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AbstractÐThe fuzzy qualitative evaluation of directional spatial relationships

(such as ªto the right of,º ªto the south of. . . ,º) between areal objects often relies on

the computation of a histogram of angles, which is considered to provide a good

representation of the relative position of an object with regard to another. In this

paper, the notion of the histogram of forces is introduced. It generalizes and may

supersede the histogram of angles. The objects (2D entities) are handled as

longitudinal sections (1D entities), not as points (0D entities). It is thus possible to

fully benefit from the power of integral calculus and, so, ensure rapid processing of

raster data, as well as of vector data, explicitly considering both angular and metric

information.

Index TermsÐPattern recognition, parameter extraction, spatial relationships,

fuzzy subsets.
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1 INTRODUCTION

KNOWING how to apprehend the spatial organization of 2D objects
is essential to computer vision (for pattern recognition, image
understanding, scene description in natural language, and so
forth).

Freeman [5] proposed that the relative position of two objects be

described in terms of spatial relationships. He also proposed that

the fuzzy set theory be applied because ªall-or-nothingº standard

mathematical relations are clearly not suited to models of spatial

relationships. His ideas were widely adopted. For instance, Gapp

[6] used a fuzzy set (the ªregion of applicabilityº) to define a

spatial relation to a reference object; Keller and Sztandera [7] dealt

with spatial relationships between fuzzy objects. But, all these

authors assimilated 2D crisp objects to very elementary entities

such as a point (barycenter) or a (bounding) rectangle. This

extremely practical process has often been used, notably for spatial

reasoning and representation and processing of qualitative spatial

knowledge [4], [12], [13], [20], [22], [23]. However, it is obvious that

the procedure cannot be hoped to give a satisfactory modeling of

the relationships.
Miyajima and Ralescu illustrated this clearly in [16]. By

introducing the notion of the histogram of angles, they also

developed the idea that the relative position between two objects

can have a representation of its own and can thus be described in

terms other than spatial relationships. Numerous studies are based

on this notion of histograms of angles [8], [9], [11], [16]. But, the

computation of the histogram is costly and only raster data can be

considered. Moreover, metric information is not explicitly taken

into account and, as will be shown here, this is a real handicap.
In this paper, an original notion is presented, that of the

histogram of forces (also called F-histogram). The 2D objects are

handled as longitudinal sections, not as points (Fig. 1). It is thus

possible to fully benefit from the power of integral calculus and, so,

ensure rapid processing of raster data as well as of vector data,

explicitly considering both angular and metric information.

An F-histogram will represent the position of one areal object
relative to another. An ideal representation, once computed, is
expected to allow rapid fuzzy qualitative evaluation of any spatial
relationship. Other applications can also be envisaged (e.g., [24]).
At the very least, an F-histogram will have to allow assessment of
the directional relationships (such as ªabove,º ªto the right

of,º etc.). In Section 2, we specify the type of object we want to
handle and we set axiomatic properties to the fuzzy directional
spatial relations between these objects. Section 3 looks at the search
for functions handling longitudinal sections. This search is guided
by the previous axioms. In Section 4, we study how an F-histogram
can be produced from the datum of such a function and, then,
show how the notion of the histogram of forces enables the
definition of spatial relations that indeed satisfy the axiomatic
properties. Finally, a comparative study is proposed in Section 5
and our conclusion appears in Section 6.

2 DIRECTIONAL SPATIAL RELATIONS

The Euclidean affine plane is referred to as a directional orthogonal
frame �O;~i;~j�. Let � and v be two reals, ~i� and ~j� be the respective
images of~i and~j through a �-angle rotation, and ���v� the oriented
line whose frame is defined by the vector ~i� and the point of
coordinates �0; v�Ðrelative to �O;~i�;~j��Ð(Fig. 2).

2.1 Relations between Points

There is no controversy about directional spatial relations between
points. We believe that all authors will accept the following
formulations. A fuzzy directional spatial relation between points is a
fuzzy binary relation R� between points, where � represents any
real. R� connects any couple �A;B� of distinct points with an
element of interval [0, 1]. This element,R��A;B�, is put in the same
category as the degree of truth of the proposition AR�B stated as
ªA is in direction � of B.º Point A is the argument of the
proposition and point B is the referent. For some values of �,
according to the context, particular conventions are generally used.
For example, the relation R0 is sometimes expressed as ªto the

right of,º ªto the east of . . .,º and the AR0B proposition
stated as ªA is to the right of B,º ªA is to the east of

B . . . .º The directional spatial relations between points are defined
from a fuzzy subset of RR. Its membership function � is continuous,
with period 2�, even, decreasing on �0; ��, and takes the value 1 at
0 and the value 0 at �=2. Let � and � be two reals and A and B be
distinct points. If � is an �~i; ~BA� angle measure, then (Fig. 3):
R��A;B� � ��� ÿ ��.
2.2 Relations between Areal Objects

As underlined by Rosenfeld and Kak [21], although it is easy to
define spatial relations between points, the problem gets complex
when 2D objects are processed and when parameters such as
shape, orientation, and dimensions are involved. The type of the
objects we are going to handle is specified as follows:

Definition 1. A crisp object E is a nonempty bounded set of points,
equal to its interior closure and such that, for any real � and for any
real v, E \���v� is the union of a finite number of mutually disjoint
segments. The set E \���v�, denoted E��v�, is a longitudinal
section of E (Fig. 2).

