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Abstract 
 

The aim of this paper is the design of a system that can 
learn any individual user’s perception of four subjective 
and key spatial relationships between image objects: “ to 
the right of,”  “ above,”  “ to the left of ”  and “ below.”  The 
proposed approach is based on the utilization of artificial 
Neural Networks (NNs) and the modeling of relative 
positions between 2D objects through histograms of 
forces. The NNs are fed by features extracted from the 
histograms and are trained to numerically assess the four 
relationships according to the target perception.  
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1. Introduction 
 
The modeling of spatial relationships—and especially of 
the four relationships “ to the right of,”  “above,”  “ to the 
left of  ”  and “below”—is an important challenge in 
computer vision [1] [2] [3]. Applications can be found in 
robotics, scene description and spatial databases, to name 
a few. Due to the subjective nature of the four 
relationships above, several attempts were made to learn 
them from examples [4] [5] [6]. In this paper, we revisit 
the work in [6]. A directional spatial relation is a fuzzy 
binary relation between 2D image objects that depends on 
two parameters: a direction (or angle) α and a perception. 
With any pair (A,B) of objects, the relation associates a 
value between 0 and 1. This value is interpreted as the 
degree of truth, according to the given perception, of the 
proposition “A is in direction α of B.”  Object A is the 
argument and object B the referent. The angles 0, π/2, π 
and 3π/2 correspond to the directions RIGHT, ABOVE, 
LEFT and BELOW, which are the four primitive 
directions (Fig. 1a). For instance, the propositions “A is in 
direction π of B ”  and “A is to the LEFT of B ”  are 
equivalent. Their degree of truth is denoted by dAB(LEFT). 
If dAB(LEFT) is 0 then A is “not at all”  to the left of B and 
if dAB(LEFT) is 1 then A is “perfectly”  to the left of B. Fig. 
1 shows the values of dAB(RIGHT), dAB(ABOVE), 

dAB(LEFT) and dAB(BELOW) for a given pair of image 
objects and according to two different perceptions. Our 
goal is to build a system that can learn any individual 
user’s perception of the four primitive directional spatial 
relations. Like in [6], the proposed approach is based on 
the modeling of relative positions between image objects 
through histograms; the histograms provide inputs to 
Neural Networks (NNs) which are trained to assess the 
four degrees of truth according to the target perception. 
Contrary to [6], however, the histograms are force 
histograms [7], not angle histograms [8]; the NN inputs 
are histogram features, not histogram values (Fig. 2). In 
the end, important properties of directional relations are 
preserved, the number of image object pairs for training is 
drastically cut down, and the system learns faster and 
generalizes better. Section 2 goes over the notion of the 
histogram of forces and discusses feature extraction. 
Section 3 describes the NNs and the structure of the input 
and output vectors. Section 4 introduces the users whose 
perceptions we attempt to capture. It also presents the 
training and testing sets of image object pairs. The results 
of all experiments are displayed and discussed in Section 
5. Conclusion is given in Section 6. 
 
 
2. Force Histogram Features 
 
The systems described in this paper use different tuples of 
features extracted from different types of force 
histograms. The notion of the histogram of forces [7] is 
briefly presented in Section 2.1. The features likely to 
serve as NN input values are described in Section 2.2. A 
normalization procedure of the histograms is then 
explained in Section 2.3. The procedure will be used in 
Section 3 for dynamic feature selection and ordering. 
 
 
2.1. The Histogram of Forces 
 
The relative position of a 2D image object A with regard 
to another object B is represented by a function FAB from 
IR  (the set of real numbers) into IR  + (the set of non-
negative real numbers). A and B are seen as two flat metal 
plates of uniform density and constant and negligible 



 
Jane’s perception John’s perception 

dAB(RIGHT) 1.0 dAB(RIGHT) 1.0 

dAB(ABOVE) 0.0 dAB(ABOVE) 0.3 

dAB(LEFT) 0.0 dAB(LEFT) 0.0 

 

dAB(BELOW) 0.0 

 

dAB(BELOW) 0.3 

 
 (a) (b) (c) (d) 
 

