ity measures
can be given in the order of F2, F0, and A0, with F2
being the most optimistic. Therefore, we heuristically
chose the density values of 0.6, 0.9, and 0.99 for F2,
F0 and A0 respectively. This wil l reduce the
influence of F2, while utilizing more of the
pessimistic one (A0). The results of each histogram
measures and their fusion using Choquet integral
from Image1 are shown in Figure 2.

CF0, CF2, CA0, and Fusion using Choquet on Image1
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Figure 2: Results of CF0, CF2, CA0 and their Choquet
fusion on declination variants of Image1 at 0 rotation.



5.1 Effect of Image Rotation
We found that image rotation does not affect the
spatial relation compatibil ity measure. All rotational
variants of Image1 receive compatibility measure
above 0.98 at any rotation angle, where variants of
other test images obtain 0.8 or less compatibil ity
value, except for Image3, which wil l be explained in
the following section. The average shift angle
approximates the actual rotation angle applied to the
images. The only exceptions are found on Images 5
and 8, where their shift angles lead the actual rotation
by about 5o. This is due to non-symmetric object
positioning in Image5 and Image8 resulting in rather
skewed, non-symmetric histograms, while other test
images have relatively symmetrical histograms.

5.2 Effect of Shape and Size Variation
The test images used here (Image2, Image4-Image7)
were obtained by altering the shape and size of one or
both objects in an attempt to modify various aspects
of the histograms (F0, F2, A0). These histogram
aspects include shape, magnitude and support. We
define our targets as declination variants (constructed
by computer graphics) of each test image with
Image1 as the template. The results are shown in
figure 3.

Effect of Object Shape and Size Variation 
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Figure 3: Effect of shape and size variations in objects
with Image1 as template.

The declination variants of Image1 always receive
the highest compatibil ity measures at any declination
angle. Also, when the shape distortion does not affect
the support of histograms (as in Image2, Image6 and
Image7) the compatibility measure is higher than
those which do (i.e., Image4 and Image5). The
highest compatibil ity measure obtained by a target
image is achieved by Image6 around 25o-30o

declination. Note that the argument object in Image6
contains an additional structure perpendicular to the
center of the original argument object. As the
declination angle increases from 0o, perspective will
have the effect of making this structure look smaller,
hence reducing its influence over the histogram. This
makes the image look more li ke the template.
However, perspective also makes the two

horizontally parallel objects look closer at higher
declination angles. Eventually, the latter perspective
effect becomes significant enough to cause the
compatibil ity measure of Image6 to drop back down.

5.3 Effect of Individual Object Rotation
We have stated that image rotation has li ttle effect on
spatial relation compatibil ity measure. However, we
may run into cases where only one of the
participating objects is "rotated", perhaps due to
perspective distortion, occlusion, or segmentation
problems. Consider Image3 where the argument
object is rotated from the template (Image1) by 30o

around its centroid. The results from comparing
declination variants against the template are shown in
figure 4. Declination variants of Image3 receive very
high compatibility measures. In fact, at declination
angle of 35o or higher, these variants achieved higher
compatibil ity measures than their counterparts from
Image1. This condition can be attributed to the
reference object’s symmetry (close to a square) and
size (smaller than argument). This condition causes
the reference object to be evaluated like a point with
respect to the argument. Thus, rotating only the
argument by some angle creates similar effects to the
histograms as rotating the whole image by the same
angle and direction. This is shown by the average
shift angle for declination between -45o to 45o, which
is found around 24o, approximating the actual 30o

rotation we applied. For large positi ve declination
angle, the size of the argument object in declination
variants of Image1 is reduced in size uniformly due
to its horizontal orientation. However, for Image3,
the size reduction effect due to perspective is
experienced the most by the object tip pointing away
from us. On the other hand, perspective also makes
the other tip (pointing toward us) look larger than the
original. So, at high positi ve declination angle, the
variants of Image3 match the features found in the
histograms of the original template better than
declination variants of the template itself.

Effect of Individual Obj. Rotation (30 deg)
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Figure 4: Effect of argument object rotation (Image3)
with template=Image1.