The topologic condition (E
�o

� E) enables us to consider regular
closed sets only [26], which do not include any ªgraftingº such as
an arc or isolated point. The adjective ªcrispº will henceforth often
be omitted (the definition of a ªfuzzyº object is given in Appendix
B). Let us now examine a family of fuzzy binary relations between
objects, corresponding to a family of directional spatial relations.
(They are, therefore, assumed to be indifferent to the context: The
directional position of an object with regard to another is in no way
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affected by the rest of the scene.) Terminology and notations are as

in Section 2.1. Given a couple of objects �A;B�, it is legitimate to
assume that if any of the considered relations is defined at �A;B�,
then all are. Such a couple will be termed assessable. It is also

legitimate to assume the following properties:

[A1] Let A and B be two crisp objects and � and � be two reals.

Denote by t~u the translation of vector ~u. There exists a real
number k0 such that, for any k greater than k0, the �tk�~i� �A�; B�
couple is assessable. Moreover,

lim
k!�1

R��tk�~i� �A�; B� � ��� ÿ ��

[A2] Let A and B be two crisp objects and � a real. If �A;B� is

assessable, then �B;A� is also assessable and

R����B;A� � R��A;B�

[A3] Let A and B be two crisp objects, � a real and sym a ���v�-
axis orthogonal symmetry. If �A;B� is assessable, then
�sym�A�; sym�B�� also is and

R2�ÿ��sym�A�; sym�B�� � R��A;B�

[A4] Let A and B be two crisp objects, � a real, and dil a dilatation

with a strictly positive ratio. If �A;B� is assessable, then
�dil�A�; dil�B�� also is and R��dil�A�; dil�B�� � R��A;B�
We term these the basic axiomatic properties (Fig. 4). [A1] signifies

that two objects can be assimilated to points if they are distant

enough. [A3] and [A4] define the behavior of the directional spatial
relations towards similitudes. [A4] means that the relations are not

sensitive to scale changes, [A3] that neither a space dimension nor
a direction are preferred. [A2] brings out the notion of semantic

inverse (according to Freeman [5]). A is thus to the left of B as B is

to the right of A. As can be observed through the literature
(especially in the papers by Freeman [5] and Retz-Schmidt [18]),

the points of view stated above are globally set aside by works in
the fields of linguistics and psychology. Nevertheless, they are, in a

more or less explicit way, widely adopted by computer scientists
[7], [10], [11], [16], [17]. However, we must accept our limited
understanding of the mechanisms of human perception.

3 HANDLING OF LONGITUDINAL SECTIONS

3.1 Introduction

Let T be the set of triples ��; A��v�; B��v��, where � and v describe RR
and A and B describe the set of crisp objects of the plane.
Remember that A��v� is a longitudinal section of A (see Section 2.2,
Definition 1), A��v� � A \���v�. Likewise, B��v� � B \���v�.
How can we define a function F from T into RR� such that, for
any couple �A;B� of objects, the set

f����v�; F ��; A��v�; B��v���g��;v�2RR2

of data can represent the relative position of A with regard to B?
To answer this question, we treat F ��; A��v�; B��v�� as a weight.
The weight of the arguments which an observer whose scope of
vision is limited to ���v� will, nevertheless, find to support the
proposition ªA is in direction � of Bº (Fig. 5). Our thought
process led us from the directional spatial relations to FÐfor the
handling of longitudinal sections, then from F to a second function
fÐfor a thinner handling of segments and, then, from f to a third
function 'Ðfor the handling of points. The axiomatic properties
[A1] to [A4] actually induce axiomatic properties on F . The
existence of f is deduced from these properties. Axiomatic
properties are also induced on f and the existence of ' is finally
deduced from the properties of f . This is a natural progression
because a longitudinal section is a union of segments and a
segment is a union of points.

The functions ', f , and F are presented in Section 3.2. In order
to be more concise and to increase readability, we have decided to
introduce first ', then f , then F , and not the opposite. Concrete
examples of functions ' and f are given in Section 3.3. Within the
article, numerous properties are referred to and some propositions
are formulated. The properties are written down in Appendix A
and their principal links illustrated by Fig. 15. For each proposi-
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Fig. 1. The assessment of relative positions. (a) The classical approach: The objects are handled as points. (b) The proposed approach: The objects are handled as
longitudinal sections.