Fig. 1.   Directional spatial relations. (a) The four primitive directions. (b) A pair (A,B) of image objects. (c) Values of dAB(RIGHT), 
dAB(ABOVE), dAB(LEFT) and dAB(BELOW) according to Jane, student at the University of Missouri. (d) Values according to John. Both 
students agree that A is perfectly to the right of B. However, John also considers that A is a little above B and a little below. 
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Fig. 2.   Synoptic diagram of the systems tested in this paper. (a) A pair (A,B) of image objects is presented to the system.  (b) The force 
histogram that represents the relative position of the two objects is computed. (c) Features are extracted from the histogram to constitute the 
neural network input vector. (d) The network outputs a vector whose components are the degrees of truth of the propositions “A is to the 
RIGHT of B,”  “A is ABOVE B,”  “A is to the LEFT of B”  and “A is BELOW B.”  
 
thickness—a kind of objects commonly considered in 
physics. For any direction θ, the value FAB(θ) is the scalar 
resultant of elementary forces. These forces are exerted 
by the particles of A on those of B, and each tends to 
move B in direction θ  (black arrows in Fig. 2a). FAB is the 
histogram of forces associated with (A,B) via F, or the 
F−histogram associated with (A,B). Actually, F denotes a 
numerical function and defines the force fields. Let r be a 
real number. If the elementary forces are in inverse ratio 
to d 

r, where d represents the distance between the 
particles considered, then F is denoted by Fr . The F0-
histogram (histogram of constant forces) and F2-
histogram (histogram of gravitational forces) have very 
different and interesting characteristics. The former 
considers the closest parts and the farthest parts of the 
objects equally, whereas the F2-histogram focuses on the 
closest parts. Details can be found in [7]. 
 
2.2. Feature Extraction 
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Fig. 3.   Force typology associated with the proposition “A is to 
the RIGHT of B.”  

In practice, forces are computed in a finite number of 
evenly distributed directions. Although the computed 
values can serve as direct inputs to the neural network a 
given system relies on, other histogram features can be 
proposed. Consider, for instance, the proposition “A is to 
the RIGHT of B.”   First, the set of directions is divided 
into four quadrants as shown in Fig. 3. The forces Fr

AB(θ) 
of the first quadrant (θ∈[−π,−π/2] ) are contradictory 
forces. They weaken the proposition. The amount of these 
forces (i.e., area of the black region on the left of Fig. 3) 
is denoted by cont− . The forces of the second quadrant 
(θ∈[−π/2,0] ) are elements that support the proposition. 
Some are used to compensate the contradictory forces 
mentioned above. The amount of these compensatory 
forces (i.e., area of the dark gray region on the left of Fig. 
3) is denoted by comp−  and determined by some angle 
α− . The values cont+ , comp+ and α+ are defined in the 
same way (see Fig. 3, quadrants 3 and 4). The remaining 
forces (θ∈[α−  ,α+] ) are the effective forces. A threshold τ 
divides them into optimal and sub-optimal components. 
The amount of the optimal components (area of the white 
region in Fig. 3) is denoted by optτ . The amount of the 
sub-optimal components (area of the light gray region) is 
denoted by suboptτ . The optimal components support the 
idea that A is “perfectly”  to the right of B: whatever their 
direction, they are regarded as horizontal and pointing to 
the right. The “average”  direction ατ of the effective 
forces is computed in conformity with this agreement. It 
allows the degree of truth dτ of the proposition “A is to the 
RIGHT of B”  to be assessed. dτ  is a decreasing function 
of |ατ  | and an increasing function of the percentage of the  
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Fig. 4.   (a) The reference image. (b) The associated histogram. The primary direction is LEFT and the secondary direction is BELOW, i.e., 
(δ1,δ2,δ3,δ4) is (LEFT,BELOW,RIGHT,ABOVE). (c) Reference image rotated through π/2, mirrored about the horizontal axis and rescaled. 
(d) The associated histogram. The primary direction is ABOVE and the secondary direction is RIGHT, i.e., (δ1,δ2,δ3,δ4) is 
(ABOVE,RIGHT,BELOW,LEFT). (e) The normalized histogram associated with both (a) and (c). The area under the curve is 1. The 
primary direction is RIGHT and the secondary direction is ABOVE. Note that swapping the referent and argument objects in (a) or (c) 
would give the same normalized histogram. 