To see whether our previous result also holds for
situation where the reference object is not compact
and is comparable in size to the argument, we created
Image7 where the reference object is identical to the
argument. For the target, we rotated the argument
object 30o around its centroid and designated it as
Image8. From Figure 5, we see that declination
variants of Image8 also receive high compatibility
measures, exceeding those of the declination variants
of the template at extreme angles (-45o). However,
the average shift angle of Image8 was measured
around 8o, far from the actual angle of rotation
applied to the argument object.

Effect of Individual Obj. Rotation (template=Image7)
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Figure 5: Effect of argument object rotation (Image8)
with template=Image7.

6. Scene Matching with Real Images

We also used several hand segmented scenes taken
from power-plant images generated using laser radar
(LADAR). The LADAR range data is processed
using the pseudo-intensity filter [1] defined as
[ 221 yGxG ++ ]-0.5 where Gx and Gy are Sobel gradient

magnitudes in a 3x3 window after median filtering.
An example is shown in the top image of figure 6.
The power-plant range data were provided by the
Naval Air Warfare Center (NAWC), China Lake, Ca.
Several flights were made from different directions

over the power plant. The objects appear different
between flights and at different times in a given
flight. The bottom image in figure 6 shows 4 hand
segmented objects in one of the images.   We chose
the objects from DS1 as our template image (figure
7). There were 10 images altogether (named DS1 -
DS10), seven of which contained the same 4 objects,
and three where the objects assignment was wrong.
We ask two interrelated questions: 1. Are the objects
in the given scene the same as those in the
reference?; and 2. What is the best assignment of
object labels to verify the answer to question 1?

Given two scenes with manually assigned references,
the compatibility measure between the two scenes is
defined as the average of the compatibility measures
between each argument object (labeled 1 through 3)
and the reference (labeled 0). Since there are only
three argument objects in each scene, there are six
possible label matching schemes between argument
objects in the target scene and argument objects in
the template scene. A brute force approach is
currently used to determine the best matching
scheme. Below, five test images are described. These
images provide representative samples of all the
images tested.

When comparing a scene to itself, the scene
compatibility measure is expected to reach its
maximum at 1. This hypotheses is verified when we
tested DS1 against itself as the template.

The Scene, DS2, is taken from the same flight as the
template, DS1, shown in figure 8. This explains the
similarity in shapes and positioning. The major
differences between the two images are scaling, due
to the approach on the object, and slight variations in
the shapes of objects due to the inaccuracy of
segmentation. In spite of these differences, the
compatibility measure between the two scenes
remains rather high, 0.88.

Figure 6.  Pseudo-intensity image of power-plant scene as used in DS4 scene. Labeled objects are as shown in DS4.



Figure 7. Objects from DS1 (template scene).

Figure 8. Objects from DS2 (same flight as DS1).

Now, a scene, DS5, that is obviously not the same as
DS1 is tested (figure 9). Here, the maximum
compatibil ity measure of any matching scheme is
0.37. This is quite low, and indicates that the
assumption that the two scenes are the same is false.

Figure 9. Objects from DS5 (scaled to fit).

In figure 10 (DS6), the same four buildings as in DS1
are found, viewed from a different flight path and a
different approach angle. The highest scene
compatibil ity at 0.65 belongs to the correct matching
scheme. The low compatibil ity measure of this test is
partiall y due to the unusual changes in shape between
DS6 and the template scene. Also, the angle between
the original flight path and this one, in combination
with the declination angle, causes a large distance
alteration between the reference object and object 3.

Figure 10. Objects from DS6.

The fifth test, DS7 (figure 11), shows the same scene
from yet another path and approach angle. This flight
is in the opposite direction from the original. The test

yields a maximum scene compatibil ity of 0.79 with
the correct matching scheme. This problem is easier
than the previous because the difference in approach
angle is about 180o. At this angle, the vertical and
horizontal distances between objects have about the
same ratio as those in the template scene.

Figure 11. Objects from DS7.

7. Conclusions

Spatial relationship compatibilit y measures defined in
this paper can be used to detect shape variation in
objects and perform object/scene matching. It is also
flexible enough to accommodate a limited range of
declination variation. Several histogram compatibil ity
measures are used to calculate spatial relation
compatibil ity measure between two object pairs. In
turn, several spatial relation compatibil ity measures
are used to find the scene compatibility measure as
shown using the power-plant scenes.
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