Fig. 2. Oriented straight lines and longitudinal sections. E��v� � E \���v� � I [ J [K.



tion, the proof is given and the reciprocal studied in [14]. The

French-speaking reader is also invited to consult [15].

3.2 General Presentation of Functions ', f, F

3.2.1 Handling of Points: the Function '

The handling of couples of points is carried out by way of a map '

from RR into RR�, null on RRÿ, continuous on RR��. Let A and B be

two objects, � and v two reals, M a point of A��v�, and N a point of

B��v�. We consider the �M;N� couple an argument put forward to

support the proposition ªA is in direction � of Bº (Fig. 5). The

value '�xM ÿ xN�, where xM and xN refer to the respective

abscissas of M and N on ���v�, is the weight of this argument. It

does not depend on � but only on the relative position of M and N

on ���v�. This is in accordance with [A3]. If xM is lower than or

equal to xN , i.e., if xM ÿ xN belongs to RRÿ, the advanced argument

is not acceptable and, therefore, its weight '�xM ÿ xN� is null.

Continuity is an analytical property which is often assessed as a

minimum requirement because it is verified by most physical

phenomena (at least on the human scale). It seems natural to accept

it here. However, continuity can obviously not be required at 0. If

xM ÿ xN is strictly positive, then M is in direction � of N , and if

xM ÿ xN is strictly negative, then M is not in direction � of N .

3.2.2 Handling of Segments: the Function f

The handling of couples of segments is carried out by way of a

function f from RR� � RR� RR� into RR�. Let �I; J� be a couple of

aligned segments. There exists an infinite number of � values

(equal modulo �) such that ��; I; J� belongs to T . Let us pick such a

value. There now exists a real number v, and only one, such that

the oriented straight line ���v� includes I and J . Let the

coordinatesÐrelative to the frame associated with ���v�Ðat the

ends of segments I and J be noted a�I ; b
�
I ; a

�
J ; and b�J , with a�I lower

than b�I , and a�J lower than b�J (Fig. 6). Both b�I ÿ a�I and b�J ÿ a�J are

positive values not depending on �, noted dI and dJ . They

correspond to the segment lengths. The difference a�I ÿ b�J ,

depending on �, is noted D�
IJ .

Let A and B be two objects, � and v two reals, I one of the

segments that form A��v�, and J one of the segments that form

B��v�. We consider the �I; J� couple an argument put forward to

support the proposition ªA is in direction � of B.º The value

f�dI ;D�
IJ ; dJ � represents the weight of this argument. It only

depends on the lengths of I and J and on the relative position of

these segments on ���v�. At this stage, it seems natural to estimate

f�dI ;D�
IJ ; dJ � by summing the weights '�xM ÿ xN� of the �M;N�

arguments, where M and N describe I and J , respectively:

f�dI ;D�
IJ ; dJ � �

Z b�I

a�
I

Z b�J

a�
J

'�uÿ v�:dv
 !

:du

�
Z dI�D�

IJ
�dJ

D�
IJ
�dJ

Z dJ

0

'�uÿ v�:dv
� �

:du :

(Note that addition is not the sole information fusion operator.

Other operators can be considered [14].)

Definition 2. Let ' be a map from RR into RR�. The function f from

RR� � RR� RR� into RR� defined by the following formula is called the

function generated by ':

f�x; y; z� �
Z x�y�z

y�z

Z z

0

'�uÿ v�dv
� �

du:

Proposition 1. Let ' be a map from RR into RR� and f the function

generated by '. If ' is null on RRÿ, continuous on RR��, and if there

exists no nonempty open interval E of RR��, such that, ' is null on E,

then f satisfies properties [P1] to [P3].

Note that all the properties are given in Appendix A. When

x� y� z is strictly negative ([P1]), the couple �I; J� is not a good

argument in favor of the proposition ªA is in direction � of
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Fig. 3. Example of directional spatial relations between points. The degree of truth
of the proposition ªA is in direction � of Bº is ��� ÿ ��.

Fig. 4. The basic axiomatic properties. (a) [A1] The position of AA0 with regard to BB
is approximately like the position of any point of AA0 with regard to any point of BB.
(b) [A2] BB is in direction �� � of AA as AA is in direction � of BB. (c) [A3] AA0 is in
direction 2� ÿ � of BB0 as AA is in direction � of BB. (d) [A4] The position of AA0 with
regard to BB0 is like the position of AA with regard to BB.



Bº (Fig. 6b). When y is strictly positive ([P2]), the couple makes up

a good argument (Fig. 6a). The signification of [P2] is indicated in

Fig. 7.