 
effective forces. For instance, if all forces are contrad-
ictory then dτ   is 0 (“A is to the RIGHT of B” is judged to 
be completely false) and if all forces are effective and 
optimal then dτ   is 1 (proposition completely true). There 
are of course many ways of choosing the threshold τ. If τ 
is +∞, all the effective forces are optimal and subopt+∞  is 
0 (most optimistic point of view). Conversely, if τ is 0, all 
the effective forces are sub-optimal and opt0  is 0 (most 
pessimistic point of view). Between these two extremes, 
one can choose a threshold τS that depends on 
{(θ, Fr

AB(θ))}θ∈[α− ,α+] and such that neither suboptτS nor 

optτS are 0 [9]. Finally, eighteen values are associated 
with the direction RIGHT . Ten of them are forces:  
cont−  , cont+ , comp−  , comp+ , opt0 , optτS , opt+∞ , 

subopt0 , suboptτS  and subopt+∞ . Five are angles:  α− , 

α0 , ατS , α+∞  and α+. Three are degrees of truth:  d0 , dτS  

and d+∞ . Details on the computation of all these values 
can be found in [9]. Obviously, the other primitive 
directions, ABOVE, LEFT and BELOW, can be handled 
by applying exactly the same procedure to the shifted 
histograms Fr

AB(θ+π/2), Fr
AB(θ+π) and Fr

AB(θ+3π/2). In 
all, seventy-two numerical values (18×4) are extracted 
from Fr

AB. It can easily be shown, however, that some are 
redundant, some are always zero, etc. After feature 
reduction, only seventeen forces and angles are retained: 
 

cont− (RIGHT ), comp− (RIGHT ), comp+(RIGHT ), 
suboptτS (RIGHT ), cont− (ABOVE ), comp− (ABOVE ), 

comp+(ABOVE ), suboptτS (ABOVE ), cont− (LEFT ), 

α− (RIGHT ), α0 (RIGHT ), ατS (RIGHT ), α+(RIGHT ), 

α− (ABOVE ), α0 (ABOVE ), ατS (ABOVE ), α+(ABOVE ); 
 

and only six degrees of truth: 
 

d0 (RIGHT ), dτS (RIGHT ), d+∞ (RIGHT ), 

d0 (ABOVE ), dτS (ABOVE ), d+∞ (ABOVE ). 
 

It is convenient, at this point, to introduce the following 
notations and definitions. The primary direction of Fr

AB is 
the primitive direction δ1 for which the amount of 
effective forces, opt+∞ (δ1 ), is maximum. The secondary 

direction, δ2, is the neighboring direction of δ1 —ABOVE 
or BELOW if δ1 is RIGHT or LEFT, RIGHT or LEFT if δ1 
is ABOVE or BELOW—with the larger amount of 
effective forces. The ternary direction, δ3 , is the neighb-
oring direction of δ2 different than δ1 . The remaining 
primitive direction is the quaternary direction, δ4 . 
 

 
2.3. Histogram Normalization 
 
It is reasonable to state that the identity  d AB(RIGHT) = 
d t(A)t(B)(RIGHT)  should hold whenever t is a translation, a 
scaling or a reflection about a horizontal (left/right) axis; 
the identity  d AB(RIGHT) = d t(A)t(B)(ABOVE)  should hold 
for any rotation through π/2; we should also have  
d AB(RIGHT) = d BA(LEFT)  (A is to the right of B as B is 
to the left of A ). In [6], part of the problem was ignored, 
and part of it was addressed by multiplying the number of 
image object pairs for training. The approach proposed in 
the present paper avoids such a heavy manipulation and 
allows all the identities above to be perfectly retrieved. It 
is based on the following normalization procedure. First, 
the histogram Fr

AB is “rearranged” such that the primary 
direction δ1 is RIGHT and the secondary direction δ2 is 
ABOVE. The rearrangement consists in mirroring Fr

AB 
about the Y-axis and/or shifting it along the X-axis by a 
multiple of π/2. Then, the obtained histogram is divided 
by its mean (computed over an interval of length 2π) and 
by 2π such that the contradictory, compensatory and effect-
ive forces sum to 1. Let <Fr

AB> be the normalized hist-
ogram and let t be any translation, or scaling, or horiz-
ontal or vertical reflection, or rotation through a multiple 
of π/2. We have: <Fr

 t(A)t(B)> = <Fr
BA> = <Fr

AB>. This is 
illustrated by Fig. 4. The formal justification relies on 
geometric properties discussed in [7].   
 

 
3. Neural Networks 
 
Nine systems, denoted by 6-F0 , 6-F2 , 6-F0/F2 , 17-F0 , 
17-F2 , 17-F0/F2, 180-F0 , 180-F2  and 180-F0/F2 , were 
considered in our experiments. Each incorporates a 



standard one hidden layer perceptron neural network 
(NN). In preliminary tests, we considered different 
training algorithms (resilient backpropagation learning, 
conjugate gradient learning with Fletcher-Reeves update, 
one step secant learning, etc.). We eventually adopted 
scaled conjugate gradient learning, which offered the best 
compromise between convergence time and Mean Square 
Error (MSE) performance. For each run, the weights were 
initialized randomly and the training stopped when the 
MSE was less than 0.0001 or the number of epochs 
reached 3500 (whichever occurred first). The NN input 
vectors are described in Section 3.1 and the output vectors 
in Section 3.2. All input and output values are between 0 
and 1, and the number of hidden neurons for each NN is 
roughly equal to half the number of input neurons.  
 
 
3.1. Input Vectors 
 
For 180-F0, 180-F2 and 180-F0 /F2, forces are computed in 
180 evenly distributed directions and the computed values 
serve as NN inputs. The 180-F0 NN is fed with the values 
<F0

AB>(2πi/180), where i belongs to { 0;1;…;179} . 
Similarly, the 180-F2 NN is fed with the 180 values that 
represent <F2

AB>, and the 180-F0/F2 NN is fed with the 
180 values that represent <F0

AB> and the 180 values that 
represent <F2

AB>0   (for a total of 360 input neurons). The 
histogram <F2

AB>0   differs from <F2
AB> in that the 

rearrangement procedure applied to F2
AB is guided by 

F0
AB. For instance, if F0

AB had to be mirrored about the Y-
axis and shifted along the X-axis by −π/2 in order to get 
<F0

AB>, then F2
AB is also mirrored about the Y-axis and 

shifted along the X-axis by −π/2. The idea is to avoid 
conflicting orderings of the two sets of 180 input values 
(<F2

AB> and <F2
AB>0    are not always equal). As shown in 

Section 2.2, seventeen forces and angles can be extracted 
from any force histogram. The 17-F0 NN is fed with the 
17 values extracted from <F0

AB>, the 17-F2 NN is fed 
with the 17 values extracted from <F2

AB>, and the 17-
F0/F2 NN is fed with the 17 values extracted from <F0

AB> 
and the 17 values extracted from <F2

AB>0   (34 input 

neurons). Note that the range for the angles α− (RIGHT ), 
α0 (RIGHT ), etc., is linearly mapped from [−π/2;π/2] to 
[0;1]. Besides forces and angles, six degrees of truth can 
also be extracted from any force histogram (Section 2.2). 
The 6-F0 NN is fed with the values extracted from <F0

AB>, 
the 6-F2 NN is fed with the values extracted from <F2

AB>, 
and the 6-F0/F2 NN is fed with the values extracted from 
<F0

AB> and the values extracted from <F2
AB>0   . 

 
 
3.2. Output Vectors 
 
All NNs have 4 output neurons. Output j, where j belongs 
to { 1,2,3,4} , is dedicated to the assessment of the 
proposition “A is in direction δj of B.”  The letters A and B 

denote the objects under consideration and δ1 , δ2 , δ3 and 
δ4 denote the primary, secondary, ternary and quaternary 
directions of either F2

AB (for 180-F2 , 17-F2  and 6-F2) or 
F0

AB (for all other systems). Note that δ1 , δ2 , δ3 and δ4 
depend on A and B (since they are extracted from a non-
normalized histogram). Therefore, for a given NN, the 
primitive direction a given output is associated with varies 
with the objects considered. This dynamic ordering of the 
output values matches the ordering of the input values 
induced by the histogram normalization.  
 
 
4. Data 
 
The training and testing sets of image object pairs are 
described in Section 4.1. The target outputs depend, of 
course, on the perception to be captured. Section 4.2 
introduces the two virtual users whose perceptions we are 
interested in. 
 