3.2.3 Handling of Longitudinal Sections: the Function F

The handling of couples of longitudinal sections is carried out by

way of the function F from T (see Secton 3.1) into RR�. Let A and B

be two objects and � and v two reals. There exists one set fIigi21::n

of mutually disjoint segments, and only one, such that

A��v� � [i21::nIi. Likewise, there exists one set fJjgj21::m of

segments such that B��v� � [j21::mJj. We consider the

�A��v�; B��v�� couple an argument put forward to support the

proposition ªA is in direction � of B.º The weight of this

argument is represented by F ��;A��v�; B��v��. It seems natural to

estimate it by summing the weights f�dI ;D�
IJ ; dJ � of the �I; J�

arguments, where I and J describe fIigi21::n and fJjgj21::m,

respectively:

F ��; A��v�; B��v�� �
X

i21::n;j21::m

f�dIi ;D�
IiJj
; dJj � :

Definition 3. Let f be a function from RR� � RR� RR� into RR�. The

function F from T into RR� defined by the following formula

(where fIigi21::n denotes the sole set of mutually disjoint segments

such that I � [i21::nIi, and fJjgj21::m the sole set of segments such

that J � [j21::mJj), is called the function generated by f :

F ��; I; J� �
X

i21::n;j21::m

f�dIi ; D�
IiJj
; dJj �:

Proposition 2. Let f be a function from RR� � RR� RR� into RR� and let
F be the function generated by f . If f satisfies properties [P1] to
[P3], then F satisfies properties [P7] to [P10].

In Section 4, we present how to define a family of directional
spatial relations from the datum of a function F handling
longitudinal sections. We can already guess that [P9] and [P10]
will help guarantee the basic axiomatic properties [A2] and [A3];
the similarities between [P9] and [A2] on the one hand and
between [P10] and [A3] on the other hand are obvious. As for [P7]
and [P8], even if the link is more difficult to establish, they help
guarantee [A1] (see Fig. 15, in Appendix A). What about A4? This
point is dealt with in Section 3.3.

3.3 A Particular Family of Functions '=f=F

For any real number r, let 'r be the map from RR into RR�, null on
RRÿ such that 8d 2 RR��, 'r�d� � 1=dr. Let fr be the function
generated by 'r and Fr the one generated by fr.

Proposition 3. Let r be a real number. Function fr satisfies [P1] to [P3]
and also [P4].

Proposition 4. Let f be a function from RR� � RR� RR� into RR� and let
F be the function generated by f . If f satisfies properties [P1] to [P4],
then F satisfies properties [P7] to [P10] and also [P11].

So, the Fr functions satisfy property [P11]. The importance of
the 'r=fr=Fr families is due to this characteristic, which allows
[A4] to be guaranteed (see Fig. 15, in Appendix A). The importance
of these families is also due to the particularities of '0=f0=F0 and
'2=f2=F2. Let A and B be two objects, � and v two reals, M a point
of A��v�, and N a point of B��v�. Let us assume that the �M;N�
couple is a good argument in favor of the proposition ªA is in

direction � of Bº (i.e., M is in direction � of N). Function '0

confers to this argument a weight independent of the distance
MN . This independence naturally affects f0, and f0 satisfies [P5]
(Fig. 8a). Now, if M and N are material points of unit mass, then
the weight assigned by '2 represents (to within a factor of
multiplication) the gravitational force exerted by M on N (a force
which tends to move N in direction �). This gives property [P6] to
f2, which is also particularly interesting; f2 is not sensitive to scale
changes (Fig. 8b). We will come back to these particularities in the
following sections.
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Fig. 6. Longitudinal sections of disjoint convex objects.

Fig. 7. Property [P2].

Fig. 5. Handling of longitudinal sections. Interpretation of '=f=F . Observer O4

looks for arguments in favor of the proposition ªA is in direction �4 of B.º
�R;Q� is a good argument but not �P;Q� : '�xP ÿ xQ� � 0 (Section 3.2.1). As for
the other observers, they cannot produce an argument to support their respective
propositions.

Fig. 8. Properties [P5] and [P6]. (a) Independence from distance: F ��; I; J� �
F ��;K;L� ([P5]) (b) Independence from scale: F ��; I; J� � F ��;K;L� ([P6]).



Proposition 5. f0 satisfies properties [P1] to [P4] and [P5] and is defined

by the following tree:

Proposition 6. f2 satisfies properties [P1] to [P4] and [P6] and is defined
by the following tree:

Propositions 5 and 6 give the expressions of f0 and f2. Note that
for these functions, a couple of aligned segments is seen as a triple
�x; y; z� of real numbers (Section 3.2.2); x denotes the length of the
referent segment (represented in the trees by a black line) and z the
length of the argument segment (represented in gray). The
algebraic expression corresponding to the process of a given
couple depends on the relative position of the segments.