 
4.1. Input Images 
 
Three sets of image object pairs are considered in our 
experiments: the Animation, the Survey and the Power 
Plant data sets. The Animation data set is composed of 
2131 configurations (i.e., pairs of objects). It was 
introduced in [9] with the aim of evaluating a system for 
linguistic scene description. The animation, which lasts 
about three and a half minutes, is structured around thirty-
five key configurations (Fig. 5). A large part of it is 
covered by six short movies that supplement the 
electronic version of [9]. The Survey data set (Fig. 6) was 
used in a survey conducted at the University of Missouri-
Columbia in an attempt to find out how humans assess 
spatial relationships. It is composed of 69 configurations. 
Some of them look roughly similar to configurations from 
the Animation data set, as can be noticed from Fig. 5 and 
Fig. 6. Finally, the Power Plant data set (Fig. 7) is 
composed of 210 configurations extracted from a hand-
segmented LADAR range image of a power plant near 
China Lake, CA. The image was supplied by the Naval 
Air Warfare Center. For all experiments, the even-
numbered Animation frames constituted the training data 
set (TR) whereas the odd-numbered Animation frames 
and the Survey and Power Plant configurations 
constituted the testing data sets (TA, TS, TP). 
 

 
4.2. Target Outputs 
 
All nine systems are involved in two sets of experiments. 
In the first set, we attempt to teach the systems—i.e, the 
corresponding NNs—Sam’s perception of the four prim-
itive directional spatial relations. The target outputs are 
the degrees of truth dAB(RIGHT), dAB(ABOVE), dAB(LEFT) 
and dAB(BELOW) as estimated by Sam. Sam is a virtual 
user whose perception engine is the centroid (Samtroid) 
method, a well-known method based on the computation 



 

                                                                               
 

 (a) (b) (c) (d) 
 

Fig. 5.   Animation data set. Some of the thirty-five key configurations the animation is structured around. 
The arrows indicate the motion (      ) or deformation (        ) applied to the argument object between two consecutive key configurations.  
 
 

                 

                       
 (a) (b) (c) (d) (e) (f) 
 
 

Fig. 6.   Survey data set. Some of its sixty-nine configurations. 
 
 

 
 

Fig. 7.   Power Plant data set. The twenty-one objects in the scene define two hundred ten configurations (pairs of objects). 

of the centroid of each object (see, e.g., [10]). In the 
second set of experiments, we attempt to teach the NNs 
Angel’s perception. The target outputs are generated by 
the aggregation method [10], which is based on the 
computation of angle (Angel) histograms. Sam and Angel 
have very different perceptions of the directional spatial 
relations. Contrary to flesh and blood users, they don’t 
mind examining thousands of object pairs and are always 
consistent. 
 
 
5. Results 
 
Ninety instances of each system were created for Sam. In 
other words, each one of the nine systems (6-F0 , 6-F2 , 6-
F0/F2 , 17-F0 , 17-F2 , 17-F0/F2, 180-F0 , 180-F2  and 180-
F0/F2 ) was trained ninety different times with Sam’s 
outputs on the training data. Each group of ninety 
instances was then divided into ten clusters of nine 
instances each. For each pair (A,B) of objects and each 
primitive direction δ, a given cluster therefore outputs 

nine degrees of truth dAB(δ). The median value defines the 
output of a new system instance: the cluster represent-
ative. The idea, of course, is to minimize the effect of 
random NN weight initialization. In the end, ten 
representatives of each system try to capture Sam’s 
perception of the four primitive directional spatial 
relations. Statistics on these ninety representatives (10×9) 
are given in Table 1. Ninety other representatives are 
defined in the same way with the aim of capturing Angel’s 
perception. The corresponding statistics are given in 
Table 2. The 180- systems give the lowest Mean Absolute 
Errors (MAEs) on the training data set TR and on the very 
similar testing data set TA, but the highest errors on TP 
and TS. The -F0/F2 systems perform better than the -F0 
and -F2 systems that use the same set of histogram 
features. Overall, the 17-F0/F2 system generalizes better 
than any other system and performs the best. Its 
representatives give errors way below 5%, whatever the 
data set and the virtual user. The resubstitution errors are 
less than 1%. 
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TABLE 1 — Capturing Sam’s perception: for each system, the 
table shows the min, mean and max Mean Absolute Errors (in %) 
of the ten representatives, over each data set. 
 

 6- 17- 180- 

 TR TA TP TS TR TA TP TS TR TA TP TS 
 min 3.2 3.2 2.5 3.7 1.0 1.0 1.9 2.2 0.6 0.6 4.4 3.4 

F0 mean 3.4 3.4 3.0 3.9 1.1 1.1 2.1 2.4 0.7 0.7 5.0 3.8 

 max 3.8 3.8 4.7 4.2 1.2 1.2 2.6 2.7 0.7 0.7 5.5 4.2 

 min 5.4 5.3 5.4 5.7 2.7 2.7 4.6 5.2 0.6 0.6 4.9 3.7 

F2 mean 5.7 5.7 5.9 5.8 2.8 2.9 5.3 5.5 0.7 0.7 5.5 4.1 

 max 6.0 6.0 7.0 5.9 3.0 3.0 6.6 6.0 0.7 0.7 6.0 4.3 

min 2.2 2.2 2.1 3.4 0.5 0.6 1.8 2.4 0.6 0.6 4.9 3.7 F0 

/ mean 2.3 2.3 2.5 3.7 0.6 0.7 2.0 2.6 0.7 0.7 5.3 4.0 

F2 max 2.5 2.5 2.7 4.1 0.7 0.7 2.1 2.9 0.7 0.7 5.6 4.2 

 
TABLE 2 — Capturing Angel’s perception: for each system, the 
table shows the min, mean and max Mean Absolute Errors (in %) 
of the ten representatives, over each data set. 
 

 6- 17- 180- 

 TR TA TP TS TR TA TP TS TR TA TP TS 

 min 2.8 2.7 2.7 3.3 1.3 1.3 2.8 2.9 0.4 0.4 5.2 4.6 

F0 mean 3.1 3.1 3.2 3.6 1.4 1.4 3.2 3.0 0.4 0.5 5.7 4.9 

 max 3.4 3.4 4.2 3.7 1.5 1.6 3.8 3.3 0.5 0.5 6.3 5.6 

 min 6.4 6.4 6.1 5.7 3.3 3.3 5.9 6.8 0.4 0.4 6.3 5.2 

F2 mean 6.8 6.8 7.0 5.9 3.5 3.6 6.3 7.4 0. 5 0.5 6.7 5.5 

 max 7.2 7.2 8.6 6.1 4.0 4.1 6.6 8.1 0.5 0.5 7.4 6.0 

min 1.5 1.5 2.8 2.5 0.6 0.6 2.7 2.2 0.4 0.4 5.2 4.4 F0 

/ mean 1.6 1.6 3.1 2.8 0.6 0.7 2.8 2.4 0.4 0.4 5.6 4.9 

F2 max 1.8 1.8 3.3 3.0 0.7 0.8 3.1 2.6 0.5 0.5 5.9 5.2 

 
 
6. Conclusion 
 
We have designed systems that can learn individual 
perceptions of the four primitive directional spatial 
relations “to the RIGHT of,” “ABOVE,” “to the LEFT of ” 
and “BELOW ”. The proposed approach is based on the 
utilization of artificial Neural Networks (NNs) and the 
modeling of relative positions between image objects 
through histograms of forces. The NNs are fed by features 
extracted from the histograms and are trained to assess the 
directional relationships according to the target 
perception. Two types of histograms and three sets of 
histogram features have been considered. The histograms 
are histograms of constant forces (F0) and histograms of 
gravitational forces (F2). They have very different and 
interesting characteristics, as shown in previous work. 
The feature sets are respectively composed of degrees of 
truth (6 values), forces and angles (17), and histogram 
bins (180). A normalization procedure allows the systems 
to efficiently handle object pairs related through basic 
geometric transformations. Thanks to this procedure, 

important properties of directional relations are preserved, 
the number of needed training configurations is cut down, 
and the systems learn faster and generalize better. The 
system based on the computation of forces and angles 
extracted from both F0 and F2 histograms performed the 
best and was able to capture equally well two very 
different perceptions of the four primitive directional 
relationships. The results are encouraging and should now 
be validated by further experiments involving other 
perceptions and testing data sets. In addition, many issues 
still have to be addressed. For instance, training a system 
such as the ones described in this paper requires hundreds 
of configurations to be evaluated—a very long, boring 
task for the everyday user. Moreover, in practice, new 
configurations might need to be regularly added to the 
training data set, and some configurations might need to 
be reevaluated because of human inconsistencies. At this 
time, however, altering or adding to the knowledge 
already acquired cannot be done without completely 
retraining the system.  
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