4 HISTOGRAMS OF FORCES AND DIRECTIONAL

RELATIONS

4.1 F-Histograms

For any function F from T into RR� and for any couple �A;B� of
objects, let us denote by FAB the function defined by:

FABj RR! RR�

� 7ÿ!
Z �1
ÿ1

F ��;A��v�; B��v��:dv

If FAB is defined on RR and if F is defined at
��; A��v�; B��v�� for any couple ��; v� of reals, the couple
�A;B� is termed F -assessable. FAB��� then represents the total
weight of the arguments stated in favor of the proposition ªA
is in direction � of B.º In Section 3.3, we noticed that '0

(which generates F0) is independent of distance. The conse-
quence is that FAB

0 and AABÐthe histogram of angles
associated with the digitized objects [16]Ðare fundamentally
equivalent, even though the first arises from the continuous
case and the second from the discrete case. For instance, it is
shown in [14] that, for the horizontal and vertical directions
(i.e., � belonging to fÿ �

2 ; 0;
�
2 ; �g), the values FAB

0 ��� and AAB���
are strictly equal. The equivalence between FAB

0 and AAB is
clearly illustrated in Section 5. In Section 3.3, we also noticed
that the weights assigned by '2 can be interpreted as
gravitational forces. Thus, if each object is a homogeneous
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Fig. 9. Computation of F-Histograms and evaluation of directional spatial relations.

Recap. (a) Handling of points (Section 3.2.1): '�uÿ w�. (b) Handling of segments

(Section 3.2.2): f�x; y; z� � R x�y�zy�z
R z

0 '�uÿ w�:dw
ÿ �

:du. (c) Handling of longitudinal

sections (Section 3.2.3): F ��; A��v�; B��v�� � f�x1; y1; z� � f�x2; y2; z�. (d) Hand-

ling of directions (Section 4.1): FAB��� � R�1ÿ1 F ��;A��v�; B��v��:dv. (e) Handling of

histograms (Section 4.2): R��A;B� � H�FAB � ��.
Fig. 10. The evaluation of FAB��� is based on the partitioning of the
objects. (a) Case of vector data. Four couples of trapeziums are processed.
(b) Case of raster data. Five couples of segments are processed.



material surface of unit specific mass, FAB
2 ��� represents the

scalar resultant of elementary forces of gravity; the forces

exerted by the A points on those of B, each tending to move B in

direction �.
That is why function FAB, for any F -assessable couple �A;B�, is

called the histogram of forces associated with �A;B� via F . We can

consider this histogramÐalso called the F-histogram associated with

�A;B�Ðto result from the compression of the

f����v�; F ��;A��v�; B��v���g��;v�2RR2

data set: It represents the relative position of object A with regard

to object B. Propostion 7 specifies the Fr-assessable couples of

objectsÐi.e., those to which a Fr-histogram can be associated.

Proposition 7. Let r be a real number. If r belongs to � ÿ1; 1�,
then any couple of objects is Fr-assessable. If r belongs to �1; 2�,
then the Fr-assessable couples of objects are those with disjoint

interiors (disjoint or tangent objects). If r belongs to �2;�1�,
only the couples of disjoint objects are Fr-assessable.

4.2 Handling of Histograms: the Function H

A histogram of forces is a map from RR into RR� with period 2�. For

any such map h and for any real �, let us denote by h� � the

function defined by:
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Fig. 11. Histograms of angles (M) and histograms of forces (M0, M2) associated with test image 1. On the x-axes, directions � are expressed in radians. The y-axes are
dimensionless: indeed, the fact that HM

� satisfies property [P14] (see Section 4.2) allows the histograms to be normalized. Note that the intrinsic form of a histogram of
angles only appears for high values of the digitization step. But, in this case, the curves drawn are angular. (a) Digitization step: � 11:3 degrees (360=32 degrees).
Computing times: 0.7 CPU second (M) and 0.3 CPU second (M0, M2). (b) Digitization step: � 2:8 degrees (360=128 degrees). It is the chosen step (test images 1 to 8).
Computing times: 0.7 CPU second (M) and 0.9 CPU second (M0, M2). (c) Digitization step: � 0:3 of a degree (360=1024 of a degree). Computing times: 0.7 CPU second
(M) and 7.7 CPU seconds (M0, M2).

Fig. 12. Scale effect on processing time. The scale factor corresponds to the area
of the processed image (test image 1). Unit area 160� 80 pixels. Unit time is the
CPU second. Fig. 13. Isotropy (M0, M2), and anisotropy (M).



h� �j �ÿ�; �� ! RR�
� 7ÿ!h��� �� :

It is an element of Map��ÿ�; ��;RR��Ði.e., a map from �ÿ�; ��
into RR�. The handling of histograms of forces ÿ to evaluate the
directional spatial relationsÐis carried out by means of a map H

from Map��ÿ�; ��;RR�� into �0; 1�.
Definition 4. Let F be a function from T into RR� and let H be a map

from Map��ÿ�; ��;RR�� into �0; 1�. Consider the family �R���2RR of
fuzzy binary relations defined on exactly the set of F -assessable
couples by: R��A;B� � H�FAB � ��. We call �R���2RR the family
of directional spatial relations generated by F and H.

Proposition 8. Let F be a function from T into RR�, let H be a map from
Map��ÿ�; ��;RR�� into �0; 1�, and � the membership function of a
fuzzy subset ªdirectional spatial relations between pointsº (see
Section 2.1). Let �R���2RR be the family of relations generated by F
and H. We have:

IF F satisfies �P7� to �P11� THEN �R���2RR and � share �A1� and

and H and � share �P12� �R���2RR satisfies �A2� to �A4�:
and H �P13� �P14�

The principal links between [P7] to [P14] and [A1] to [A4] are
illustrated by Fig. 15 in Appendix A. Given Proposition 8, families
of directional spatial relations (in the sense proposed in Section 2.2)
can now be built. Fig. 9 recapitulates the part of the ', f , F , and H

functions in such a construction. Let us give an example. Let � be
the membership function of a fuzzy subset ªdirectional spatial
relations between points.º To assess the directional relationships
between two raster objects A and B, Miyajima and Ralescu [16]
normalize the histogram of angles associated with �A;B� and
assimilate it to a fuzzy subset. This fuzzy subset is then matched to
the one defined by �, using the compatibility notion [3]. Let HM

� be
the H function so defined. It is easy to show [14] that HM

� and �

share property [P12] and that HM
� satisfies properties [P13] and

[P14]. According to Propositions 3, 4, and 8, for any real number r,
the family of relations generated by Fr and HM

� therefore, shares
property [A1] with � and satisfies properties [A2] to [A4]. In

Section 5, two specific families are considered: those generated by

F0 and HM
� and by F2 and HM

� .

5 EXPERIMENTAL RESULTS AND COMPARATIVE STUDY

In this section, we compare three ways to assess the directional

spatial relations between two areal objects. The first method, M,

has been proposed by Miyajima and Ralescu in [16]. It relies on the

construction of a histogram of angles. In the other methods, M0

and M2, the previous construction is replaced by the construction

of F-histograms. One histogram results from function f0 and the

other from function f2. Remember that f0 satisfies [P5] and f2 [P6].

The aim is not to present a deep comparative study involving the

different directional spatial relations that have been defined in the

literature. Note that the assessment of the directional relations

between two objects does not always require, even implicitly, a

representation of the relative position of these objects (e.g., [1]). The

aim is not to analyze, defend, or criticize the way the histograms

are processed by M, M0, and M2 either. It is to demonstrate,

whatever the way chosen, that the notion of the histogram of forces

generalizes and may supersede that of the histogram of angles.

Only raster data can be handled by M. In addition, processing

nondisjoint objects is not explicitly tackled in the literature. Last,

the manipulation of fuzzy objects is always reduced to that of their

level-cuts, which are crisp objects (e.g., it is demonstrated in [14]

that the calculation scheme used in [16] corresponds to the simple

sum scheme described in Appendix A). For these reasons, the test

images presented in Fig. 14 are numerical images and involve

disjoint crisp objects.
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Fig. 14. Test Images and Result Table. Argument A appears in white and referent B in gray. The results are given in hundredths. Image 2ÐM2 is the only one to affirm
that A is more to the right of B, even though it gives a certain credit to the proposition ªA is above B.º Image 3 (this configuration has been proposed in [16])ÐM assesses
A to be clearly more below B (or even above B!) than to the right of it. Image 4ÐGood pupils say, ªSpain is to the south of France.º And you will certainly not make them
believe that it is to the west. But, when pressed, they may just agree that it does extend toward the west. M2 shares this point of view much better than the other methods.
Image 5ÐM2 states that the ªhouseº is west of the ªriver.º M does not share this opinion. Images 6, 7, and 8ÐAs argument A becomes longer, M quickly affirms that A is
essentially located to the right of referent B. M0 eventually shares this point of view, but later on and in a less definite way. Note that in Image 8, M assesses A to be
rather to the left of B than below it! M2 is alone to maintain that A essentially remains below B. When the length of object A tends toward infinity, TO_THE_RIGHT_OF
(A, B) increases toward a limit value near 1=3, whereas BELOW (A, B) decreases towards a value near 3=4.



5.1 Complexity and Computation Time

The data structure used to represent objects gives them certain
characteristics. Taking these characteristics into account with the
exploitation of the properties of F and the power of integral
calculus allows fast and efficient F -histogram computation. The
process of an assessable couple �A;B� of crisp objects is translated
into a set of assessments of predetermined algebraic expressions.
Each assessment corresponds to the process of a couple of
trapeziums in the case of vector data (Fig. 10a), a couple of
segments (more precisely, a batch of couples of pixels) in the case
of raster data (Fig. 10b). In the first case (vector data), for any
direction � considered, the objects are partitioned by sorting both A
and B vertices, following direction �� �

2. The complexity of
methods M0 and M2 is O�n � log�n��, where n denotes the total
number of object vertices. In the second case (raster data), the
partitioning of the objects is based on the rasterization of a group
of parallel lines by means of Bresenham's algorithm in integer
arithmetic [19]. The maximum complexity of methods M0 and M2

is then O�n ���
n
p �, where n denotes the number of pixels of the

processed image. Note that the complexity of M is O�n2�. As the
number of segments in the longitudinal sections of the objects
increases, the possibility to batch process the pixel couples
decreases, as does the efficiency of M0 and M2. But, even for a
very noisy image with very distorted objects, numerous pixel
couples can be batch processed and the M0 and M2 methods
remain very efficient in comparison with M.

In practice, a histogram of forces is represented by a limited
number of values; the set of directions is made discrete. The
computation time of an F-histogram is obviously proportional
to the number of directions which are considered. Experience
shows that it is judicious to set the digitization step between
two and three degrees (Fig. 11). With a lower step, the
computation time gets higher but the results achieved by M0

and M2 only differ by 10ÿ3.
The different methods were implemented in C programming

language on a 100MHz Sparc 4 without any excessive attention
to optimization. We tested the methods on a series of eight
homothetic images (i.e., related by a dilatation). As shown in
Fig. 12, the CPU time necessary for the computation of the
histogram of angles quickly becomes prohibitory. The larger the
objects are, the greater the number of pixel couples to be
considered and the less efficient M. For instance, image

4Ð170� 160 pixels Ðwas processed in about two CPU seconds
by M0 and M2, and 150 by M. The homothetic image of 2�
170� 160 pixels was processed in about four seconds by M0

and M2, and 600 by M!

5.2 Results

The results achieved by methods M and M0 are comparable. This
is not surprising. The histograms produced by the M and M0

methods are fundamentally equivalent. But M prefers the
horizontal and vertical directions, while M0 does not (Fig. 13).
M2, which directly takes metric information into account,
produces specific histograms. For some simple configurations,
the results achieved by M and M2 are also comparable. For others,
they are not at all. Which method provides the ªbestº results? The
answer obviously depends on the application considered. We just
deal here with what Gapp [6] has called the basic meanings of
spatial relations (the model proposed by Gapp to define the
semantics of spatial relations distinguishes context-specific concep-
tual knowledge from the basic meanings of the relations). However,
note that, even when the results provided by M2 are completely
different from the others (see images 2, 3, 5, 7, and 8), M2 expresses
an opinion which is fully rational. Moreover, no method relying on
the construction of a histogram of angles can express such an
opinion. Indeed, histograms of angles do not take into account
metric information.

6 CONCLUSION

In this paper, the notion of the histogram of forces has been
introduced. It provides a fuzzy qualitative representation of the
relative position between two areal objects. It generalizes and may
supersede that of the histogram of angles habitually used. The
notion of the histogram of forces offers solid theoretical guaran-
tees. It allows explicit and modulable accounting of metric
information. This is expressed by the choice of a numerical
function with a real variable ('). Different families of histograms
can, therefore, be considered. One of them coincides with that of
the histogram of angles, but without its weaknesses (long
processing times, anisotropy, requirement for raster data, etc.).
The histogram of forces is a powerful tool of representation with
numerous potential applications. There are many opportunities for
exploiting this tool, in particular, for defining directional spatial
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Fig. 15. Principal links between the properties [P1] to [P14].



relations in better harmony with human perception, are clearly

present in the literature [8], [9], [11], [16].

APPENDIX A

Properties [P1] to [P14]

The properties [P1] to [P6] are defined for any function f from

RR� � RR� RR� into RR� (Section 3.2.2).

[P1] f is defined and null on

f�x; y; z� 2 RR� � RR� RR�=x� y� z < 0g

[P2] f is defined on RR� � RR�� � RR� and has a strictly positive

value on RR�3� . Moreover, 8�x1; x2; y; z� 2 RR� � RR� � RR�� � RR�;

f�x1 � x2; y; z� � f�x1; y; z� � f�x2; x1 � y; z�

[P3] Let �x; y; z� be an element of RR� � RR� RR�. If f is defined at

�x; y; z� then it is defined at �z; y; z� and: f�z; y; x� � f�x; y; z�
[P4] There exists a map g from RR�� into RR, such that, for any

element �x; y; z� of RR� � RR� RR� and for any element k of RR��, if

f is defined at �x; y; z�, then it is defined at �kx; ky; kz� and:

f�kx; ky; kz� � g�k�:f�x; y; z�
[P5] Let �x; y1; y2; z� be an element of RR� � RR�� � RR�� � RR�. If f is

defined at �x; y1; z�, then it is defined at �x; y2; z� and:

f�x; y2; z� � f�x; y1; z�
[P6] Let �x; y; z� be an element of RR� � RR�� � RR� and k an element

of RR��. If f is defined at �x; y; z�, then it is defined at �kx; ky; kz�
and: f�kx; ky; kz� � f�x; y; z�

The properties [P7] to [P11] are defined for any function F from T

into RR� (Section 3.2.3).

[P7] Let � be a real and let I and J be two disjoint segments such

that ��; I; J� belongs to T . Function F is defined at ��; I; J�.
Moreover, if there exists no element �M;N� of I � J such that

M is in direction � of N , then F ��; I; J� is null;

f8�M;N� 2 I � J; R��M;N� � 0g ) F ��; I; J� � 0

[P8] Let ��; I 0; J 0� be an element of T and let I and J be two disjoint

segments such that ��; I; J� belongs to T . If I 0 and J 0 are

included in I and J , respectively, then F is defined at ��; I 0; J 0�
and: F ��; I 0; J 0� � F ��; I; J�

[P9] Let ��; I; J� be an element of T . If F is defined at ��; I; J�, then

it is defined at ��� �; J; I� and: F ��� �; J; I� � F ��; I; J�
[P10] Let ��; I; J� be an element of T and sym a ���v�-axis

orthogonal symmetry. If F is defined at ��; I; J�, then it is also

defined at �2� ÿ �; sym�I�; sym�J�� and:

F �2� ÿ �; sym�I�; sym�J�� � F ��; I; J�

[P11] There exists a map G from RR�� into RR� such that, for any

element ��; I; J� of T and for any dilatation dil with a strictly

positive ratio k, if F is defined at ��; I; J�, then it is defined at

��; dil�I�; dil�J�� and:

F ��; dil�I�; dil�J�� � G�k�:F ��; I; J�

Property [P12] expresses a link between a map H from

Map��ÿ�; ��;RR�� into �0; 1� and a map � from RR into �0; 1�. The

properties [P13] and [P14] are defined for any map H from

Map��ÿ�; ��;RR�� into �0; 1� (Section 4.2).

[P12] For any real � and any strictly positive real �, there exists an
element � of �0; ��, such that, 8h 2Map��ÿ�; ��;RR��,

��h 6� 0 and �hj��ÿ�;�ÿ��[����;���� � 0� ) jH�h� ÿ ����j < �;

where �h represents the function defined on RR, with period 2�,
whose restriction to �ÿ�; �� is h. In the formula, we deal with �h
when it is focused around �.

[P13] 8�h1; h2� 2Map��ÿ�; ��;RR��2,

f8� 2 �ÿ�; ��; h1�ÿ�� � h2���g ) H�h1� � H�h2�

[P14] 8�h1; h2� 2Map��ÿ�; ��;RR��2,

f9K 2 RR��=h1 � K:h2g ) H�h1� � H�h2�

APPENDIX B

HANDLING of FUZZY OBJECTS

Definition 5. A fuzzy object is a fuzzy subset E of the plane such that
any �-cut E�, with � an element of �0; 1�, is a crisp object. Let E be a
fuzzy object and � and v two reals: E \���v� is a fuzzy subset of the
plane denoted E��v� and named a longitudinal section of E.

The notion of the histogram of forces can easily be extended to
fuzzy objects. Consider a function F defined for handling
longitudinal sections of crisp objects. Let n be a nonnull positive
integer and ��i�i21::n�1 a strictly decreasing sequence of reals such
that �1 � 1 and �n�1 � 0. Let �A;B� be a couple of fuzzy objects,
whose membership functions take their values in f�igi21::n�1. How
can a histogram of forces be associated with �A;B�? Reduction of
fuzzy subset processing to level-cut processing is a frequent
practice. Several ways have been proposed in the literature. For
example, we can use the schemes described below. The first
derives directly from the generic scheme proposed by Dubois and
Jaulent [2], the other from Krishnapuram et al. [11]. For any
element i of 1::n, value mi denotes the difference �i ÿ �i�1.

The double sum scheme

F ��; A��v�; B��v��

�
Xn
i�1

Xn
j�1

mimjF ��; �A��v���i ; �B��v���j � :

It is easy to show that: FAB �Pn
i�1

Pn
j�1 mimjF

A�iB�j
:

The simple sum scheme

F ��;A��v�; B��v�� �
Xn
i�1

miF ��; �A��v���i ; �B��v���i �:

It is easy to show that: FAB �Pn
i�1 miF

A�iB�i
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